Learning to Play Guitar with Robotic Hands

Playing the guitar is a dexterous human skill that poses significant challenges in computer graphics and robotics due to the precision required in finger positioning and coordination between hands. Current methods often rely on motion capture data to replicate specific guitar playing segments, which...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 43; no. 8
Main Authors Luo, Chaoyi, Tang, Pengbin, Ma, Yuqi, Huang, Dongjin
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Playing the guitar is a dexterous human skill that poses significant challenges in computer graphics and robotics due to the precision required in finger positioning and coordination between hands. Current methods often rely on motion capture data to replicate specific guitar playing segments, which restricts the range of performances and demands intricate post‐processing. In this paper, we introduce a novel reinforcement learning model that can play the guitar using robotic hands, without the need for motion capture datasets, from input tablatures. To achieve this, we divide the simulation task for playing guitar into three stages. (a): for an input tablature, we first generate corresponding fingerings that align with human habits. (b): based on the generated fingerings as the guidance, we train a neural network for controlling the fingers of the left hand using deep reinforcement learning, and (c): we generate plucking movements for the right hand based on inverse kinematics according to the tablature. We evaluate our method by employing precision, recall, and F1 scores as quantitative metrics to thoroughly assess its performance in playing musical notes. In addition, we conduct qualitative analysis through user studies to evaluate the visual and auditory effects of guitar performance. The results demonstrate that our model excels in playing most moderately difficult and easier musical pieces, accurately playing nearly all notes.
AbstractList Playing the guitar is a dexterous human skill that poses significant challenges in computer graphics and robotics due to the precision required in finger positioning and coordination between hands. Current methods often rely on motion capture data to replicate specific guitar playing segments, which restricts the range of performances and demands intricate post‐processing. In this paper, we introduce a novel reinforcement learning model that can play the guitar using robotic hands, without the need for motion capture datasets, from input tablatures. To achieve this, we divide the simulation task for playing guitar into three stages. (a): for an input tablature, we first generate corresponding fingerings that align with human habits. (b): based on the generated fingerings as the guidance, we train a neural network for controlling the fingers of the left hand using deep reinforcement learning, and (c): we generate plucking movements for the right hand based on inverse kinematics according to the tablature. We evaluate our method by employing precision, recall, and F1 scores as quantitative metrics to thoroughly assess its performance in playing musical notes. In addition, we conduct qualitative analysis through user studies to evaluate the visual and auditory effects of guitar performance. The results demonstrate that our model excels in playing most moderately difficult and easier musical pieces, accurately playing nearly all notes.
