Magic-state functional units mapping and scheduling multi-level distillation circuits for fault-tolerant quantum architectures

Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computatio...

Full description

Saved in:
Bibliographic Details
Published in2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) pp. 828 - 840
Main Authors Ding, Yongshan, Holmes, Adam, Javadi-Abhari, Ali, Franklin, Diana, Martonosi, Margaret, Chong, Frederic T.
Format Conference Proceeding
LanguageEnglish
Published Piscataway, NJ, USA IEEE Press 01.10.2018
IEEE
SeriesACM Conferences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.
AbstractList Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.
Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.
Author Holmes, Adam
Ding, Yongshan
Franklin, Diana
Chong, Frederic T.
Javadi-Abhari, Ali
Martonosi, Margaret
Author_xml – sequence: 1
  givenname: Yongshan
  surname: Ding
  fullname: Ding, Yongshan
  email: yongshan@uchicago.edu
  organization: University of Chicago
– sequence: 2
  givenname: Adam
  surname: Holmes
  fullname: Holmes, Adam
  email: adholmes@uchicago.edu
  organization: University of Chicago
– sequence: 3
  givenname: Ali
  surname: Javadi-Abhari
  fullname: Javadi-Abhari, Ali
  email: ali.javadi@ibm.com
  organization: IBM T.J. Watson Research Center
– sequence: 4
  givenname: Diana
  surname: Franklin
  fullname: Franklin, Diana
  email: dmfranklin@uchicago.edu
  organization: University of Chicago
– sequence: 5
  givenname: Margaret
  surname: Martonosi
  fullname: Martonosi, Margaret
  email: mrm@princeton.edu
  organization: Princeton University
– sequence: 6
  givenname: Frederic T.
  surname: Chong
  fullname: Chong, Frederic T.
  email: chong@uchicago.edu
  organization: University of Chicago
BookMark eNqNj79LAzEcxSMqqPV2QYeuDnf95ncyylG10FIQnUOSSyTa3snlOvjfe22dnJwej_fhwecKnbVdGxC6wVBhDHq2WtQv64oAVhUASHKCCi0V5lQJQRjQ0z_9AhU5f4woEYoqEJfobmXfky_zYIcwjbvWD6lr7Wa6a9OQr9F5tJscit-coLfH-Wv9XC7XT4v6YVlaIuVQCpBSCO14YD4oyrm3ODYNd6CshkYz1xDfRMZ4lKA0dw5kkJZTTxUFLugE3R5_UwjBfPVpa_tvo7hkXOlxvT-u1m-N67rPbDCYvb85-Ju9vzn4j-zsv6xxfQqR_gB2nll8
CODEN IEEPAD
CitedBy_id crossref_primary_10_1088_2058_9565_ace6ca
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MICRO.2018.00072
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781538662403
153866240X
EndPage 840
ExternalDocumentID 8574589
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a277t-6077669b5e4ce8355ca1fdd5b08a90d94bd2cdf445f70895bb07e7a53c3830563
IEDL.DBID RIE
ISBN 9781538662403
153866240X
IngestDate Thu Jun 29 18:39:13 EDT 2023
Wed Jan 31 06:41:02 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords magic state distillation
surface code
quantum error correction
quantum computing
Language English
LinkModel DirectLink
MeetingName MICRO-51: The 51st Annual IEEE/ACM International Symposium on Microarchitecture
MergedId FETCHMERGED-LOGICAL-a277t-6077669b5e4ce8355ca1fdd5b08a90d94bd2cdf445f70895bb07e7a53c3830563
PageCount 13
ParticipantIDs ieee_primary_8574589
