SparsePoser: Real-time Full-body Motion Reconstruction from Sparse Data

Accurate and reliable human motion reconstruction is crucial for creating natural interactions of full-body avatars in Virtual Reality (VR) and entertainment applications. As the Metaverse and social applications gain popularity, users are seeking cost-effective solutions to create full-body animati...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on graphics Vol. 43; no. 1; pp. 1 - 14
Main Authors Ponton, Jose Luis, Yun, Haoran, Aristidou, Andreas, Andujar, Carlos, Pelechano, Nuria
Format Journal Article
LanguageEnglish
Published New York, NY, USA ACM 31.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate and reliable human motion reconstruction is crucial for creating natural interactions of full-body avatars in Virtual Reality (VR) and entertainment applications. As the Metaverse and social applications gain popularity, users are seeking cost-effective solutions to create full-body animations that are comparable in quality to those produced by commercial motion capture systems. In order to provide affordable solutions though, it is important to minimize the number of sensors attached to the subject’s body. Unfortunately, reconstructing the full-body pose from sparse data is a heavily under-determined problem. Some studies that use IMU sensors face challenges in reconstructing the pose due to positional drift and ambiguity of the poses. In recent years, some mainstream VR systems have released 6-degree-of-freedom (6-DoF) tracking devices providing positional and rotational information. Nevertheless, most solutions for reconstructing full-body poses rely on traditional inverse kinematics (IK) solutions, which often produce non-continuous and unnatural poses. In this article, we introduce SparsePoser, a novel deep learning-based solution for reconstructing a full-body pose from a reduced set of six tracking devices. Our system incorporates a convolutional-based autoencoder that synthesizes high-quality continuous human poses by learning the human motion manifold from motion capture data. Then, we employ a learned IK component, made of multiple lightweight feed-forward neural networks, to adjust the hands and feet toward the corresponding trackers. We extensively evaluate our method on publicly available motion capture datasets and with real-time live demos. We show that our method outperforms state-of-the-art techniques using IMU sensors or 6-DoF tracking devices, and can be used for users with different body dimensions and proportions.
AbstractList Accurate and reliable human motion reconstruction is crucial for creating natural interactions of full-body avatars in Virtual Reality (VR) and entertainment applications. As the Metaverse and social applications gain popularity, users are seeking cost-effective solutions to create full-body animations that are comparable in quality to those produced by commercial motion capture systems. In order to provide affordable solutions though, it is important to minimize the number of sensors attached to the subject’s body. Unfortunately, reconstructing the full-body pose from sparse data is a heavily under-determined problem. Some studies that use IMU sensors face challenges in reconstructing the pose due to positional drift and ambiguity of the poses. In recent years, some mainstream VR systems have released 6-degree-of-freedom (6-DoF) tracking devices providing positional and rotational information. Nevertheless, most solutions for reconstructing full-body poses rely on traditional inverse kinematics (IK) solutions, which often produce non-continuous and unnatural poses. In this article, we introduce SparsePoser, a novel deep learning-based solution for reconstructing a full-body pose from a reduced set of six tracking devices. Our system incorporates a convolutional-based autoencoder that synthesizes high-quality continuous human poses by learning the human motion manifold from motion capture data. Then, we employ a learned IK component, made of multiple lightweight feed-forward neural networks, to adjust the hands and feet toward the corresponding trackers. We extensively evaluate our method on publicly available motion capture datasets and with real-time live demos. We show that our method outperforms state-of-the-art techniques using IMU sensors or 6-DoF tracking devices, and can be used for users with different body dimensions and proportions.