Author Luo, Chaoyi
Ma, Yuqi
Tang, Pengbin
Huang, Dongjin
Author_xml – sequence: 1
  givenname: Chaoyi
  orcidid: 0009-0001-5560-6101
  surname: Luo
  fullname: Luo, Chaoyi
  organization: Shanghai Film Academy Shanghai University Shanghai China
– sequence: 2
  givenname: Pengbin
  orcidid: 0000-0002-3800-0861
  surname: Tang
  fullname: Tang, Pengbin
  organization: ETH Zürich Switzerland
– sequence: 3
  givenname: Yuqi
  orcidid: 0009-0005-9638-4778
  surname: Ma
  fullname: Ma, Yuqi
  organization: Shanghai Film Academy Shanghai University Shanghai China
– sequence: 4
  givenname: Dongjin
  orcidid: 0000-0002-6232-193X
  surname: Huang
  fullname: Huang, Dongjin
  organization: Shanghai Film Academy Shanghai University Shanghai China
BookMark eNotkE1Lw0AYhBepYFs9-A8CnhRS30328yjFtkJAET0vm903NaVm626C9N8brXOZOQwz8MzIpAsdEnJNYUFH3btts6CcCnFGppQJmSvB9YRMgY5ZAucXZJbSDgCYFHxK7iq0sWu7bdaH7GVvj9l6aHsbs--2_8heQx361mUb2_l0Sc4bu0949e9z8r56fFtu8up5_bR8qHJbSNnntRK1Aq3QYVN7WQhWS0COXnjuWF0KDU1RArdOoacFKu41MvSgvJfIXDknN6fdQwxfA6be7MIQu_HSlLTQSjMo9Ni6PbVcDClFbMwhtp82Hg0F84vCjCjMH4ryBy38UcY
Cites_doi 10.1109/LRA.2020.2972852
10.1145/3528223.3530110
10.1145/2818994
10.1145/2508363.2508365
10.1109/ICASSP43922.2022.9747217
10.1109/GCCE46687.2019.9015587
10.1109/IROS47612.2022.9981221
10.1109/PROC.1980.11673
10.1145/3528223.3530067
10.1145/2601097.2601192
10.1145/3528223.3530057
10.1145/3528233.3530735
10.1145/3355089.3356536
10.1145/3274247.3274506
10.1177/0278364919887447
10.2307/3680062
10.1109/IROS.2001.973374
10.1145/3592117
10.1109/ICASSP48485.2024.10446678
10.1121/10.0001635
10.1109/CVPR52688.2022.01992
10.1109/ICRA.2011.5980342
10.1109/ICSP.2016.7877820
10.1145/3480144
10.1145/3588432.3591528
10.1145/3528233.3530697
10.1109/ICRA48891.2023.10160216
10.1111/cgf.15065
10.1109/ICASSP43922.2022.9746399
10.1145/3099564.3099567
ContentType Journal Article
Copyright 2024 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.15166
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
ExternalDocumentID 10_1111_cgf_15166
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CITATION
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-a277t-b86b8098ecefbd7264b70e5ed6d5c4b3690f2305ac8ed12e85d9e4ed08dd7e4c3
ISSN 0167-7055
IngestDate Fri Jul 25 23:53:36 EDT 2025
Tue Jul 01 02:23:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a277t-b86b8098ecefbd7264b70e5ed6d5c4b3690f2305ac8ed12e85d9e4ed08dd7e4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-5560-6101
0000-0002-6232-193X
0000-0002-3800-0861
0009-0005-9638-4778
PQID 3129894029
PQPubID 30877
ParticipantIDs proquest_journals_3129894029
crossref_primary_10_1111_cgf_15166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Raffin A. (e_1_2_12_37_2) 2021; 22
e_1_2_12_2_2
e_1_2_12_4_3
Xie Z. (e_1_2_12_49_2) 2020
e_1_2_12_4_2
e_1_2_12_19_2
e_1_2_12_17_2
e_1_2_12_15_3
e_1_2_12_15_2
e_1_2_12_38_2
e_1_2_12_41_2
Xie Z. (e_1_2_12_51_2) 2022
e_1_2_12_20_2
Aristidou A. (e_1_2_12_3_2) 2018
e_1_2_12_41_3
e_1_2_12_22_2
e_1_2_12_45_2
e_1_2_12_24_2
e_1_2_12_47_2
Peng X. B. (e_1_2_12_34_2) 2017
e_1_2_12_26_2
e_1_2_12_26_3
e_1_2_12_28_2
Chowning J. M. (e_1_2_12_9_2) 1973; 21
e_1_2_12_52_2
e_1_2_12_31_2
e_1_2_12_54_2
e_1_2_12_33_2
e_1_2_12_56_2
e_1_2_12_14_2
e_1_2_12_12_2
Vahdat A. (e_1_2_12_43_2) 2020; 33
e_1_2_12_10_2
e_1_2_12_6_2
e_1_2_12_50_2
e_1_2_12_8_2
Wiggins A. (e_1_2_12_46_2) 2023
e_1_2_12_5_2
e_1_2_12_18_2
e_1_2_12_16_2
e_1_2_12_39_2
e_1_2_12_39_3
e_1_2_12_40_2
e_1_2_12_42_3
e_1_2_12_21_2
e_1_2_12_44_3
e_1_2_12_23_2
e_1_2_12_44_2
Tao T. (e_1_2_12_42_2) 2022
e_1_2_12_25_2
Qi H. (e_1_2_12_35_2) 2023
e_1_2_12_48_2
e_1_2_12_29_2
e_1_2_12_51_3
e_1_2_12_30_2
e_1_2_12_53_3
e_1_2_12_32_2
e_1_2_12_53_2
e_1_2_12_32_3
e_1_2_12_55_2
e_1_2_12_34_3
e_1_2_12_36_2
e_1_2_12_57_2
e_1_2_12_13_2
Li Y.-F. (e_1_2_12_27_2) 2013
e_1_2_12_11_2
e_1_2_12_7_2
References_xml – ident: e_1_2_12_48_2
– start-page: 1
  volume-title: Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings
  year: 2022
  ident: e_1_2_12_42_2
– ident: e_1_2_12_56_2
– ident: e_1_2_12_8_2
  doi: 10.1109/LRA.2020.2972852
– ident: e_1_2_12_32_3
  doi: 10.1145/3528223.3530110
– ident: e_1_2_12_7_2
  doi: 10.1145/2818994
– ident: e_1_2_12_31_2
  doi: 10.1145/2508363.2508365
– ident: e_1_2_12_15_3
  doi: 10.1109/ICASSP43922.2022.9747217
– ident: e_1_2_12_24_2
  doi: 10.1109/GCCE46687.2019.9015587
– ident: e_1_2_12_15_2
  doi: 10.1109/ICASSP43922.2022.9747217
– ident: e_1_2_12_33_2
– ident: e_1_2_12_41_2
– ident: e_1_2_12_52_2
– ident: e_1_2_12_55_2
– ident: e_1_2_12_50_2
  doi: 10.1109/IROS47612.2022.9981221
– ident: e_1_2_12_4_3
  doi: 10.1109/PROC.1980.11673
– ident: e_1_2_12_18_2
– ident: e_1_2_12_44_2
  doi: 10.1145/3528223.3530067
– ident: e_1_2_12_47_2
  doi: 10.1145/2601097.2601192
– start-page: 1
  volume-title: Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings
  year: 2022
  ident: e_1_2_12_51_2
– ident: e_1_2_12_53_2
  doi: 10.1145/3528223.3530057
– ident: e_1_2_12_41_3
– ident: e_1_2_12_51_3
  doi: 10.1145/3528233.3530735
– ident: e_1_2_12_5_2
  doi: 10.1145/3355089.3356536
– ident: e_1_2_12_20_2
– ident: e_1_2_12_11_2
  doi: 10.1145/3274247.3274506
– ident: e_1_2_12_2_2
  doi: 10.1177/0278364919887447
– ident: e_1_2_12_38_2
  doi: 10.2307/3680062
– ident: e_1_2_12_6_2
– start-page: 1
  volume-title: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
  year: 2017
  ident: e_1_2_12_34_2
– start-page: 1722
  volume-title: Conference on Robot Learning
  year: 2023
  ident: e_1_2_12_35_2
– ident: e_1_2_12_14_2
  doi: 10.1109/IROS.2001.973374
– ident: e_1_2_12_28_2
  doi: 10.1145/3592117
– ident: e_1_2_12_22_2
  doi: 10.1109/ICASSP48485.2024.10446678
– ident: e_1_2_12_45_2
– ident: e_1_2_12_29_2
– ident: e_1_2_12_13_2
  doi: 10.1121/10.0001635
– ident: e_1_2_12_36_2
– ident: e_1_2_12_10_2
  doi: 10.1109/CVPR52688.2022.01992
– ident: e_1_2_12_30_2
– ident: e_1_2_12_54_2
  doi: 10.1109/ICRA.2011.5980342
– ident: e_1_2_12_39_3
  doi: 10.1109/ICSP.2016.7877820
– start-page: 213
  volume-title: Computer Graphics Forum
  year: 2020
  ident: e_1_2_12_49_2
– ident: e_1_2_12_25_2
  doi: 10.1145/3480144
– ident: e_1_2_12_12_2
  doi: 10.1145/3588432.3591528
– ident: e_1_2_12_19_2
– ident: e_1_2_12_42_3
  doi: 10.1145/3528233.3530697
– start-page: 35
  volume-title: Computer graphics forum
  year: 2018
  ident: e_1_2_12_3_2
– ident: e_1_2_12_32_2
– volume: 21
  start-page: 526
  issue: 7
  year: 1973
  ident: e_1_2_12_9_2
  article-title: The synthesis of complex audio spectra by means of frequency modulation
  publication-title: Journal of the audio engineering society
– ident: e_1_2_12_16_2
– ident: e_1_2_12_21_2
– ident: e_1_2_12_4_2
  doi: 10.1109/PROC.1980.11673
– start-page: 1
  volume-title: 2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
  year: 2023
  ident: e_1_2_12_46_2
– ident: e_1_2_12_57_2
– volume: 33
  start-page: 19667
  year: 2020
  ident: e_1_2_12_43_2
  article-title: Nvae: A deep hierarchical variational autoencoder
  publication-title: Advances in neural information processing systems
– ident: e_1_2_12_40_2
– ident: e_1_2_12_44_3
  doi: 10.1145/3528223.3530067
– ident: e_1_2_12_17_2
  doi: 10.1109/ICRA48891.2023.10160216
– ident: e_1_2_12_53_3
  doi: 10.1145/3528223.3530057
– volume: 22
  start-page: 1
  issue: 268
  year: 2021
  ident: e_1_2_12_37_2
  article-title: Stable-baselines3: Reliable reinforcement learning implementations
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_12_39_2
  doi: 10.1109/ICSP.2016.7877820
– ident: e_1_2_12_23_2
  doi: 10.1111/cgf.15065
– ident: e_1_2_12_26_2
  doi: 10.1109/ICASSP43922.2022.9746399
– ident: e_1_2_12_34_3
  doi: 10.1145/3099564.3099567
– ident: e_1_2_12_26_3
  doi: 10.1109/ICASSP43922.2022.9746399
– start-page: 968
  volume-title: 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS)
  year: 2013
  ident: e_1_2_12_27_2
SSID ssj0004765
Score 2.4205334
Snippet Playing the guitar is a dexterous human skill that poses significant challenges in computer graphics and robotics due to the precision required in finger...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Computer graphics
Deep learning
End effectors
Fingers
Guitars
Hands
Human motion
Inverse kinematics
Motion capture
Neural networks
Performance evaluation
Qualitative analysis
Robot learning
Robotics
Tablature
Visual effects
Title Learning to Play Guitar with Robotic Hands
URI https://www.proquest.com/docview/3129894029
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA4eL_ognnhTxCel0iNN0kfxYJH1QHZhfSrN0WVFWo_ug_56J0e3KiLqSyhpCGm-YTIznfmC0D6mBAdK6DwdEviYFMLPOY18mdOIMSI45brA-fKKdPr4YpAMmou2XXVJzY_E27d1Jf9BFfoAV10l-wdkJ5NCBzwDvtACwtD-CuNuE9cAA_LmIX8FwMHVf7bB1duKV5qNtdMU804ICdxFDoeGrFqzNLeMDDo1Z1y5__DV66h17K1OuFHlkI8mAnVpTM-78dOoFQ838rQqh_dupIsqRPhLhsaX6KGNhrV5RiYSCRpWU_HYg8RqT611GXEU3069WhYmJ0bsB60thsUR2B_kG2bsq-vsvN_tZr2zQW8azUbgEhj3-balCgOhSxoed70sxyKls7YmE3-2PT4fvcae6C2iBecIeMcW1SU0pcplNP-BHnIFHTT4enXlaXw9i6-n8fUcvp7BdxX1z896Jx3f3W3h57D62ueMcBakTAlVcEnBLOU0UImSRCYC85ikQQHeYZILpmQYKZbIVGElAyYlVVjEa2imrEq1jjyW06SgNMwDiXEMNp2KJU5iLkgo01CyDbTXfHX2aClMssb1g63JzNZsoO1mPzIn4S9ZHBp-_iBKN39-vYXmWiHaRjP181jtgLFW812D0jsjmD_o
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Play+Guitar+with+Robotic+Hands&rft.jtitle=Computer+graphics+forum&rft.au=Luo%2C+Chaoyi&rft.au=Tang%2C+Pengbin&rft.au=Ma%2C+Yuqi&rft.au=Huang%2C+Dongjin&rft.date=2024-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=8&rft_id=info:doi/10.1111%2Fcgf.15166&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon