Crystal Growth Inhibition by Mobile Randomly Distributed Stoppers

Crystal growth is inhibited by the presence of impurities. Cabrera and Vermilyea introduced a model in 1958, in which the impurities are modeled as immobile stoppers. The quantitative consequences of this model have mainly been explored for the special case where the stoppers are immobile and arrang...

Full description

Saved in:
Bibliographic Details
Published inCrystal growth & design Vol. 20; no. 3; pp. 1940 - 1950
Main Authors Lee-Thorp, James P, Shtukenberg, Alexander G, Kohn, Robert V
Format Journal Article
LanguageEnglish
Published American Chemical Society 04.03.2020
Online AccessGet full text

Cover

Loading…
Abstract Crystal growth is inhibited by the presence of impurities. Cabrera and Vermilyea introduced a model in 1958, in which the impurities are modeled as immobile stoppers. The quantitative consequences of this model have mainly been explored for the special case where the stoppers are immobile and arranged in a periodic array. Here we use numerical simulation to explore what happens when the stopper locations are randomly distributed and the stoppers have finite lifetimes. As this problem has just two nondimensional parameters, namely, nondimensionalized versions of the mean stopper distance and the mean stopper lifetime, we are able to explore a large region of the parameter space using simulation. The stopper density is measured by the percolation parameter, a nondimensionalized inverse distance between stoppers, ζ. Our results show that when the stopper density is relatively small (ζ below about 0.8), the macroscopic velocity of the step is roughly the same for randomly located stoppers as for a periodic array of stoppers. Moreover, in this regime the average velocity is almost independent of the stopper lifetime. For large stopper densities (more precisely, when the percolation parameter ζ is above about 0.8), the situation is entirely different. For periodically placed immobile stoppers, the average velocity drops sharply to 0 at ζ = 1. For randomly located immobile stoppers, by contrast, the average velocity remains positive for ζ well above 1, and it approaches 0 gradually rather than abruptly. For randomly located stoppers with finite lifetimes, the average velocity has a nonzero asymptote for large ζ; thus, for large stopper densities, the average velocity depends mainly on the mean stopper lifetime. In this regime, the inhibition kinetics predicted by our model resemble those of the Bliznakov kink blocking mechanism.
AbstractList Crystal growth is inhibited by the presence of impurities. Cabrera and Vermilyea introduced a model in 1958, in which the impurities are modeled as immobile stoppers. The quantitative consequences of this model have mainly been explored for the special case where the stoppers are immobile and arranged in a periodic array. Here we use numerical simulation to explore what happens when the stopper locations are randomly distributed and the stoppers have finite lifetimes. As this problem has just two nondimensional parameters, namely, nondimensionalized versions of the mean stopper distance and the mean stopper lifetime, we are able to explore a large region of the parameter space using simulation. The stopper density is measured by the percolation parameter, a nondimensionalized inverse distance between stoppers, ζ. Our results show that when the stopper density is relatively small (ζ below about 0.8), the macroscopic velocity of the step is roughly the same for randomly located stoppers as for a periodic array of stoppers. Moreover, in this regime the average velocity is almost independent of the stopper lifetime. For large stopper densities (more precisely, when the percolation parameter ζ is above about 0.8), the situation is entirely different. For periodically placed immobile stoppers, the average velocity drops sharply to 0 at ζ = 1. For randomly located immobile stoppers, by contrast, the average velocity remains positive for ζ well above 1, and it approaches 0 gradually rather than abruptly. For randomly located stoppers with finite lifetimes, the average velocity has a nonzero asymptote for large ζ; thus, for large stopper densities, the average velocity depends mainly on the mean stopper lifetime. In this regime, the inhibition kinetics predicted by our model resemble those of the Bliznakov kink blocking mechanism.