acm_books_10_1109_MICRO_2018_00072
acm_books_10_1109_MICRO_2018_00072_brief
PublicationCentury 2000
PublicationDate 2018-10
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10
PublicationDecade 2010
PublicationPlace Piscataway, NJ, USA
PublicationPlace_xml – name: Piscataway, NJ, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
PublicationTitleAbbrev MICRO
PublicationYear 2018
Publisher IEEE Press
IEEE
Publisher_xml – name: IEEE Press
– name: IEEE
SSID ssj0002683806
Score 2.2627876
Snippet Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant...
SourceID ieee
acm
SourceType Publisher
StartPage 828
SubjectTerms Error analysis
Error correction codes
Logic gates
Magic State Distillation
Production facilities
Protocols
Quantum Computing
Quantum Error Correction
Surface Code
Subtitle mapping and scheduling multi-level distillation circuits for fault-tolerant quantum architectures
Title Magic-state functional units
URI https://ieeexplore.ieee.org/document/8574589
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1RTpzYRdlkIQ4ccHGTOIm5IaCqEGVTkbhF3gIVXVCbXLjw64ydUhYhwSWyIttZnpN5Hr8ZA-zrXPNQW01lyiyNci5pGpqE6qbRJgh0U0jn7-hcxe376OKBP8zB4SwWxlrrxWe24Yp-Ld-MdOlcZUcpTyKeihrUEiGqWK2ZPyWI0zBls5VIJo7wMe6unXjLqSWZSwFck3rwbRcVb0Rai9D5uHylHXlulIVq6NcfmRn_e39LsPYZrkduZoZoGebscAUWP_ZrINPPdxXeOhL_c9TzS9JCg1b5AYnjnZNj0pEuV8MjkUODbZ7QBrlQdeJDdOmlExeRM_dH6FfyOXLaG-sSWxLkvaQlsRrtjvoWjV9Bbks8lgNy8mWdYrIG963z7mmbTjdgoDJIkoLGLtdPLBS3kbZI1biWzdwYrlgqBTMiUibQJo8inicsFVwplthEIvg470VmFa7D_HA0tBtAcCSEQlnsKMd3JCQWVRznyD-sFjowddhDcDI3s5hkfmLCROYRzByCmUewDgd_V8rUuGfzOqw6fLKXKmdHNoVm8_fTW7DgOqhEetswX4xLu4Nko1C7fpS9A55A1IE
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYBT6QOxUKiFOHDAW28SJzE31Ha1hU15aCv1ZvmVUtHuVrvJhQt_nRlnuzxUCS6RFdlWks_xfB5_MwZ45WonUxccN6UIPKul4WXqC-4G3vkkcQNlyN9RneWj8-z9hbxYgzerWJgQQhSfhT4V416-n7mWXGWHpSwyWap12JTEK7porZVHJcnLtBSrvUihDvFFvnwk-RbpJQUlAV437uaPc1SiGRluQXX3AJ165Fu_bWzfff8rN-P_PuEj2PsVsMc-rUzRNqyF6Q5s3Z3YwJY_8C78qAzOdDwyTDZEk9Z5Ahkxz8VbVhnK1nDJzNRjm69ohShYncUgXT4meRE7pjnhuhPQsaOruWuxJUPmy4YGq_HJ7Dqg-WvY5xav7Q1799tOxWIPzocnk6MRXx7BwE1SFA3PKdtPrqwMmQtI1qQzg9p7aUVplPAqsz5xvs4yWReiVNJaUYTCIPy48kVulT6GjelsGp4Aw7GQKhuwoxq_kTJYtHleIwMJTrnE9-AlgqNpbbHQcWkilI4IakJQRwR78PrflbSdX4W6B7uEj77tsnboJTRP7799AA9Gk2qsx6dnH57BQ-qsk-ztw0Yzb8NzpB6NfRFH3E_mANfO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+51st+Annual+IEEE%2FACM+International+Symposium+on+Microarchitecture+%28MICRO%29&rft.atitle=Magic-State+Functional+Units%3A+Mapping+and+Scheduling+Multi-Level+Distillation+Circuits+for+Fault-Tolerant+Quantum+Architectures&rft.au=Yongshan+Ding&rft.au=Holmes%2C+Adam&rft.au=Javadi-Abhari%2C+Ali&rft.au=Franklin%2C+Diana&rft.date=2018-10-01&rft.pub=IEEE&rft.spage=828&rft.epage=840&rft_id=info:doi/10.1109%2FMICRO.2018.00072&rft.externalDocID=8574589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538662403/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538662403/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538662403/sc.gif&client=summon&freeimage=true