Structural Stability Theory and Practice Buckling of Columns, Beams, Plates, and Shells

Discover the theory of structural stability and its applications in crucial areas in engineering Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shells combines necessary information on structural stability into a single, comprehensive resource suitable for practici...

Full description

Saved in:
Bibliographic Details
Main Author Jerath, Sukhvarsh
Format eBook
LanguageEnglish
Published Newark Wiley 2020
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • 5.5.3 Inelastic Buckling of Frames -- Problems -- References -- Chapter 6 Torsional Buckling and Lateral Buckling of Beams -- 6.1 Introduction -- 6.2 Pure Torsion of Thin‐Walled Cross‐Sections -- 6.3 Non‐uniform Torsion of Thin‐Walled Open Cross‐Sections -- 6.3.1 I‐section -- 6.3.2 General Thin‐Walled Open Cross‐Sections -- 6.3.3 Warping Constant Cw of a Channel Section -- 6.4 Torsional Buckling of Columns -- 6.5 Torsional Buckling Load -- 6.5.1 Thin‐Walled Open Sections with Rectangular Elements Intersecting at a Point -- 6.5.2 Thin‐Walled Open Doubly Symmetric Sections -- 6.5.2.1 Pinned‐pinned Columns -- 6.5.2.2 Fixed‐fixed Columns -- 6.6 Torsional Flexural Buckling -- 6.6.1 Pinned‐pinned Columns -- 6.6.2 Fixed‐fixed Columns -- 6.6.3 Singly Symmetric Sections -- 6.6.3.1 Pinned‐pinned Columns -- 6.6.3.2 Fixed‐fixed Columns -- 6.7 Torsional Flexural Buckling: The Energy Approach -- 6.7.1 Strain Energy of Torsional Flexural Buckling -- 6.7.2 Potential Energy of External Loads in Torsional Flexural Buckling -- 6.8 Lateral Buckling of Beams -- 6.8.1 Lateral Buckling of Simply Supported, Narrow Rectangular Beams in Pure Bending -- 6.8.2 Lateral Buckling of Simply Supported I Beams in Pure Bending -- 6.8.3 Lateral Buckling of Simply Supported I Beams: Concentrated Load at the Mid‐Span -- 6.8.4 Lateral Buckling of Cantilever I Beams: Concentrated Load at the Free End -- 6.8.4.1 Lateral Buckling of Cantilever Narrow Rectangular Beams: Concentrated Load at the Free End -- 6.8.5 Lateral Buckling of Narrow Rectangular Cantilever Beams Acted on by Uniform Moment -- 6.9 The Energy Method -- 6.9.1 Lateral Buckling of Simply Supported I Beams: Concentrated Load at the Mid‐Span -- 6.9.1.1 Lateral Buckling of Simply Supported, Narrow Rectangular Beams: Concentrated Load at the Mid‐Span -- 6.9.2 Lateral Buckling of Simply Supported I Beams: Uniformly Distributed Load
  • 2.4.1 Pinned‐Pinned Column with Intermediate Compressive Force -- 2.4.2 Cantilever Column with Intermediate Compressive Force -- 2.4.2.1 Case 1 -- 2.4.2.2 Case 2 -- 2.5 Higher‐Order Governing Differential Equation -- 2.5.1 Boundary Conditions for Different Supports -- 2.5.1.1 Pinned Support -- 2.5.1.2 Fixed Support -- 2.5.1.3 Free End -- 2.5.1.4 Guided Support -- 2.5.2 Pinned‐Pinned Column -- 2.5.3 Cantilever Column -- 2.5.4 Pinned‐Guided Column -- 2.6 Continuous Columns -- 2.7 Columns on Elastic Supports -- 2.7.1 Column Pinned at One End and Elastic Support at the Other End -- 2.7.2 Column Fixed at One End and Elastic Support at the Other End -- 2.8 Eccentrically Loaded Columns -- 2.8.1 The Secant Formula -- 2.9 Geometrically Imperfect Columns -- 2.9.1 The Southwell Plot -- 2.10 Large Deflection Theory of Columns -- 2.10.1 Pinned‐Pinned Column -- 2.10.2 Cantilever