Crystal Growth Inhibition by Mobile Randomly Distributed Stoppers
Crystal growth is inhibited by the presence of impurities. Cabrera and Vermilyea introduced a model in 1958, in which the impurities are modeled as immobile stoppers. The quantitative consequences of this model have mainly been explored for the special case where the stoppers are immobile and arrang...
Saved in:
Published in | Crystal growth & design Vol. 20; no. 3; pp. 1940 - 1950 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
04.03.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Crystal growth is inhibited by the presence of impurities. Cabrera and Vermilyea introduced a model in 1958, in which the impurities are modeled as immobile stoppers. The quantitative consequences of this model have mainly been explored for the special case where the stoppers are immobile and arranged in a periodic array. Here we use numerical simulation to explore what happens when the stopper locations are randomly distributed and the stoppers have finite lifetimes. As this problem has just two nondimensional parameters, namely, nondimensionalized versions of the mean stopper distance and the mean stopper lifetime, we are able to explore a large region of the parameter space using simulation. The stopper density is measured by the percolation parameter, a nondimensionalized inverse distance between stoppers, ζ. Our results show that when the stopper density is relatively small (ζ below about 0.8), the macroscopic velocity of the step is roughly the same for randomly located stoppers as for a periodic array of stoppers. Moreover, in this regime the average velocity is almost independent of the stopper lifetime. For large stopper densities (more precisely, when the percolation parameter ζ is above about 0.8), the situation is entirely different. For periodically placed immobile stoppers, the average velocity drops sharply to 0 at ζ = 1. For randomly located immobile stoppers, by contrast, the average velocity remains positive for ζ well above 1, and it approaches 0 gradually rather than abruptly. For randomly located stoppers with finite lifetimes, the average velocity has a nonzero asymptote for large ζ; thus, for large stopper densities, the average velocity depends mainly on the mean stopper lifetime. In this regime, the inhibition kinetics predicted by our model resemble those of the Bliznakov kink blocking mechanism. |
---|---|
AbstractList | Crystal growth is inhibited by the presence of impurities. Cabrera and Vermilyea introduced a model in 1958, in which the impurities are modeled as immobile stoppers. The quantitative consequences of this model have mainly been explored for the special case where the stoppers are immobile and arranged in a periodic array. Here we use numerical simulation to explore what happens when the stopper locations are randomly distributed and the stoppers have finite lifetimes. As this problem has just two nondimensional parameters, namely, nondimensionalized versions of the mean stopper distance and the mean stopper lifetime, we are able to explore a large region of the parameter space using simulation. The stopper density is measured by the percolation parameter, a nondimensionalized inverse distance between stoppers, ζ. Our results show that when the stopper density is relatively small (ζ below about 0.8), the macroscopic velocity of the step is roughly the same for randomly located stoppers as for a periodic array of stoppers. Moreover, in this regime the average velocity is almost independent of the stopper lifetime. For large stopper densities (more precisely, when the percolation parameter ζ is above about 0.8), the situation is entirely different. For periodically placed immobile stoppers, the average velocity drops sharply to 0 at ζ = 1. For randomly located immobile stoppers, by contrast, the average velocity remains positive for ζ well above 1, and it approaches 0 gradually rather than abruptly. For randomly located stoppers with finite lifetimes, the average velocity has a nonzero asymptote for large ζ; thus, for large stopper densities, the average velocity depends mainly on the mean stopper lifetime. In this regime, the inhibition kinetics predicted by our model resemble those of the Bliznakov kink blocking mechanism. |
Author | Shtukenberg, Alexander G Kohn, Robert V Lee-Thorp, James P |
AuthorAffiliation | Department of Chemistry New York University Courant Institute of Mathematical Sciences |
AuthorAffiliation_xml | – name: New York University – name: Courant Institute of Mathematical Sciences – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: James P surname: Lee-Thorp fullname: Lee-Thorp, James P email: leethorp@cims.nyu.edu organization: Courant Institute of Mathematical Sciences – sequence: 2 givenname: Alexander G orcidid: 0000-0002-5590-4758 surname: Shtukenberg fullname: Shtukenberg, Alexander G email: shtukenberg@mail.ru organization: New York University – sequence: 3 givenname: Robert V surname: Kohn fullname: Kohn, Robert V email: kohn@cims.nyu.edu organization: Courant Institute of Mathematical Sciences |
BookMark | eNp1kM9LwzAcxYNMcJueveYu3fKjadLjqDoHE8Ef55KkicvompJkSP97OzaPnr4Pvu89Hp8ZmHS-MwDcY7TAiOCl1HGhv5tFqRAuUHkFppgRkXGG2ORP54LegFmMe4QQLyidglUVhphkC9fB_6Qd3HQ7p1xyvoNqgK9eudbAd9k1_tAO8NHFFJw6JtPAj-T73oR4C66tbKO5u9w5-Hp--qxesu3belOttpkknKeMGSE4RznTJeN5qaRoOGOCcc2pxgaz3FgtmUS2KGzBCWm4Hd0UMWVlQQSdg-W5VwcfYzC27oM7yDDUGNUnAvVIoB4J1BcCY-LhnDg99v4YunHfv-5f4z9gBA |
CitedBy_id | crossref_primary_10_1007_s00044_024_03228_w crossref_primary_10_1016_j_jcrysgro_2022_126839 crossref_primary_10_1021_acs_accounts_1c00631 crossref_primary_10_1002_ijch_202100048 crossref_primary_10_1103_PhysRevE_105_034802 |
Cites_doi | 10.1016/0022-0248(95)00128-X 10.4171/IFB/265 10.3934/nhm.2010.5.745 10.1007/s00220-014-2152-4 10.1021/acs.cgd.7b01006 10.1021/cg7010474 10.1016/j.cryobiol.2011.06.005 10.1016/S0022-0248(97)00360-6 10.1021/cg501307y 10.1021/cg900543g 10.1021/acs.cgd.5b01683 10.1073/pnas.0908205107 10.1103/PhysRevLett.116.015501 10.1021/acs.cgd.7b00236 10.1016/S0022-0248(99)00048-2 10.1016/0022-0248(94)90185-6 10.1021/cg501485e 10.1021/cg400558b 10.1038/20886 10.1103/PhysRevLett.114.245501 10.1021/cg301366q 10.1016/0013-4686(86)80016-0 10.1103/PhysRevB.52.2154 10.1021/acs.cgd.7b01057 10.4171/JEMS/777 10.1002/cphc.200600371 10.1039/C2CE25936B 10.1016/j.jcrysgro.2007.04.053 10.1007/978-3-642-81835-6 10.1021/cg0255927 10.1021/jp507697q 10.1214/17-AAP1279 10.1016/j.jcrysgro.2013.11.018 10.7554/eLife.05142 10.1021/acs.cgd.5b00762 10.4171/IFB/136 10.1016/0022-0248(93)90114-C 10.1007/s00205-013-0712-y 10.1021/jp7099543 10.1021/cg901626a 10.1016/j.gca.2005.04.006 10.1021/cg8006684 10.1016/S0022-0248(97)00432-6 10.1021/jp9720505 10.1007/s00223-009-9223-0 10.1002/9780470517833 10.1021/acs.chemrev.7b00285 10.1103/PhysRevLett.110.055503 10.1016/j.gca.2004.12.019 10.1016/0022-0248(93)90115-D 10.1016/0022-0248(94)90018-3 10.1126/science.290.5494.1134 10.1103/PhysRevLett.57.2431 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.cgd.9b01609 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1528-7505 |
EndPage | 1950 |
ExternalDocumentID | 10_1021_acs_cgd_9b01609 b912799266 |
GroupedDBID | 55A 5GY 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL TN5 UI2 VF5 VG9 W1F X -~X 4.4 5VS 6J9 AAYXX ABJNI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a277t-5e8877045c95749ba8d755857c73c1e154efca5a0f66f6722d7f045305bfa6283 |
IEDL.DBID | ACS |
ISSN | 1528-7483 |
IngestDate | Fri Aug 23 03:22:11 EDT 2024 Thu Aug 27 22:10:41 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a277t-5e8877045c95749ba8d755857c73c1e154efca5a0f66f6722d7f045305bfa6283 |
ORCID | 0000-0002-5590-4758 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1021_acs_cgd_9b01609 acs_journals_10_1021_acs_cgd_9b01609 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-04 |
PublicationDateYYYYMMDD | 2020-03-04 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Crystal growth & design |
PublicationTitleAlternate | Cryst. Growth Des |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 Chernov A. A. (ref53/cit53) 1984; 36 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 Sangwal K. (ref1/cit1) 2007 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 Bliznakov G. (ref52/cit52) 1965 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 Punin Y. O. (ref25/cit25) 1989; 34 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref27/cit27 doi: 10.1016/0022-0248(95)00128-X – ident: ref48/cit48 doi: 10.4171/IFB/265 – ident: ref47/cit47 doi: 10.3934/nhm.2010.5.745 – ident: ref49/cit49 doi: 10.1007/s00220-014-2152-4 – ident: ref41/cit41 doi: 10.1021/acs.cgd.7b01006 – ident: ref28/cit28 doi: 10.1021/cg7010474 – start-page: 291 year: 1965 ident: ref52/cit52 publication-title: Editions du Centre Nat. de la Recherche Sci. contributor: fullname: Bliznakov G. – ident: ref54/cit54 doi: 10.1016/j.cryobiol.2011.06.005 – ident: ref5/cit5 doi: 10.1016/S0022-0248(97)00360-6 – ident: ref32/cit32 doi: 10.1021/cg501307y – ident: ref4/cit4 – ident: ref37/cit37 doi: 10.1021/cg900543g – ident: ref24/cit24 doi: 10.1021/acs.cgd.5b01683 – ident: ref12/cit12 doi: 10.1073/pnas.0908205107 – ident: ref38/cit38 doi: 10.1103/PhysRevLett.116.015501 – ident: ref20/cit20 doi: 10.1021/acs.cgd.7b00236 – ident: ref21/cit21 doi: 10.1016/S0022-0248(99)00048-2 – ident: ref7/cit7 doi: 10.1016/0022-0248(94)90185-6 – ident: ref19/cit19 doi: 10.1021/cg501485e – ident: ref23/cit23 doi: 10.1021/cg400558b – ident: ref29/cit29 doi: 10.1038/20886 – ident: ref36/cit36 doi: 10.1103/PhysRevLett.114.245501 – ident: ref18/cit18 doi: 10.1021/cg301366q – ident: ref56/cit56 doi: 10.1016/0013-4686(86)80016-0 – ident: ref57/cit57 doi: 10.1103/PhysRevB.52.2154 – ident: ref39/cit39 doi: 10.1021/acs.cgd.7b01057 – ident: ref44/cit44 doi: 10.4171/JEMS/777 – ident: ref8/cit8 doi: 10.1002/cphc.200600371 – ident: ref13/cit13 doi: 10.1039/C2CE25936B – ident: ref2/cit2 – ident: ref9/cit9 doi: 10.1016/j.jcrysgro.2007.04.053 – volume: 36 volume-title: Modern crystallography III: Crystal growth year: 1984 ident: ref53/cit53 doi: 10.1007/978-3-642-81835-6 contributor: fullname: Chernov A. A. – ident: ref26/cit26 doi: 10.1021/cg0255927 – ident: ref22/cit22 doi: 10.1021/jp507697q – ident: ref50/cit50 doi: 10.1214/17-AAP1279 – ident: ref34/cit34 doi: 10.1016/j.jcrysgro.2013.11.018 – ident: ref40/cit40 doi: 10.7554/eLife.05142 – ident: ref42/cit42 doi: 10.1021/acs.cgd.5b00762 – ident: ref46/cit46 doi: 10.4171/IFB/136 – ident: ref43/cit43 doi: 10.1016/0022-0248(93)90114-C – ident: ref45/cit45 doi: 10.1007/s00205-013-0712-y – ident: ref35/cit35 doi: 10.1021/jp7099543 – ident: ref11/cit11 doi: 10.1021/cg901626a – ident: ref15/cit15 doi: 10.1016/j.gca.2005.04.006 – ident: ref17/cit17 doi: 10.1021/cg8006684 – ident: ref31/cit31 doi: 10.1016/S0022-0248(97)00432-6 – ident: ref6/cit6 doi: 10.1021/jp9720505 – ident: ref10/cit10 doi: 10.1007/s00223-009-9223-0 – volume-title: Additives and crystallization processes: from fundamentals to applications year: 2007 ident: ref1/cit1 doi: 10.1002/9780470517833 contributor: fullname: Sangwal K. – ident: ref3/cit3 doi: 10.1021/acs.chemrev.7b00285 – volume: 34 start-page: 1262 year: 1989 ident: ref25/cit25 publication-title: Kristallografiya contributor: fullname: Punin Y. O. – ident: ref33/cit33 doi: 10.1103/PhysRevLett.110.055503 – ident: ref16/cit16 doi: 10.1016/j.gca.2004.12.019 – ident: ref30/cit30 doi: 10.1016/0022-0248(93)90115-D – ident: ref51/cit51 doi: 10.1016/0022-0248(94)90018-3 – ident: ref14/cit14 doi: 10.1126/science.290.5494.1134 – ident: ref55/cit55 doi: 10.1103/PhysRevLett.57.2431 |
SSID | ssj0007633 |
Score | 2.3756235 |
Snippet | Crystal growth is inhibited by the presence of impurities. Cabrera and Vermilyea introduced a model in 1958, in which the impurities are modeled as immobile... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 1940 |
Title | Crystal Growth Inhibition by Mobile Randomly Distributed Stoppers |
URI | http://dx.doi.org/10.1021/acs.cgd.9b01609 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD-rBH6gRf6UHDl6GrLQrO5IpogkeRBJuS9u1YsSNwDjMv97XMZBIjJ6WNM3L8tr33tf12_cQqjLW9OyvBw48tEM9VztCK-owowCdK0Ob-aeL7pPX6dPHARt8i0X_vMEn7o1Q4PzXqOZLK4bmb6ItwiE0LAoKesukC2GSc-kZyeUxG0sVnzUDtgyp6UoZWqkn7f05E2uayxBaGsl7bZbKmvpcF2n8-1UP0F6BKnFrvg0O0YaOy2g7WDRzK6PdFd3BI9QKJhmgwhG-h0N4OsQP8fBN5twtLDPcTSSkCvws4ij5GGX41tqwbbF0hHtpMh4DYjxG_fbdS9Bxil4KjiCcpw7TkE044DflM059KZoRh3ViXPGGcjUAKW2UYKJuPM94nJCIG5gN2UAa4QEGOUGlOIn1KcLclUTzhmAMoKPVonGp9KWpaxjS1NQrqAqOCItYmIb5NTdxQzsI3gkL71TQ9WIFwvFcWeO3qWf_s3iOdog9DVuGGL1ApXQy05cAGVJ5lW-WL-dkuWY |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gPqAPfqBG_OwDD74M2VhX9khQRAUSBRLelrVrxYgbgfGAf73XMZBoTPRpyaW5XK7t3a_r9XcARUqrjn56YOBHGrZjSsOXwjaoEojOhbKrya-Ldsdp9u2HAR1koLx8C4NGTFHTNLnE_2IXMK-1TLwEJZdrTjR3AzYpw3SpwVC9u4q9uFuSknpqJSyZlRWZzw8FOhuJ6Vo2WksrjV14WhmUVJO8lWYxL4mPb1yN_7F4D3ZSjElqi0WxDxkZ5iFXX7Z2y8P2GgvhAdTqkzlixBG5wyN5PCT34fCVJ5VchM9JO-IYOMizHwbR-2hObrQO3SRLBqQbR-Mx4sdD6Ddue_WmkXZWMHyLsdigEmMLQzQnXMpsl_vVgOGsUSZYRZgSYZVUwqd-WTmOcphlBUzhaIwNXPkOIpIjyIZRKI-BMJNbklV8ShFIamYa0-YuV2WJImmrcgGK6Agv3RlTL7n0tkxPC9E7XuqdAlwtJ8IbL3g2fht68jeNl5Br9totr3XfeTyFLUufk3XtmH0G2Xgyk-cIJmJ-kayfT0Cdwcs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oJj4OPlAjPnvg4GWRXbZb9khABBViRBJum223FSMuBJYD_nqnZSFEY6KnTZpmMpm2M1-3M98A5Ckte7r0wMKPtFzPllYohWtRJRCdC-WWza-LVttrdN37Hu2lRWG6FgaVmKCkiXnE16d6FKmUYcC-0ePiNSr4XPOi-euwQZltHmcr1c7S_-KJMWn11DFMmaUloc8PAToiiclKRFoJLfU96C6VMhkl74Vpwgvi8xtf43-13ofdFGuSynxzHMCajLOwVV20eMvCzgob4SFUquMZYsUBucOredInzbj_xk1GF-Ez0hpydCDkOYyj4cdgRmpahm6WJSPSSYajEeLII-jWb1-qDSvtsGCFDmOJRSX6GIaoTviUuT4PyxHD1aNMsJKwJcIrqURIw6LyPOUxx4mYwtnoI7gKPUQmx5CJh7E8AcJs7khWCilFQKkZamyX-1wVJQ5JVxVzkEdDBOkJmQTm8duxAz2I1glS6-TgerEYwWjOt_Hb1NO_SbyCzadaPXhsth_OYNvR12WdQuaeQyYZT-UFYoqEX5ot9AWydMRF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+Growth+Inhibition+by+Mobile+Randomly+Distributed+Stoppers&rft.jtitle=Crystal+growth+%26+design&rft.au=Lee-Thorp%2C+James+P&rft.au=Shtukenberg%2C+Alexander+G&rft.au=Kohn%2C+Robert+V&rft.date=2020-03-04&rft.pub=American+Chemical+Society&rft.issn=1528-7483&rft.eissn=1528-7505&rft.volume=20&rft.issue=3&rft.spage=1940&rft.epage=1950&rft_id=info:doi/10.1021%2Facs.cgd.9b01609&rft.externalDocID=b912799266 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-7483&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-7483&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-7483&client=summon |