Author Shtukenberg, Alexander G
Kohn, Robert V
Lee-Thorp, James P
AuthorAffiliation Department of Chemistry
New York University
Courant Institute of Mathematical Sciences
AuthorAffiliation_xml – name: New York University
– name: Courant Institute of Mathematical Sciences
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: James P
  surname: Lee-Thorp
  fullname: Lee-Thorp, James P
  email: leethorp@cims.nyu.edu
  organization: Courant Institute of Mathematical Sciences
– sequence: 2
  givenname: Alexander G
  orcidid: 0000-0002-5590-4758
  surname: Shtukenberg
  fullname: Shtukenberg, Alexander G
  email: shtukenberg@mail.ru
  organization: New York University
– sequence: 3
  givenname: Robert V
  surname: Kohn
  fullname: Kohn, Robert V
  email: kohn@cims.nyu.edu
  organization: Courant Institute of Mathematical Sciences
BookMark eNp1kM9LwzAcxYNMcJueveYu3fKjadLjqDoHE8Ef55KkicvompJkSP97OzaPnr4Pvu89Hp8ZmHS-MwDcY7TAiOCl1HGhv5tFqRAuUHkFppgRkXGG2ORP54LegFmMe4QQLyidglUVhphkC9fB_6Qd3HQ7p1xyvoNqgK9eudbAd9k1_tAO8NHFFJw6JtPAj-T73oR4C66tbKO5u9w5-Hp--qxesu3belOttpkknKeMGSE4RznTJeN5qaRoOGOCcc2pxgaz3FgtmUS2KGzBCWm4Hd0UMWVlQQSdg-W5VwcfYzC27oM7yDDUGNUnAvVIoB4J1BcCY-LhnDg99v4YunHfv-5f4z9gBA
CitedBy_id crossref_primary_10_1007_s00044_024_03228_w
crossref_primary_10_1016_j_jcrysgro_2022_126839
crossref_primary_10_1021_acs_accounts_1c00631
crossref_primary_10_1002_ijch_202100048
crossref_primary_10_1103_PhysRevE_105_034802
Cites_doi 10.1016/0022-0248(95)00128-X
10.4171/IFB/265
10.3934/nhm.2010.5.745
10.1007/s00220-014-2152-4
10.1021/acs.cgd.7b01006
10.1021/cg7010474
10.1016/j.cryobiol.2011.06.005
10.1016/S0022-0248(97)00360-6
10.1021/cg501307y
10.1021/cg900543g
10.1021/acs.cgd.5b01683
10.1073/pnas.0908205107
10.1103/PhysRevLett.116.015501
10.1021/acs.cgd.7b00236
10.1016/S0022-0248(99)00048-2
10.1016/0022-0248(94)90185-6
10.1021/cg501485e
10.1021/cg400558b
10.1038/20886
10.1103/PhysRevLett.114.245501
10.1021/cg301366q
10.1016/0013-4686(86)80016-0
10.1103/PhysRevB.52.2154
10.1021/acs.cgd.7b01057
10.4171/JEMS/777
10.1002/cphc.200600371
10.1039/C2CE25936B
10.1016/j.jcrysgro.2007.04.053
10.1007/978-3-642-81835-6
10.1021/cg0255927
10.1021/jp507697q
10.1214/17-AAP1279
10.1016/j.jcrysgro.2013.11.018
10.7554/eLife.05142
10.1021/acs.cgd.5b00762
10.4171/IFB/136
10.1016/0022-0248(93)90114-C
10.1007/s00205-013-0712-y
10.1021/jp7099543
10.1021/cg901626a
10.1016/j.gca.2005.04.006
10.1021/cg8006684
10.1016/S0022-0248(97)00432-6
10.1021/jp9720505
10.1007/s00223-009-9223-0
10.1002/9780470517833
10.1021/acs.chemrev.7b00285
10.1103/PhysRevLett.110.055503
10.1016/j.gca.2004.12.019
10.1016/0022-0248(93)90115-D
10.1016/0022-0248(94)90018-3
10.1126/science.290.5494.1134
10.1103/PhysRevLett.57.2431
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.cgd.9b01609
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1528-7505
EndPage 1950
ExternalDocumentID 10_1021_acs_cgd_9b01609
b912799266
GroupedDBID 55A
5GY
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
-~X
4.4
5VS
6J9
AAYXX
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a277t-5e8877045c95749ba8d755857c73c1e154efca5a0f66f6722d7f045305bfa6283
IEDL.DBID ACS
ISSN 1528-7483
IngestDate Fri Aug 23 03:22:11 EDT 2024
Thu Aug 27 22:10:41 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a277t-5e8877045c95749ba8d755857c73c1e154efca5a0f66f6722d7f045305bfa6283
ORCID 0000-0002-5590-4758
PageCount 11
ParticipantIDs crossref_primary_10_1021_acs_cgd_9b01609
acs_journals_10_1021_acs_cgd_9b01609
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2020-03-04
PublicationDateYYYYMMDD 2020-03-04
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-04
  day: 04
PublicationDecade 2020
PublicationTitle Crystal growth & design
PublicationTitleAlternate Cryst. Growth Des
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
Chernov A. A. (ref53/cit53) 1984; 36
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
Sangwal K. (ref1/cit1) 2007
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
Bliznakov G. (ref52/cit52) 1965
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
Punin Y. O. (ref25/cit25) 1989; 34
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1016/0022-0248(95)00128-X
– ident: ref48/cit48
  doi: 10.4171/IFB/265
– ident: ref47/cit47
  doi: 10.3934/nhm.2010.5.745
– ident: ref49/cit49
  doi: 10.1007/s00220-014-2152-4
– ident: ref41/cit41
  doi: 10.1021/acs.cgd.7b01006
– ident: ref28/cit28
  doi: 10.1021/cg7010474
– start-page: 291
  year: 1965
  ident: ref52/cit52
  publication-title: Editions du Centre Nat. de la Recherche Sci.
  contributor:
    fullname: Bliznakov G.