Column -- 2.10.3 Effective Length Approach -- 2.10.3.1 Pinned‐Pinned Column -- 2.10.3.2 Cantilever Column -- 2.10.3.3 Fixed‐Fixed Column -- 2.10.3.4 Fixed‐Pinned Column -- 2.11 Energy Methods -- 2.11.1 Calculus of Variations -- 2.11.2 The Rayleigh‐Ritz Method -- 2.11.3 The Galerkin Method -- Problems -- References -- Chapter 3 Inelastic and Metal Columns -- 3.1 Introduction -- 3.2 Double Modulus Theory -- 3.2.1 Rectangular Section -- 3.3 Tangent Modulus Theory -- 3.4 Shanley's Theory for Inelastic Columns -- 3.5 Columns with Other End Conditions -- 3.6 Eccentrically Loaded Inelastic Columns -- 3.7 Aluminum Columns -- 3.7.1 North American and Australian Design Practice -- 3.8 Steel Columns -- 3.8.1 Buckling of Idealized Steel I‐Section -- 3.8.1.1 Strong Axis Bending -- 3.8.1.2 Weak Axis Bending -- 3.8.2 Column Strength Curves for Steel Columns -- 3.8.3 Column Research Council Curve -- 3.8.4 Structural Stability Research Council Curves -- 3.8.5 European Multiple Column Curves
  • 6.9.2.1 Lateral Buckling of Simply Supported, Narrow Rectangular Beams: Uniformly Distributed Load along the Centroidal Axis
  • Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- About the Companion Website -- Chapter 1 Structural Stability -- 1.1 Introduction -- 1.2 General Concepts -- 1.2.1 Bifurcation of Equilibrium -- 1.2.2 Limit Load Instability -- 1.2.3 Finite Disturbance Instability -- 1.3 Rigid Bar Columns -- 1.3.1 Rigid Bar Supported by a Translational Spring -- 1.3.1.1 The Displaced Shape Equilibrium Method -- 1.3.1.2 The Energy Method -- 1.3.2 Two Rigid Bars Connected by Rotational Springs -- 1.3.2.1 The Displaced Shape Equilibrium Method -- 1.3.2.2 The Energy Method -- 1.3.3 Three‐Member Truss -- 1.3.3.1 The Energy Method -- 1.3.4 Three Rigid Bars with Two Linear Springs -- 1.3.4.1 The Displaced Shape Equilibrium Method -- 1.3.4.2 The Energy Method -- 1.4 Large Displacement Analysis -- 1.4.1 Rigid Bar Supported by a Translational Spring -- 1.4.1.1 The Displaced Shape Equilibrium Method -- 1.4.1.2 The Energy Method -- 1.4.2 Rigid Bar Supported by Translational and Rotational Springs -- 1.4.2.1 The Displaced Shape Equilibrium Method -- 1.4.2.2 The Energy Method -- 1.4.3 Two Rigid Bars Connected by Rotational Springs -- 1.4.3.1 The Energy Method -- 1.5 Imperfections -- 1.5.1 Rigid Bar Supported by a Rotational Spring at the Base -- 1.5.1.1 The Displaced Shape Equilibrium Method -- 1.5.1.2 The Energy Method -- 1.5.2 Two Rigid Bars Connected by Rotational Springs -- 1.5.2.1 The Displaced Shape Equilibrium Method -- 1.5.2.2 The Energy Method -- Problems -- References -- Chapter 2 Columns -- 2.1 General -- 2.2 The Critical Load According to Classical Column Theory -- 2.2.1 Pinned‐Pinned Column -- 2.2.2 Fixed‐Fixed Column -- 2.2.2.1 Symmetric Mode -- 2.2.2.2 Anti‐Symmetric Mode -- 2.2.3 Cantilever Column -- 2.2.4 Fixed‐Pinned Column -- 2.3 Effective Length of a Column -- 2.4 Special Cases