ArticleNumber 5
Author Andujar, Carlos
Ponton, Jose Luis
Pelechano, Nuria
Yun, Haoran
Aristidou, Andreas
Author_xml – sequence: 1
  givenname: Jose Luis
  orcidid: 0000-0001-6576-4528
  surname: Ponton
  fullname: Ponton, Jose Luis
  email: jose.luis.ponton@upc.edu
  organization: Universitat Politècnica de Catalunya, Spain
– sequence: 2
  givenname: Haoran
  orcidid: 0000-0001-6192-6673
  surname: Yun
  fullname: Yun, Haoran
  email: haoran.yun@upc.edu
  organization: Universitat Politècnica de Catalunya, Spain
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0001-7754-0791
  surname: Aristidou
  fullname: Aristidou, Andreas
  email: a.aristidou@ieee.org
  organization: University of Cyprus, Cyprus and CYENS Centre of Excellence, Cyprus
– sequence: 4
  givenname: Carlos
  orcidid: 0000-0002-8480-4713
  surname: Andujar
  fullname: Andujar, Carlos
  email: andujar@cs.upc.edu
  organization: Universitat Politècnica de Catalunya, Spain
– sequence: 5
  givenname: Nuria
  orcidid: 0000-0002-1437-245X
  surname: Pelechano
  fullname: Pelechano, Nuria
  email: npelechano@cs.upc.edu
  organization: Universitat Politècnica de Catalunya, Spain
BookMark eNptkM1Lw0AUxBepYFvFu6fcPK2-_U69SbVVqCh-nMPLZgORJFt2t4f-97amehBPj2F-MzxmQka97x0h5wyuGJPqWmiuuJZHZMyUMtQInY_IGIwACgLYCZnE-AkAWko9Jsu3NYboXnx04SZ7ddjS1HQuW2zalpa-2mZPPjW-31nW9zGFjf2WdfBdNmSzO0x4So5rbKM7O9wp-Vjcv88f6Op5-Ti_XVHkxiSq9MxVUkmmK1BWclkBalcarYzKZcmhAlFzXTPLjFISZ2hR1sYJzYzNnRFTQodeG3yMwdWFbRLuX0oBm7ZgUOxXKA4r7PjLP_w6NB2G7T_kxUCi7X6hH_MLAb5kuQ
CitedBy_id crossref_primary_10_1145_3687991
crossref_primary_10_1016_j_neucom_2024_128049
crossref_primary_10_1111_cgf_15065
crossref_primary_10_1109_ACCESS_2024_3391186
crossref_primary_10_1016_j_cag_2024_104051
Cites_doi 10.1016/j.protcy.2013.12.451
10.1145/1230100.1230107
10.1145/2816795.2818013
10.1002/cav.2013
10.1145/1015706.1015755
10.1523/JNEUROSCI.05-07-01688.1985
10.1109/M2VIP.2017.8211457
10.1111/cgf.13131
10.1007/s11263-019-01245-6
10.1109/CVPR.2019.00589
10.1109/TVCG.2020.3025175
10.1007/978-3-031-20065-6_26
10.1145/3463499
10.1109/ACCESS.2020.3026276
10.1145/3550469.3555428
10.1109/IROS.2011.6094666
10.1145/3272127.3275108
10.2312/egs20221037
10.1109/VR55154.2023.00044
10.1111/cgf.14628
10.1109/CVPR42600.2020.00539
10.1145/3450626.3459786
10.3389/frvir.2022.937191
10.1111/cgf.14632
10.1109/TVCG.2020.2973077
10.1007/s10055-021-00530-5
10.1109/CVPR52688.2022.01282
10.1109/CVPR52688.2022.01290
10.1109/LRA.2022.3181374
10.1007/s10055-022-00635-5
10.1109/ICCV48922.2021.01148
10.1145/3386569.3392462
10.1016/j.robot.2019.103386
10.1111/cgf.13310
10.1145/3592099
10.1111/cgf.13089
10.1109/VR.2019.8798108
10.1145/3344383
10.1007/s10055-018-0374-z
10.1145/3550469.3555411
10.1109/MCG.2009.111
10.1145/3386569.3392462
10.1109/ICCV48922.2021.01093
10.1145/1015706.1015755
10.1145/3550469.3555411
10.1109/ICCV.2019.00554
10.1145/1230100.1230107
10.1145/2816795.2818013
10.1145/3463499
10.1145/3550469.3555428
10.1145/3592099
10.1145/3344383
10.1145/3272127.3275108
10.1111/cgf.142631
10.1145/3450626.3459786
ContentType Journal Article
Copyright Copyright held by the owner/author(s).