– ident: ref54/cit54
  doi: 10.1016/j.cryobiol.2011.06.005
– ident: ref5/cit5
  doi: 10.1016/S0022-0248(97)00360-6
– ident: ref32/cit32
  doi: 10.1021/cg501307y
– ident: ref4/cit4
– ident: ref37/cit37
  doi: 10.1021/cg900543g
– ident: ref24/cit24
  doi: 10.1021/acs.cgd.5b01683
– ident: ref12/cit12
  doi: 10.1073/pnas.0908205107
– ident: ref38/cit38
  doi: 10.1103/PhysRevLett.116.015501
– ident: ref20/cit20
  doi: 10.1021/acs.cgd.7b00236
– ident: ref21/cit21
  doi: 10.1016/S0022-0248(99)00048-2
– ident: ref7/cit7
  doi: 10.1016/0022-0248(94)90185-6
– ident: ref19/cit19
  doi: 10.1021/cg501485e
– ident: ref23/cit23
  doi: 10.1021/cg400558b
– ident: ref29/cit29
  doi: 10.1038/20886
– ident: ref36/cit36
  doi: 10.1103/PhysRevLett.114.245501
– ident: ref18/cit18
  doi: 10.1021/cg301366q
– ident: ref56/cit56
  doi: 10.1016/0013-4686(86)80016-0
– ident: ref57/cit57
  doi: 10.1103/PhysRevB.52.2154
– ident: ref39/cit39
  doi: 10.1021/acs.cgd.7b01057
– ident: ref44/cit44
  doi: 10.4171/JEMS/777
– ident: ref8/cit8
  doi: 10.1002/cphc.200600371
– ident: ref13/cit13
  doi: 10.1039/C2CE25936B
– ident: ref2/cit2
– ident: ref9/cit9
  doi: 10.1016/j.jcrysgro.2007.04.053
– volume: 36
  volume-title: Modern crystallography III: Crystal growth
  year: 1984
  ident: ref53/cit53
  doi: 10.1007/978-3-642-81835-6
  contributor:
    fullname: Chernov A. A.
– ident: ref26/cit26
  doi: 10.1021/cg0255927
– ident: ref22/cit22
  doi: 10.1021/jp507697q
– ident: ref50/cit50
  doi: 10.1214/17-AAP1279
– ident: ref34/cit34
  doi: 10.1016/j.jcrysgro.2013.11.018
– ident: ref40/cit40
  doi: 10.7554/eLife.05142
– ident: ref42/cit42
  doi: 10.1021/acs.cgd.5b00762
– ident: ref46/cit46
  doi: 10.4171/IFB/136
– ident: ref43/cit43
  doi: 10.1016/0022-0248(93)90114-C
– ident: ref45/cit45
  doi: 10.1007/s00205-013-0712-y
– ident: ref35/cit35
  doi: 10.1021/jp7099543
– ident: ref11/cit11
  doi: 10.1021/cg901626a
– ident: ref15/cit15
  doi: 10.1016/j.gca.2005.04.006
– ident: ref17/cit17
  doi: 10.1021/cg8006684
– ident: ref31/cit31
  doi: 10.1016/S0022-0248(97)00432-6
– ident: ref6/cit6
  doi: 10.1021/jp9720505
– ident: ref10/cit10
  doi: 10.1007/s00223-009-9223-0
– volume-title: Additives and crystallization processes: from fundamentals to applications
  year: 2007
  ident: ref1/cit1
  doi: 10.1002/9780470517833
  contributor:
    fullname: Sangwal K.
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.7b00285
– volume: 34
  start-page: 1262
  year: 1989
  ident: ref25/cit25
  publication-title: Kristallografiya
  contributor:
    fullname: Punin Y. O.
– ident: ref33/cit33
  doi: 10.1103/PhysRevLett.110.055503
– ident: ref16/cit16
  doi: 10.1016/j.gca.2004.12.019
– ident: ref30/cit30
  doi: 10.1016/0022-0248(93)90115-D
– ident: ref51/cit51
  doi: 10.1016/0022-0248(94)90018-3
– ident: ref14/cit14
  doi: 10.1126/science.290.5494.1134
– ident: ref55/cit55
  doi: 10.1103/PhysRevLett.57.2431
SSID ssj0007633
Score 2.3756235
Snippet Crystal growth is inhibited by the presence of impurities. Cabrera and Vermilyea introduced a model in 1958, in which the impurities are modeled as immobile...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 1940
Title Crystal Growth Inhibition by Mobile Randomly Distributed Stoppers
URI http://dx.doi.org/10.1021/acs.cgd.9b01609
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD-rBH6gRf6UHDl6GrLQrO5IpogkeRBJuS9u1YsSNwDjMv97XMZBIjJ6WNM3L8tr33tf12_cQqjLW9OyvBw48tEM9VztCK-owowCdK0Ob-aeL7pPX6dPHARt8i0X_vMEn7o1Q4PzXqOZLK4bmb6ItwiE0LAoKesukC2GSc-kZyeUxG0sVnzUDtgyp6UoZWqkn7f05E2uayxBaGsl7bZbKmvpcF2n8-1UP0F6BKnFrvg0O0YaOy2g7WDRzK6PdFd3BI9QKJhmgwhG-h0N4OsQP8fBN5twtLDPcTSSkCvws4ij5GGX41tqwbbF0hHtpMh4DYjxG_fbdS9Bxil4KjiCcpw7TkE044DflM059KZoRh3ViXPGGcjUAKW2UYKJuPM94nJCIG5gN2UAa4QEGOUGlOIn1KcLclUTzhmAMoKPVonGp9KWpaxjS1NQrqAqOCItYmIb5NTdxQzsI3gkL71TQ9WIFwvFcWeO3qWf_s3iOdog9DVuGGL1ApXQy05cAGVJ5lW-WL-dkuWY
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gPqAPfqBG_OwDD74M2VhX9khQRAUSBRLelrVrxYgbgfGAf73XMZBoTPRpyaW5XK7t3a_r9XcARUqrjn56YOBHGrZjSsOXwjaoEojOhbKrya-Ldsdp9u2HAR1koLx8C4NGTFHTNLnE_2IXMK-1TLwEJZdrTjR3AzYpw3SpwVC9u4q9uFuSknpqJSyZlRWZzw8FOhuJ6Vo2WksrjV14WhmUVJO8lWYxL4mPb1yN_7F4D3ZSjElqi0WxDxkZ5iFXX7Z2y8P2GgvhAdTqkzlixBG5wyN5PCT34fCVJ5VchM9JO-IYOMizHwbR-2hObrQO3SRLBqQbR-Mx4sdD6Ddue_WmkXZWMHyLsdigEmMLQzQnXMpsl_vVgOGsUSZYRZgSYZVUwqd-WTmOcphlBUzhaIwNXPkOIpIjyIZRKI-BMJNbklV8ShFIamYa0-YuV2WJImmrcgGK6Agv3RlTL7n0tkxPC9E7XuqdAlwtJ8IbL3g2fht68jeNl5Br9totr3XfeTyFLUufk3XtmH0G2Xgyk-cIJmJ-kayfT0Cdwcs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oJj4OPlAjPnvg4GWRXbZb9khABBViRBJum223FSMuBJYD_nqnZSFEY6KnTZpmMpm2M1-3M98A5Ckte7r0wMKPtFzPllYohWtRJRCdC-WWza-LVttrdN37Hu2lRWG6FgaVmKCkiXnE16d6FKmUYcC-0ePiNSr4XPOi-euwQZltHmcr1c7S_-KJMWn11DFMmaUloc8PAToiiclKRFoJLfU96C6VMhkl74Vpwgvi8xtf43-13ofdFGuSynxzHMCajLOwVV20eMvCzgob4SFUquMZYsUBucOredInzbj_xk1GF-Ez0hpydCDkOYyj4cdgRmpahm6WJSPSSYajEeLII-jWb1-qDSvtsGCFDmOJRSX6GIaoTviUuT4PyxHD1aNMsJKwJcIrqURIw6LyPOUxx4mYwtnoI7gKPUQmx5CJh7E8AcJs7khWCilFQKkZamyX-1wVJQ5JVxVzkEdDBOkJmQTm8duxAz2I1glS6-TgerEYwWjOt_Hb1NO_SbyCzadaPXhsth_OYNvR12WdQuaeQyYZT-UFYoqEX5ot9AWydMRF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+Growth+Inhibition+by+Mobile+Randomly+Distributed+Stoppers&rft.jtitle=Crystal+growth+%26+design&rft.au=Lee-Thorp%2C+James+P&rft.au=Shtukenberg%2C+Alexander+G&rft.au=Kohn%2C+Robert+V&rft.date=2020-03-04&rft.pub=American+Chemical+Society&rft.issn=1528-7483&rft.eissn=1528-7505&rft.volume=20&rft.issue=3&rft.spage=1940&rft.epage=1950&rft_id=info:doi/10.1021%2Facs.cgd.9b01609&rft.externalDocID=b912799266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-7483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-7483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-7483&client=summon