  • 3.8.6 AISC Design Criteria for Steel Columns -- Problems -- References -- Chapter 4 Beam columns -- 4.1 Introduction -- 4.2 Basic Differential Equations of Beam Columns -- 4.3 Beam Column with a Lateral Concentrated Load -- 4.3.1 Concentrated Lateral Load at the Mid‐span -- 4.3.2 Beam Columns with Several Concentrated Loads -- 4.3.3 Beam Column with Lateral Uniformly Distributed Load -- 4.3.4 Beam Columns with Uniformly Distributed Load Over a Portion of Their Span -- 4.3.5 Beam Columns with Uniformly Increasing Load Over a Portion of Their Span -- 4.4 Beam Columns Subjected to Moments -- 4.4.1 Span Moment on Beam Column -- 4.4.2 End Moment on a Beam Column -- 4.4.3 Moments at Both Ends of Beam Column -- 4.4.3.1 Two Equal Moments -- 4.4.3.2 Moments at Both Ends of the Beam Column: Alternate Method -- 4.4.3.3 End Moments of the Same Sign Giving Double Curvature -- 4.5 Columns with Elastic Restraints -- 4.6 Beam Columns with Different End Conditions and Loads -- 4.6.1 Pinned‐fixed Beam Columns with a Concentrated Load -- 4.6.2 Pinned‐fixed Beam Columns Subjected to Uniformly Distributed Load -- 4.6.3 Fixed‐fixed Beam Column with Concentrated Force -- 4.6.4 Fixed‐fixed Beam Column with Uniformly Distributed Load -- 4.7 Alternate Method Using Basic Differential Equations -- 4.7.1 Fixed‐fixed Beam Column with Uniformly Distributed Load -- 4.7.2 Pinned‐fixed Beam Column with Uniformly Distributed Load -- 4.8 Continuous Beam Columns -- 4.9 Slope Deflection Equations for Beam Columns -- 4.9.1 Matrix Inversion -- 4.9.2 Beam Columns Subjected to Rotations and Relative Displacement at the Ends -- 4.9.3 Beam Columns Having One End Hinged -- 4.9.4 Beam Columns with Transverse Loading -- 4.9.5 Beam Columns in Single Curvature -- 4.10 Inelastic Beam Columns -- 4.10.1 Case 1: Yielding on the Compression Side Only
  • 4.10.2 Case 2: Yielding on Both the Compression and Tension Sides -- 4.11 Design of Beam Columns -- 4.11.1 Concept of Equivalent Moment and Factor Cm -- 4.11.2 AISC Design Criteria for Steel Beam Columns -- 4.11.2.1 Doubly and Singly Symmetric Members Subjected to Flexure and Compression -- 4.11.2.2 Unsymmetric and Other Members Subject to Flexure and Axial Force -- 4.11.3 Eurocode 3 (ECS, 1993) Design Criteria -- 4.11.4 Canadian Standards Association (CSA 1994 - CSA‐S16.1) -- 4.11.5 Australian Standard AS4100‐1990 -- Problems -- References -- Chapter 5 Frames -- 5.1 Introduction -- 5.2 Critical Loads by the Equilibrium Method -- 5.2.1 Portal Frame Without Sidesway -- 5.2.1.1 Portal Frame Without Sidesway with Rigid or Extremely Flexible Beam -- 5.2.2 Portal Frame with Sidesway -- 5.2.2.1 Portal Frame Having Sidesway with a Rigid or Extremely Flexible Beam -- 5.2.3 Frame with Prime Bending and Without Sidesway -- 5.3 Critical Loads by Slope Deflection Equations -- 5.3.1 Portal Frame Without Sidesway -- 5.3.2 Portal Frame with Sidesway -- 5.3.3 Two‐Story Frame Without Sidesway -- 5.3.4 Two‐Bay Frame Without Sidesway -- 5.3.5 Frames with Prime Bending and Without Sidesway -- 5.3.5.1 Frame with Hinged Supports -- 5.3.5.2 Frame with Fixed Supports -- 5.3.6 Frames with Prime Bending and Sidesway -- 5.3.7 Box Frame Without Sidesway -- 5.3.8 Multistory‐Multibay Frames Without Sidesway -- 5.4 Critical Loads by Matrix and Finite Element Methods -- 5.4.1 Formation of the Element Stiffness Matrix -- 5.4.2 Formation of the Structure Stiffness Matrix -- 5.4.3 In Span Loading -- 5.4.4 Buckling of a Frame Pinned at the Base and with Sidesway Permitted -- 5.4.5 Nonlinear Geometric or Large Deflection Analysis (Second‐Order Elastic Analysis) -- 5.5 Design of Frame Members -- 5.5.1 Braced Frames (Sidesway Inhibited) -- 5.5.2 Unbraced Frames (Sidesway Not Inhibited)