Copyright_xml – notice: Copyright held by the owner/author(s).
DBID AAYXX
CITATION
DOI 10.1145/3625264
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate SparsePoser: Real-time Full-body Motion Reconstruction from Sparse Data
EISSN 1557-7368
EndPage 14
ExternalDocumentID 10_1145_3625264
3625264
GrantInformation_xml – fundername: MCIN/AEI/10.13039/501100011033/FEDER, UE
  grantid: PID2021-122136OB-C21
– fundername: European Union’s Horizon 2020 Research and Innovation Programme
  grantid: 739578
– fundername: European Union’s Horizon 2020 research and innovation programme under the Marie SkŁodowska-Curie grant
  grantid: 860768 (CLIPE project)
– fundername: HORIZON-CL4-2022-HUMAN-01 grant
  grantid: 101093159 (XR4ED)
– fundername: Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy
– fundername: Spanish Ministry of Universities
  grantid: FPU21/01927
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
F5P
FEDTE
GUFHI
HGAVV
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TWZ
UHB
UPT
W7O
WH7
XSW
ZCA
~02
AAYXX
AEFXT
AEJOY
AETEA
AKRVB
CITATION
ID FETCH-LOGICAL-a277t-569ed45416d05c424d0a6eb7657584b20d03f26f1c17554a9aca4f7e3617c8e73
ISSN 0730-0301
IngestDate Thu Apr 24 22:53:21 EDT 2025
Thu Jul 03 08:37:09 EDT 2025
Fri Feb 21 01:27:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords wearable devices
character animation
sparse data
Motion tracking
Language English
License This work is licensed under a Creative Commons Attribution International 4.0 License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a277t-569ed45416d05c424d0a6eb7657584b20d03f26f1c17554a9aca4f7e3617c8e73
ORCID 0000-0001-7754-0791
0000-0002-1437-245X
0000-0001-6192-6673
0000-0001-6576-4528
0000-0002-8480-4713
OpenAccessLink https://dl.acm.org/doi/10.1145/3625264
PageCount 14
ParticipantIDs crossref_citationtrail_10_1145_3625264
crossref_primary_10_1145_3625264
acm_primary_3625264
PublicationCentury 2000
PublicationDate 2023-10-31
PublicationDateYYYYMMDD 2023-10-31
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-31
  day: 31
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle ACM transactions on graphics
PublicationTitleAbbrev ACM TOG
PublicationYear 2023
Publisher ACM
Publisher_xml – name: ACM
References (Bib0017) 1985; 5
(Bib0007) 2019; 12
(Bib0004) 2022; 7
(Bib0009) 2011
(Bib0019) 2021
(Bib0003) 2022
(Bib0005) 2022; 41
(Bib0052) 2019
(Bib0018) 2020; 26
(Bib0032) 2019
(Bib0046) 2021
(Bib0043) 2022
(Bib0012) 2016
(Bib0053) 2020
(Bib0001) 2020; 39
(Bib0026) 2022b
(Bib0002) 2021; 5
(Bib0025) 2022a
Bib0029
(Bib0045) 2000
(Bib0033) 2020; 128
(Bib0013) 2017
(Bib0041) 2021; 32
(Bib0015) 2021
(Bib0016) 2014; 12
(Bib0024) 2013
(Bib0022) 2017; 36
(Bib0039) 2019
(Bib0031) 2022; 3
(Bib0044) 2011; 31
(Bib0011) 2020; 8
(Bib0006) 2018; 37
(Bib0020) 2022; 26
(Bib0030) 2019
(Bib0014) 2020
(Bib0023) 2018; 37
(Bib0010) 2019; 23
(Bib0048) 2022
(Bib0042) 2017; 36
(Bib0051) 2022
(Bib0036) 2022b
(Bib0035) 2022a
Bib0047
Bib0008
(Bib0027) 2007
(Bib0049) 2021; 40
(Bib0050) 2023
(Bib0038) 2017
(Bib0021) 2004; 23
(Bib0040) 2017; 30
(Bib0034) 2018
(Bib0037) 2020; 124
(Bib0028) 2015; 34
e_1_3_2_28_1
e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
Pavllo Dario (e_1_3_2_35_1) 2018
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_10_1
e_1_3_2_52_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_50_1
e_1_3_2_27_1
e_1_3_2_29_1
Clavet Simon (e_1_3_2_13_1) 2016
e_1_3_2_42_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_40_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_53_1
e_1_3_2_6_1
e_1_3_2_34_1
Vaswani Ashish (e_1_3_2_41_1) 2017; 30
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
Paszke Adam (e_1_3_2_33_1) 2019
e_1_3_2_51_1
References_xml – volume: 12
  start-page: 20
  year: 2014
  end-page: 27
  ident: Bib0016
  article-title: Neural network based inverse kinematics solution for trajectory tracking of a robotic arm
  publication-title: Procedia Technology
  doi: 10.1016/j.protcy.2013.12.451
– start-page: 39
  year: 2007
  ident: Bib0027
  article-title: Skinning with dual quaternions
  publication-title: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games
  doi: 10.1145/1230100.1230107
– volume: 34
  start-page: 248:1–248:16
  issue: 6
  year: 2015
  ident: Bib0028
  article-title: SMPL: A skinned multi-person linear model
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/2816795.2818013
– volume: 32
  start-page: e2013
  issue: 3–4
  year: 2021
  ident: Bib0041
  article-title: Learning-based pose edition for efficient and interactive design
  publication-title: Computer Animation and Virtual Worlds
  doi: 10.1002/cav.2013
– volume: 23
  start-page: 522
  issue: 3
  year: 2004
  end-page: 531
  ident: Bib0021
  article-title: Style-based inverse kinematics
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/1015706.1015755
– start-page: 11117
  year: 2021
  end-page: 11126
  ident: Bib0019
  article-title: SOMA: Solving optical marker-based MoCap automatically
  publication-title: Proceedings of the International Conference on Computer Vision.
– start-page: 265
  year: 2021
  end-page: 275
  ident: Bib0046
  article-title: Lobstr: Real-time lower-body pose prediction from sparse upper-body tracking signals
  publication-title: Proceedings of the Computer Graphics Forum
– volume: 5
  start-page: 1688
  issue: 7
  year: 1985
  end-page: 1703
  ident: Bib0017
  article-title: The coordination of arm movements: An experimentally confirmed mathematical model
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.05-07-01688.1985
– start-page: 1
  year: 2017
  end-page: 6
  ident: Bib0013
  article-title: On solving the inverse kinematics problem using neural networks
  publication-title: Proceedings of the 24th International Conference on Mechatronics and Machine Vision in Practice.
  doi: 10.1109/M2VIP.2017.8211457
– volume: 36
  start-page: 349
  issue: 2
  year: 2017
  end-page: 360
  ident: Bib0042
  article-title: Sparse inertial poser: Automatic 3D human pose estimation from sparse IMUs
  publication-title: Computer Graphics Forum
  doi: 10.1111/cgf.13131
– volume: 128
  start-page: 855
  issue: 4
  year: 2020
  end-page: 872
  ident: Bib0033
  article-title: Modeling human motion with quaternion-based neural networks
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-019-01245-6
– start-page: 5738
  year: 2019
  end-page: 5746
  ident: Bib0052
  article-title: On the continuity of rotation representations in neural networks
  publication-title: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  doi: 10.1109/CVPR.2019.00589
– start-page: 1880
  year: 2020
  end-page: 1893
  ident: Bib0014
  article-title: On the plausibility of virtual body animation features in virtual reality
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2020.3025175
– ident: Bib0029
– start-page: 443
  year: 2022a
  end-page: 460
  ident: Bib0025
  article-title: AvatarPoser: Articulated full-body pose tracking from sparse motion sensing
  publication-title: Proceedings of the Computer Vision.
  doi: 10.1007/978-3-031-20065-6_26
– year: 2018
  ident: Bib0034
  article-title: QuaterNet: A quaternion-based recurrent model for human motion
  publication-title: Proceedings of the British Machine Vision Conference.
– volume: 30
  year: 2017
  ident: Bib0040
  article-title: Attention is all you need
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– volume: 5
  start-page: 23
  issue: 2
  year: 2021
  ident: Bib0002
  article-title: CoolMoves: User motion accentuation in virtual reality
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3463499
– volume: 8
  start-page: 176241
  year: 2020
  end-page: 176262
  ident: Bib0011
  article-title: HUMAN4D: A human-centric multimodal dataset for motions and immersive media
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026276
– start-page: 1
  year: 2022b
  end-page: 9
  ident: Bib0026
  article-title: Transformer inertial poser: Real-time human motion reconstruction from sparse IMUs with simultaneous terrain generation
  publication-title: Proceedings of the SIGGRAPH Asia 2022 Conference Papers.
  doi: 10.1145/3550469.3555428
– start-page: 698
  year: 2011
  end-page: 703
  ident: Bib0009
  article-title: Learning inverse kinematics with structured prediction
  publication-title: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
  doi: 10.1109/IROS.2011.6094666
– volume: 37
  start-page: 185:1–185:15
  issue: 6
  year: 2018
  ident: Bib0023
  article-title: Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/3272127.3275108
– start-page: 77
  year: 2022a
  end-page: 80
  ident: Bib0035
  article-title: AvatarGo: Plug and play self-avatars for VR
  publication-title: Proceedings of the Eurographics 2022 - Short Papers
  doi: 10.2312/egs20221037
– year: 2023
  ident: Bib0050
  article-title: Animation fidelity in self-avatars: Impact on user performance and sense of agency
  publication-title: Proceedings of the IEEE VR
  doi: 10.1109/VR55154.2023.00044
– year: 2022b
  ident: Bib0036
  article-title: Combining motion matching and orientation prediction to animate avatars for consumer-grade VR devices
  publication-title: Computer Graphics Forum
  doi: 10.1111/cgf.14628
– start-page: 5345
  year: 2020
  end-page: 5354
  ident: Bib0053
  article-title: Monocular real-time hand shape and motion capture using multi-modal data
  publication-title: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  doi: 10.1109/CVPR42600.2020.00539
– volume: 40
  start-page: 86:1–86:13
  issue: 4
  year: 2021
  ident: Bib0049
  article-title: TransPose: Real-time 3D human translation and pose estimation with six inertial sensors
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/3450626.3459786
– volume: 3
  year: 2022
  ident: Bib0031
  article-title: QuickVR: A standard library for virtual embodiment in unity
  publication-title: Frontiers in Virtual Reality
  doi: 10.3389/frvir.2022.937191
– volume: 41
  issue: 8
  year: 2022
  ident: Bib0005
  article-title: Pose representations for deep skeletal animation
  publication-title: Computer Graphics Forum
  doi: 10.1111/cgf.14632
– volume: 26
  start-page: 2062
  issue: 5
  year: 2020
  end-page: 2072
  ident: Bib0018
  article-title: Avatar and sense of embodiment: Studying the relative preference between appearance, control and point of view
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2020.2973077
– volume: 26
  start-page: 1
  issue: 1
  year: 2022
  end-page: 14
  ident: Bib0020
  article-title: Evaluation of the impact of different levels of self-representation and body tracking on the sense of presence and embodiment in immersive VR
  publication-title: Virtual Reality
  doi: 10.1007/s10055-021-00530-5
– start-page: 13157
  year: 2022
  end-page: 13168
  ident: Bib0048
  article-title: Physical inertial poser (PIP): Physics-aware real-time human motion tracking from sparse inertial sensors
  publication-title: Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  doi: 10.1109/CVPR52688.2022.01282
– start-page: 13243
  year: 2022
  end-page: 13252
  ident: Bib0003
  article-title: FLAG: Flow-based 3D avatar generation from sparse observations
  publication-title: Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  doi: 10.1109/CVPR52688.2022.01290
– volume: 7
  start-page: 7177
  issue: 3
  year: 2022
  end-page: 7184
  ident: Bib0004
  article-title: IKFlow: Generating diverse inverse kinematics solutions
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2022.3181374
– year: 2016
  ident: Bib0012
  article-title: Motion matching and the road to next-gen animation
  publication-title: Proceedings of the Game Developers Conference.
– year: 2022
  ident: Bib0051
  article-title: PE-DLS: A novel method for performing real-time full-body motion reconstruction in VR based on Vive trackers
  publication-title: Virtual Reality
  doi: 10.1007/s10055-022-00635-5
– year: 2000
  ident: Bib0045
  article-title: 3D motion tracking
– year: 2017
  ident: Bib0038
  article-title: Final IK
– start-page: 11687
  year: 2021
  end-page: 11697
  ident: Bib0015
  article-title: Full-body motion from a single head-mounted device: Generating SMPL poses from partial observations
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  doi: 10.1109/ICCV48922.2021.01148
– year: 2019
  ident: Bib0032
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Proceedings of theAdvances in Neural Information Processing Systems
– volume: 39
  issue: 4
  year: 2020
  ident: Bib0001
  article-title: Skeleton-aware networks for deep motion retargeting
  publication-title: ACM Transactions on Graphics
  doi: 10.1145/3386569.3392462
– ident: Bib0008
– year: 2013
  ident: Bib0024
  article-title: Dual Quaternions
– volume: 124
  start-page: 103386
  year: 2020
  ident: Bib0037
  article-title: Learning inverse kinematics and dynamics of a robotic manipulator using generative adversarial networks
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2019.103386
– volume: 37
  start-page: 35
  issue: 6
  year: 2018
  end-page: 58
  ident: Bib0006
  article-title: Inverse kinematics techniques in computer graphics: A survey
  publication-title: Computer Graphics Forum
  doi: 10.1111/cgf.13310
– ident: Bib0047
  doi: 10.1145/3592099
– start-page: 5442
  year: 2019
  end-page: 5451
  ident: Bib0030
  article-title: AMASS: Archive of motion capture as surface shapes
  publication-title: Proceedings of the International Conference on Computer Vision
– volume: 36
  start-page: 418
  issue: 8
  year: 2017
  end-page: 428
  ident: Bib0022
  article-title: Multi-variate gaussian-based inverse kinematics
  publication-title: Computer Graphics Forum
  doi: 10.1111/cgf.13089
– start-page: 756
  year: 2019
  end-page: 766
  ident: Bib0039
  article-title: The impact of avatar tracking errors on user experience in VR
  publication-title: Proceedings of the IEEE VR
  doi: 10.1109/VR.2019.8798108
– volume: 12
  start-page: 27
  issue: 4
  year: 2019
  ident: Bib0007
  article-title: Digital dance ethnography: Organizing large dance collections
  publication-title: Journal on Computing and Cultural Heritage
  doi: 10.1145/3344383
– volume: 23
  start-page: 155
  issue: 2
  year: 2019
  end-page: 168
  ident: Bib0010
  article-title: Real-time body tracking in virtual reality using a vive tracker
  publication-title: Virtual Reality
  doi: 10.1007/s10055-018-0374-z
– start-page: 1
  year: 2022
  end-page: 8
  ident: Bib0043
  article-title: QuestSim: Human motion tracking from sparse sensors with simulated avatars
  publication-title: Proceedings of the SIGGRAPH Asia 2022 Conference Papers
  doi: 10.1145/3550469.3555411
– volume: 31
  start-page: 69
  issue: 3
  year: 2011
  end-page: 77
  ident: Bib0044
  article-title: Natural character posing from a large motion database
  publication-title: IEEE Computer Graphics and Applications
  doi: 10.1109/MCG.2009.111
– ident: e_1_3_2_2_1
  doi: 10.1145/3386569.3392462
– ident: e_1_3_2_30_1
– ident: e_1_3_2_32_1
  doi: 10.3389/frvir.2022.937191
– ident: e_1_3_2_49_1
  doi: 10.1109/CVPR52688.2022.01282
– ident: e_1_3_2_53_1
  doi: 10.1109/CVPR.2019.00589
– ident: e_1_3_2_20_1
  doi: 10.1109/ICCV48922.2021.01093
– ident: e_1_3_2_38_1
  doi: 10.1016/j.robot.2019.103386
– ident: e_1_3_2_17_1
  doi: 10.1016/j.protcy.2013.12.451
– ident: e_1_3_2_36_1
  doi: 10.2312/egs20221037
– ident: e_1_3_2_22_1
  doi: 10.1145/1015706.1015755
– ident: e_1_3_2_26_1
  doi: 10.1007/978-3-031-20065-6_26
– ident: e_1_3_2_44_1
  doi: 10.1145/3550469.3555411
– volume: 30
  volume-title: Proceedings of the Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_3_2_41_1
– volume-title: Proceedings of the Game Developers Conference.
  year: 2016
  ident: e_1_3_2_13_1
– ident: e_1_3_2_16_1
  doi: 10.1109/ICCV48922.2021.01148
– ident: e_1_3_2_9_1
– ident: e_1_3_2_12_1
  doi: 10.1109/ACCESS.2020.3026276
– ident: e_1_3_2_6_1
  doi: 10.1111/cgf.14632
– ident: e_1_3_2_15_1
  doi: 10.1109/TVCG.2020.3025175
– ident: e_1_3_2_18_1
  doi: 10.1523/JNEUROSCI.05-07-01688.1985
– ident: e_1_3_2_52_1
  doi: 10.1007/s10055-022-00635-5
– ident: e_1_3_2_31_1
  doi: 10.1109/ICCV.2019.00554
– ident: e_1_3_2_54_1
  doi: 10.1109/CVPR42600.2020.00539
– volume-title: Proceedings of the British Machine Vision Conference.
  year: 2018
  ident: e_1_3_2_35_1
– ident: e_1_3_2_45_1
  doi: 10.1109/MCG.2009.111
– ident: e_1_3_2_39_1
– ident: e_1_3_2_14_1
  doi: 10.1109/M2VIP.2017.8211457
– ident: e_1_3_2_28_1
  doi: 10.1145/1230100.1230107
– ident: e_1_3_2_29_1
  doi: 10.1145/2816795.2818013
– ident: e_1_3_2_7_1
  doi: 10.1111/cgf.13310
– ident: e_1_3_2_23_1
  doi: 10.1111/cgf.13089
– ident: e_1_3_2_25_1
– ident: e_1_3_2_3_1
  doi: 10.1145/3463499
– ident: e_1_3_2_34_1
  doi: 10.1007/s11263-019-01245-6
– ident: e_1_3_2_51_1
  doi: 10.1109/VR55154.2023.00044
– ident: e_1_3_2_27_1
  doi: 10.1145/3550469.3555428
– ident: e_1_3_2_48_1
  doi: 10.1145/3592099
– ident: e_1_3_2_5_1
  doi: 10.1109/LRA.2022.3181374
– ident: e_1_3_2_11_1
  doi: 10.1007/s10055-018-0374-z
– ident: e_1_3_2_8_1
  doi: 10.1145/3344383
– ident: e_1_3_2_19_1
  doi: 10.1109/TVCG.2020.2973077
– ident: e_1_3_2_24_1
  doi: 10.1145/3272127.3275108
– ident: e_1_3_2_46_1
– ident: e_1_3_2_40_1
  doi: 10.1109/VR.2019.8798108
– ident: e_1_3_2_47_1
  doi: 10.1111/cgf.142631
– ident: e_1_3_2_43_1
  doi: 10.1111/cgf.13131
– ident: e_1_3_2_21_1
  doi: 10.1007/s10055-021-00530-5
– ident: e_1_3_2_37_1
  doi: 10.1111/cgf.14628
– ident: e_1_3_2_10_1
  doi: 10.1109/IROS.2011.6094666
– ident: e_1_3_2_50_1
  doi: 10.1145/3450626.3459786
– volume-title: Proceedings of theAdvances in Neural Information Processing Systems
  year: 2019
  ident: e_1_3_2_33_1
– ident: e_1_3_2_42_1
  doi: 10.1002/cav.2013
– ident: e_1_3_2_4_1
  doi: 10.1109/CVPR52688.2022.01290
SSID ssj0006446
Score 2.5705283
Snippet Accurate and reliable human motion reconstruction is crucial for creating natural interactions of full-body avatars in Virtual Reality (VR) and entertainment...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Animation
Computing methodologies
Learning paradigms
Motion capture
Motion processing
SubjectTermsDisplay Computing methodologies -- Animation
Computing methodologies -- Learning paradigms
Computing methodologies -- Motion capture
Computing methodologies -- Motion processing
Title SparsePoser: Real-time Full-body Motion Reconstruction from Sparse Data
URI https://dl.acm.org/doi/10.1145/3625264
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA-6XfQgPnG-yEG8SLRrknb1NnwNURHcYJ5GmqagzHbIdtC_3i9Nm2VT8HEpW5avo_l--R7N90DokAsR-YknSMQlJUywkERUprDdlQKN02yFooi2uA86PXbT533nxFRnl4zjE_nxbV7Jf7gKY8BXnSX7B87am8IAfAb-whU4DNdf8fhxBG6pesjhz0xgmxgS3Sy-COkgcZ68w54tGKy9zGmtWJNUYqiB72Phmqjt8zvdOKLqIl4cJxRlrZ24-Add9SCrThCObyfP9qenSTHeEYCtbAonLUqSfGJjKIUlgK-TF1GmI74N85kXET51JLiRVyAsiPawjGop5SkPSUhN55xK4Jq6TDPAMtKz6ahhk1r6VcAzXQsDtC73TfXz2RLac6rNBhya9Gs-KAkXUd0Ht8KvoXr74u720epusA6L0-3qUUyatSY9LUm1FSNfHSvGMUe6q2il9CNw24BiDS2obB0tO9UlN9C1A48zbMGBLTiwAQeeBQfW4MCGFmtwbKLe1WX3vEPKvhlEwFONCQ8ilTAOpnbiccl8BnsxUHGoz9haLPa9xKOpH6RNCbYjZyISUrA0VBSsWdlSId1CtSzP1DbClKk4YGFKAwVrIDwRSx6B2AaDh4FpSRtoHVZjMDKVUarlbaCjanUGsiw1rzueDAdzfGggbCdW95ibsvPzlF20NMXjHqrBeql9MBXH8UHJ30_zumZo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SparsePoser%3A+Real-time+Full-body+Motion+Reconstruction+from+Sparse+Data&rft.jtitle=ACM+transactions+on+graphics&rft.au=Ponton%2C+Jose+Luis&rft.au=Yun%2C+Haoran&rft.au=Aristidou%2C+Andreas&rft.au=Andujar%2C+Carlos&rft.date=2023-10-31&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1145%2F3625264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3625264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon