Learning to Play Guitar with Robotic Hands
Playing the guitar is a dexterous human skill that poses significant challenges in computer graphics and robotics due to the precision required in finger positioning and coordination between hands. Current methods often rely on motion capture data to replicate specific guitar playing segments, which...
Saved in:
Published in | Computer graphics forum Vol. 43; no. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Playing the guitar is a dexterous human skill that poses significant challenges in computer graphics and robotics due to the precision required in finger positioning and coordination between hands. Current methods often rely on motion capture data to replicate specific guitar playing segments, which restricts the range of performances and demands intricate post‐processing. In this paper, we introduce a novel reinforcement learning model that can play the guitar using robotic hands, without the need for motion capture datasets, from input tablatures. To achieve this, we divide the simulation task for playing guitar into three stages. (a): for an input tablature, we first generate corresponding fingerings that align with human habits. (b): based on the generated fingerings as the guidance, we train a neural network for controlling the fingers of the left hand using deep reinforcement learning, and (c): we generate plucking movements for the right hand based on inverse kinematics according to the tablature. We evaluate our method by employing precision, recall, and F1 scores as quantitative metrics to thoroughly assess its performance in playing musical notes. In addition, we conduct qualitative analysis through user studies to evaluate the visual and auditory effects of guitar performance. The results demonstrate that our model excels in playing most moderately difficult and easier musical pieces, accurately playing nearly all notes. |
---|---|
AbstractList | Playing the guitar is a dexterous human skill that poses significant challenges in computer graphics and robotics due to the precision required in finger positioning and coordination between hands. Current methods often rely on motion capture data to replicate specific guitar playing segments, which restricts the range of performances and demands intricate post‐processing. In this paper, we introduce a novel reinforcement learning model that can play the guitar using robotic hands, without the need for motion capture datasets, from input tablatures. To achieve this, we divide the simulation task for playing guitar into three stages. (a): for an input tablature, we first generate corresponding fingerings that align with human habits. (b): based on the generated fingerings as the guidance, we train a neural network for controlling the fingers of the left hand using deep reinforcement learning, and (c): we generate plucking movements for the right hand based on inverse kinematics according to the tablature. We evaluate our method by employing precision, recall, and F1 scores as quantitative metrics to thoroughly assess its performance in playing musical notes. In addition, we conduct qualitative analysis through user studies to evaluate the visual and auditory effects of guitar performance. The results demonstrate that our model excels in playing most moderately difficult and easier musical pieces, accurately playing nearly all notes. |
Author | Luo, Chaoyi Ma, Yuqi Tang, Pengbin Huang, Dongjin |
Author_xml | – sequence: 1 givenname: Chaoyi orcidid: 0009-0001-5560-6101 surname: Luo fullname: Luo, Chaoyi organization: Shanghai Film Academy Shanghai University Shanghai China – sequence: 2 givenname: Pengbin orcidid: 0000-0002-3800-0861 surname: Tang fullname: Tang, Pengbin organization: ETH Zürich Switzerland – sequence: 3 givenname: Yuqi orcidid: 0009-0005-9638-4778 surname: Ma fullname: Ma, Yuqi organization: Shanghai Film Academy Shanghai University Shanghai China – sequence: 4 givenname: Dongjin orcidid: 0000-0002-6232-193X surname: Huang fullname: Huang, Dongjin organization: Shanghai Film Academy Shanghai University Shanghai China |
BookMark | eNotkE1Lw0AYhBepYFs9-A8CnhRS30328yjFtkJAET0vm903NaVm626C9N8brXOZOQwz8MzIpAsdEnJNYUFH3btts6CcCnFGppQJmSvB9YRMgY5ZAucXZJbSDgCYFHxK7iq0sWu7bdaH7GVvj9l6aHsbs--2_8heQx361mUb2_l0Sc4bu0949e9z8r56fFtu8up5_bR8qHJbSNnntRK1Aq3QYVN7WQhWS0COXnjuWF0KDU1RArdOoacFKu41MvSgvJfIXDknN6fdQwxfA6be7MIQu_HSlLTQSjMo9Ni6PbVcDClFbMwhtp82Hg0F84vCjCjMH4ryBy38UcY |
Cites_doi | 10.1109/LRA.2020.2972852 10.1145/3528223.3530110 10.1145/2818994 10.1145/2508363.2508365 10.1109/ICASSP43922.2022.9747217 10.1109/GCCE46687.2019.9015587 10.1109/IROS47612.2022.9981221 10.1109/PROC.1980.11673 10.1145/3528223.3530067 10.1145/2601097.2601192 10.1145/3528223.3530057 10.1145/3528233.3530735 10.1145/3355089.3356536 10.1145/3274247.3274506 10.1177/0278364919887447 10.2307/3680062 10.1109/IROS.2001.973374 10.1145/3592117 10.1109/ICASSP48485.2024.10446678 10.1121/10.0001635 10.1109/CVPR52688.2022.01992 10.1109/ICRA.2011.5980342 10.1109/ICSP.2016.7877820 10.1145/3480144 10.1145/3588432.3591528 10.1145/3528233.3530697 10.1109/ICRA48891.2023.10160216 10.1111/cgf.15065 10.1109/ICASSP43922.2022.9746399 10.1145/3099564.3099567 |
ContentType | Journal Article |
Copyright | 2024 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1111/cgf.15166 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
ExternalDocumentID | 10_1111_cgf_15166 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CITATION COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-a277t-b86b8098ecefbd7264b70e5ed6d5c4b3690f2305ac8ed12e85d9e4ed08dd7e4c3 |
ISSN | 0167-7055 |
IngestDate | Fri Jul 25 23:53:36 EDT 2025 Tue Jul 01 02:23:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a277t-b86b8098ecefbd7264b70e5ed6d5c4b3690f2305ac8ed12e85d9e4ed08dd7e4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-5560-6101 0000-0002-6232-193X 0000-0002-3800-0861 0009-0005-9638-4778 |
PQID | 3129894029 |
PQPubID | 30877 |
ParticipantIDs | proquest_journals_3129894029 crossref_primary_10_1111_cgf_15166 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationYear | 2024 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Raffin A. (e_1_2_12_37_2) 2021; 22 e_1_2_12_2_2 e_1_2_12_4_3 Xie Z. (e_1_2_12_49_2) 2020 e_1_2_12_4_2 e_1_2_12_19_2 e_1_2_12_17_2 e_1_2_12_15_3 e_1_2_12_15_2 e_1_2_12_38_2 e_1_2_12_41_2 Xie Z. (e_1_2_12_51_2) 2022 e_1_2_12_20_2 Aristidou A. (e_1_2_12_3_2) 2018 e_1_2_12_41_3 e_1_2_12_22_2 e_1_2_12_45_2 e_1_2_12_24_2 e_1_2_12_47_2 Peng X. B. (e_1_2_12_34_2) 2017 e_1_2_12_26_2 e_1_2_12_26_3 e_1_2_12_28_2 Chowning J. M. (e_1_2_12_9_2) 1973; 21 e_1_2_12_52_2 e_1_2_12_31_2 e_1_2_12_54_2 e_1_2_12_33_2 e_1_2_12_56_2 e_1_2_12_14_2 e_1_2_12_12_2 Vahdat A. (e_1_2_12_43_2) 2020; 33 e_1_2_12_10_2 e_1_2_12_6_2 e_1_2_12_50_2 e_1_2_12_8_2 Wiggins A. (e_1_2_12_46_2) 2023 e_1_2_12_5_2 e_1_2_12_18_2 e_1_2_12_16_2 e_1_2_12_39_2 e_1_2_12_39_3 e_1_2_12_40_2 e_1_2_12_42_3 e_1_2_12_21_2 e_1_2_12_44_3 e_1_2_12_23_2 e_1_2_12_44_2 Tao T. (e_1_2_12_42_2) 2022 e_1_2_12_25_2 Qi H. (e_1_2_12_35_2) 2023 e_1_2_12_48_2 e_1_2_12_29_2 e_1_2_12_51_3 e_1_2_12_30_2 e_1_2_12_53_3 e_1_2_12_32_2 e_1_2_12_53_2 e_1_2_12_32_3 e_1_2_12_55_2 e_1_2_12_34_3 e_1_2_12_36_2 e_1_2_12_57_2 e_1_2_12_13_2 Li Y.-F. (e_1_2_12_27_2) 2013 e_1_2_12_11_2 e_1_2_12_7_2 |
References_xml | – ident: e_1_2_12_48_2 – start-page: 1 volume-title: Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings year: 2022 ident: e_1_2_12_42_2 – ident: e_1_2_12_56_2 – ident: e_1_2_12_8_2 doi: 10.1109/LRA.2020.2972852 – ident: e_1_2_12_32_3 doi: 10.1145/3528223.3530110 – ident: e_1_2_12_7_2 doi: 10.1145/2818994 – ident: e_1_2_12_31_2 doi: 10.1145/2508363.2508365 – ident: e_1_2_12_15_3 doi: 10.1109/ICASSP43922.2022.9747217 – ident: e_1_2_12_24_2 doi: 10.1109/GCCE46687.2019.9015587 – ident: e_1_2_12_15_2 doi: 10.1109/ICASSP43922.2022.9747217 – ident: e_1_2_12_33_2 – ident: e_1_2_12_41_2 – ident: e_1_2_12_52_2 – ident: e_1_2_12_55_2 – ident: e_1_2_12_50_2 doi: 10.1109/IROS47612.2022.9981221 – ident: e_1_2_12_4_3 doi: 10.1109/PROC.1980.11673 – ident: e_1_2_12_18_2 – ident: e_1_2_12_44_2 doi: 10.1145/3528223.3530067 – ident: e_1_2_12_47_2 doi: 10.1145/2601097.2601192 – start-page: 1 volume-title: Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings year: 2022 ident: e_1_2_12_51_2 – ident: e_1_2_12_53_2 doi: 10.1145/3528223.3530057 – ident: e_1_2_12_41_3 – ident: e_1_2_12_51_3 doi: 10.1145/3528233.3530735 – ident: e_1_2_12_5_2 doi: 10.1145/3355089.3356536 – ident: e_1_2_12_20_2 – ident: e_1_2_12_11_2 doi: 10.1145/3274247.3274506 – ident: e_1_2_12_2_2 doi: 10.1177/0278364919887447 – ident: e_1_2_12_38_2 doi: 10.2307/3680062 – ident: e_1_2_12_6_2 – start-page: 1 volume-title: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation year: 2017 ident: e_1_2_12_34_2 – start-page: 1722 volume-title: Conference on Robot Learning year: 2023 ident: e_1_2_12_35_2 – ident: e_1_2_12_14_2 doi: 10.1109/IROS.2001.973374 – ident: e_1_2_12_28_2 doi: 10.1145/3592117 – ident: e_1_2_12_22_2 doi: 10.1109/ICASSP48485.2024.10446678 – ident: e_1_2_12_45_2 – ident: e_1_2_12_29_2 – ident: e_1_2_12_13_2 doi: 10.1121/10.0001635 – ident: e_1_2_12_36_2 – ident: e_1_2_12_10_2 doi: 10.1109/CVPR52688.2022.01992 – ident: e_1_2_12_30_2 – ident: e_1_2_12_54_2 doi: 10.1109/ICRA.2011.5980342 – ident: e_1_2_12_39_3 doi: 10.1109/ICSP.2016.7877820 – start-page: 213 volume-title: Computer Graphics Forum year: 2020 ident: e_1_2_12_49_2 – ident: e_1_2_12_25_2 doi: 10.1145/3480144 – ident: e_1_2_12_12_2 doi: 10.1145/3588432.3591528 – ident: e_1_2_12_19_2 – ident: e_1_2_12_42_3 doi: 10.1145/3528233.3530697 – start-page: 35 volume-title: Computer graphics forum year: 2018 ident: e_1_2_12_3_2 – ident: e_1_2_12_32_2 – volume: 21 start-page: 526 issue: 7 year: 1973 ident: e_1_2_12_9_2 article-title: The synthesis of complex audio spectra by means of frequency modulation publication-title: Journal of the audio engineering society – ident: e_1_2_12_16_2 – ident: e_1_2_12_21_2 – ident: e_1_2_12_4_2 doi: 10.1109/PROC.1980.11673 – start-page: 1 volume-title: 2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) year: 2023 ident: e_1_2_12_46_2 – ident: e_1_2_12_57_2 – volume: 33 start-page: 19667 year: 2020 ident: e_1_2_12_43_2 article-title: Nvae: A deep hierarchical variational autoencoder publication-title: Advances in neural information processing systems – ident: e_1_2_12_40_2 – ident: e_1_2_12_44_3 doi: 10.1145/3528223.3530067 – ident: e_1_2_12_17_2 doi: 10.1109/ICRA48891.2023.10160216 – ident: e_1_2_12_53_3 doi: 10.1145/3528223.3530057 – volume: 22 start-page: 1 issue: 268 year: 2021 ident: e_1_2_12_37_2 article-title: Stable-baselines3: Reliable reinforcement learning implementations publication-title: Journal of Machine Learning Research – ident: e_1_2_12_39_2 doi: 10.1109/ICSP.2016.7877820 – ident: e_1_2_12_23_2 doi: 10.1111/cgf.15065 – ident: e_1_2_12_26_2 doi: 10.1109/ICASSP43922.2022.9746399 – ident: e_1_2_12_34_3 doi: 10.1145/3099564.3099567 – ident: e_1_2_12_26_3 doi: 10.1109/ICASSP43922.2022.9746399 – start-page: 968 volume-title: 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS) year: 2013 ident: e_1_2_12_27_2 |
SSID | ssj0004765 |
Score | 2.4205334 |
Snippet | Playing the guitar is a dexterous human skill that poses significant challenges in computer graphics and robotics due to the precision required in finger... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Computer graphics Deep learning End effectors Fingers Guitars Hands Human motion Inverse kinematics Motion capture Neural networks Performance evaluation Qualitative analysis Robot learning Robotics Tablature Visual effects |
Title | Learning to Play Guitar with Robotic Hands |
URI | https://www.proquest.com/docview/3129894029 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA4eL_ognnhTxCel0iNN0kfxYJH1QHZhfSrN0WVFWo_ug_56J0e3KiLqSyhpCGm-YTIznfmC0D6mBAdK6DwdEviYFMLPOY18mdOIMSI45brA-fKKdPr4YpAMmou2XXVJzY_E27d1Jf9BFfoAV10l-wdkJ5NCBzwDvtACwtD-CuNuE9cAA_LmIX8FwMHVf7bB1duKV5qNtdMU804ICdxFDoeGrFqzNLeMDDo1Z1y5__DV66h17K1OuFHlkI8mAnVpTM-78dOoFQ838rQqh_dupIsqRPhLhsaX6KGNhrV5RiYSCRpWU_HYg8RqT611GXEU3069WhYmJ0bsB60thsUR2B_kG2bsq-vsvN_tZr2zQW8azUbgEhj3-balCgOhSxoed70sxyKls7YmE3-2PT4fvcae6C2iBecIeMcW1SU0pcplNP-BHnIFHTT4enXlaXw9i6-n8fUcvp7BdxX1z896Jx3f3W3h57D62ueMcBakTAlVcEnBLOU0UImSRCYC85ikQQHeYZILpmQYKZbIVGElAyYlVVjEa2imrEq1jjyW06SgNMwDiXEMNp2KJU5iLkgo01CyDbTXfHX2aClMssb1g63JzNZsoO1mPzIn4S9ZHBp-_iBKN39-vYXmWiHaRjP181jtgLFW812D0jsjmD_o |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Play+Guitar+with+Robotic+Hands&rft.jtitle=Computer+graphics+forum&rft.au=Luo%2C+Chaoyi&rft.au=Tang%2C+Pengbin&rft.au=Ma%2C+Yuqi&rft.au=Huang%2C+Dongjin&rft.date=2024-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=8&rft_id=info:doi/10.1111%2Fcgf.15166&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |