SparsePoser: Real-time Full-body Motion Reconstruction from Sparse Data
Accurate and reliable human motion reconstruction is crucial for creating natural interactions of full-body avatars in Virtual Reality (VR) and entertainment applications. As the Metaverse and social applications gain popularity, users are seeking cost-effective solutions to create full-body animati...
Saved in:
Published in | ACM transactions on graphics Vol. 43; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY, USA
ACM
31.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate and reliable human motion reconstruction is crucial for creating natural interactions of full-body avatars in Virtual Reality (VR) and entertainment applications. As the Metaverse and social applications gain popularity, users are seeking cost-effective solutions to create full-body animations that are comparable in quality to those produced by commercial motion capture systems. In order to provide affordable solutions though, it is important to minimize the number of sensors attached to the subject’s body. Unfortunately, reconstructing the full-body pose from sparse data is a heavily under-determined problem. Some studies that use IMU sensors face challenges in reconstructing the pose due to positional drift and ambiguity of the poses. In recent years, some mainstream VR systems have released 6-degree-of-freedom (6-DoF) tracking devices providing positional and rotational information. Nevertheless, most solutions for reconstructing full-body poses rely on traditional inverse kinematics (IK) solutions, which often produce non-continuous and unnatural poses. In this article, we introduce SparsePoser, a novel deep learning-based solution for reconstructing a full-body pose from a reduced set of six tracking devices. Our system incorporates a convolutional-based autoencoder that synthesizes high-quality continuous human poses by learning the human motion manifold from motion capture data. Then, we employ a learned IK component, made of multiple lightweight feed-forward neural networks, to adjust the hands and feet toward the corresponding trackers. We extensively evaluate our method on publicly available motion capture datasets and with real-time live demos. We show that our method outperforms state-of-the-art techniques using IMU sensors or 6-DoF tracking devices, and can be used for users with different body dimensions and proportions. |
---|---|
AbstractList | Accurate and reliable human motion reconstruction is crucial for creating natural interactions of full-body avatars in Virtual Reality (VR) and entertainment applications. As the Metaverse and social applications gain popularity, users are seeking cost-effective solutions to create full-body animations that are comparable in quality to those produced by commercial motion capture systems. In order to provide affordable solutions though, it is important to minimize the number of sensors attached to the subject’s body. Unfortunately, reconstructing the full-body pose from sparse data is a heavily under-determined problem. Some studies that use IMU sensors face challenges in reconstructing the pose due to positional drift and ambiguity of the poses. In recent years, some mainstream VR systems have released 6-degree-of-freedom (6-DoF) tracking devices providing positional and rotational information. Nevertheless, most solutions for reconstructing full-body poses rely on traditional inverse kinematics (IK) solutions, which often produce non-continuous and unnatural poses. In this article, we introduce SparsePoser, a novel deep learning-based solution for reconstructing a full-body pose from a reduced set of six tracking devices. Our system incorporates a convolutional-based autoencoder that synthesizes high-quality continuous human poses by learning the human motion manifold from motion capture data. Then, we employ a learned IK component, made of multiple lightweight feed-forward neural networks, to adjust the hands and feet toward the corresponding trackers. We extensively evaluate our method on publicly available motion capture datasets and with real-time live demos. We show that our method outperforms state-of-the-art techniques using IMU sensors or 6-DoF tracking devices, and can be used for users with different body dimensions and proportions. |
ArticleNumber | 5 |
Author | Andujar, Carlos Ponton, Jose Luis Pelechano, Nuria Yun, Haoran Aristidou, Andreas |
Author_xml | – sequence: 1 givenname: Jose Luis orcidid: 0000-0001-6576-4528 surname: Ponton fullname: Ponton, Jose Luis email: jose.luis.ponton@upc.edu organization: Universitat Politècnica de Catalunya, Spain – sequence: 2 givenname: Haoran orcidid: 0000-0001-6192-6673 surname: Yun fullname: Yun, Haoran email: haoran.yun@upc.edu organization: Universitat Politècnica de Catalunya, Spain – sequence: 3 givenname: Andreas orcidid: 0000-0001-7754-0791 surname: Aristidou fullname: Aristidou, Andreas email: a.aristidou@ieee.org organization: University of Cyprus, Cyprus and CYENS Centre of Excellence, Cyprus – sequence: 4 givenname: Carlos orcidid: 0000-0002-8480-4713 surname: Andujar fullname: Andujar, Carlos email: andujar@cs.upc.edu organization: Universitat Politècnica de Catalunya, Spain – sequence: 5 givenname: Nuria orcidid: 0000-0002-1437-245X surname: Pelechano fullname: Pelechano, Nuria email: npelechano@cs.upc.edu organization: Universitat Politècnica de Catalunya, Spain |
BookMark | eNptkM1Lw0AUxBepYFvFu6fcPK2-_U69SbVVqCh-nMPLZgORJFt2t4f-97amehBPj2F-MzxmQka97x0h5wyuGJPqWmiuuJZHZMyUMtQInY_IGIwACgLYCZnE-AkAWko9Jsu3NYboXnx04SZ7ddjS1HQuW2zalpa-2mZPPjW-31nW9zGFjf2WdfBdNmSzO0x4So5rbKM7O9wp-Vjcv88f6Op5-Ti_XVHkxiSq9MxVUkmmK1BWclkBalcarYzKZcmhAlFzXTPLjFISZ2hR1sYJzYzNnRFTQodeG3yMwdWFbRLuX0oBm7ZgUOxXKA4r7PjLP_w6NB2G7T_kxUCi7X6hH_MLAb5kuQ |
CitedBy_id | crossref_primary_10_1145_3687991 crossref_primary_10_1016_j_neucom_2024_128049 crossref_primary_10_1111_cgf_15065 crossref_primary_10_1109_ACCESS_2024_3391186 crossref_primary_10_1016_j_cag_2024_104051 |
Cites_doi | 10.1016/j.protcy.2013.12.451 10.1145/1230100.1230107 10.1145/2816795.2818013 10.1002/cav.2013 10.1145/1015706.1015755 10.1523/JNEUROSCI.05-07-01688.1985 10.1109/M2VIP.2017.8211457 10.1111/cgf.13131 10.1007/s11263-019-01245-6 10.1109/CVPR.2019.00589 10.1109/TVCG.2020.3025175 10.1007/978-3-031-20065-6_26 10.1145/3463499 10.1109/ACCESS.2020.3026276 10.1145/3550469.3555428 10.1109/IROS.2011.6094666 10.1145/3272127.3275108 10.2312/egs20221037 10.1109/VR55154.2023.00044 10.1111/cgf.14628 10.1109/CVPR42600.2020.00539 10.1145/3450626.3459786 10.3389/frvir.2022.937191 10.1111/cgf.14632 10.1109/TVCG.2020.2973077 10.1007/s10055-021-00530-5 10.1109/CVPR52688.2022.01282 10.1109/CVPR52688.2022.01290 10.1109/LRA.2022.3181374 10.1007/s10055-022-00635-5 10.1109/ICCV48922.2021.01148 10.1145/3386569.3392462 10.1016/j.robot.2019.103386 10.1111/cgf.13310 10.1145/3592099 10.1111/cgf.13089 10.1109/VR.2019.8798108 10.1145/3344383 10.1007/s10055-018-0374-z 10.1145/3550469.3555411 10.1109/MCG.2009.111 10.1145/3386569.3392462 10.1109/ICCV48922.2021.01093 10.1145/1015706.1015755 10.1145/3550469.3555411 10.1109/ICCV.2019.00554 10.1145/1230100.1230107 10.1145/2816795.2818013 10.1145/3463499 10.1145/3550469.3555428 10.1145/3592099 10.1145/3344383 10.1145/3272127.3275108 10.1111/cgf.142631 10.1145/3450626.3459786 |
ContentType | Journal Article |
Copyright | Copyright held by the owner/author(s). |
Copyright_xml | – notice: Copyright held by the owner/author(s). |
DBID | AAYXX CITATION |
DOI | 10.1145/3625264 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | SparsePoser: Real-time Full-body Motion Reconstruction from Sparse Data |
EISSN | 1557-7368 |
EndPage | 14 |
ExternalDocumentID | 10_1145_3625264 3625264 |
GrantInformation_xml | – fundername: MCIN/AEI/10.13039/501100011033/FEDER, UE grantid: PID2021-122136OB-C21 – fundername: European Union’s Horizon 2020 Research and Innovation Programme grantid: 739578 – fundername: European Union’s Horizon 2020 research and innovation programme under the Marie SkŁodowska-Curie grant grantid: 860768 (CLIPE project) – fundername: HORIZON-CL4-2022-HUMAN-01 grant grantid: 101093159 (XR4ED) – fundername: Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy – fundername: Spanish Ministry of Universities grantid: FPU21/01927 |
GroupedDBID | --Z -DZ -~X .DC 23M 2FS 4.4 5GY 5VS 6J9 85S 8US AAKMM AALFJ AAYFX ABPPZ ACGFO ACGOD ACM ADBCU ADL ADMLS ADPZR AEBYY AENEX AENSD AFWIH AFWXC AIKLT ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BDXCO CCLIF CS3 F5P FEDTE GUFHI HGAVV I07 LHSKQ P1C P2P PQQKQ RNS ROL TWZ UHB UPT W7O WH7 XSW ZCA ~02 AAYXX AEFXT AEJOY AETEA AKRVB CITATION |
ID | FETCH-LOGICAL-a277t-569ed45416d05c424d0a6eb7657584b20d03f26f1c17554a9aca4f7e3617c8e73 |
ISSN | 0730-0301 |
IngestDate | Thu Apr 24 22:53:21 EDT 2025 Thu Jul 03 08:37:09 EDT 2025 Fri Feb 21 01:27:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | wearable devices character animation sparse data Motion tracking |
Language | English |
License | This work is licensed under a Creative Commons Attribution International 4.0 License. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a277t-569ed45416d05c424d0a6eb7657584b20d03f26f1c17554a9aca4f7e3617c8e73 |
ORCID | 0000-0001-7754-0791 0000-0002-1437-245X 0000-0001-6192-6673 0000-0001-6576-4528 0000-0002-8480-4713 |
OpenAccessLink | https://dl.acm.org/doi/10.1145/3625264 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1145_3625264 crossref_primary_10_1145_3625264 acm_primary_3625264 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-31 |
PublicationDateYYYYMMDD | 2023-10-31 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY, USA |
PublicationPlace_xml | – name: New York, NY, USA |
PublicationTitle | ACM transactions on graphics |
PublicationTitleAbbrev | ACM TOG |
PublicationYear | 2023 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | (Bib0017) 1985; 5 (Bib0007) 2019; 12 (Bib0004) 2022; 7 (Bib0009) 2011 (Bib0019) 2021 (Bib0003) 2022 (Bib0005) 2022; 41 (Bib0052) 2019 (Bib0018) 2020; 26 (Bib0032) 2019 (Bib0046) 2021 (Bib0043) 2022 (Bib0012) 2016 (Bib0053) 2020 (Bib0001) 2020; 39 (Bib0026) 2022b (Bib0002) 2021; 5 (Bib0025) 2022a Bib0029 (Bib0045) 2000 (Bib0033) 2020; 128 (Bib0013) 2017 (Bib0041) 2021; 32 (Bib0015) 2021 (Bib0016) 2014; 12 (Bib0024) 2013 (Bib0022) 2017; 36 (Bib0039) 2019 (Bib0031) 2022; 3 (Bib0044) 2011; 31 (Bib0011) 2020; 8 (Bib0006) 2018; 37 (Bib0020) 2022; 26 (Bib0030) 2019 (Bib0014) 2020 (Bib0023) 2018; 37 (Bib0010) 2019; 23 (Bib0048) 2022 (Bib0042) 2017; 36 (Bib0051) 2022 (Bib0036) 2022b (Bib0035) 2022a Bib0047 Bib0008 (Bib0027) 2007 (Bib0049) 2021; 40 (Bib0050) 2023 (Bib0038) 2017 (Bib0021) 2004; 23 (Bib0040) 2017; 30 (Bib0034) 2018 (Bib0037) 2020; 124 (Bib0028) 2015; 34 e_1_3_2_28_1 e_1_3_2_49_1 e_1_3_2_20_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 Pavllo Dario (e_1_3_2_35_1) 2018 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_10_1 e_1_3_2_52_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_50_1 e_1_3_2_27_1 e_1_3_2_29_1 Clavet Simon (e_1_3_2_13_1) 2016 e_1_3_2_42_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_40_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_53_1 e_1_3_2_6_1 e_1_3_2_34_1 Vaswani Ashish (e_1_3_2_41_1) 2017; 30 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 Paszke Adam (e_1_3_2_33_1) 2019 e_1_3_2_51_1 |
References_xml | – volume: 12 start-page: 20 year: 2014 end-page: 27 ident: Bib0016 article-title: Neural network based inverse kinematics solution for trajectory tracking of a robotic arm publication-title: Procedia Technology doi: 10.1016/j.protcy.2013.12.451 – start-page: 39 year: 2007 ident: Bib0027 article-title: Skinning with dual quaternions publication-title: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games doi: 10.1145/1230100.1230107 – volume: 34 start-page: 248:1–248:16 issue: 6 year: 2015 ident: Bib0028 article-title: SMPL: A skinned multi-person linear model publication-title: ACM Transactions on Graphics doi: 10.1145/2816795.2818013 – volume: 32 start-page: e2013 issue: 3–4 year: 2021 ident: Bib0041 article-title: Learning-based pose edition for efficient and interactive design publication-title: Computer Animation and Virtual Worlds doi: 10.1002/cav.2013 – volume: 23 start-page: 522 issue: 3 year: 2004 end-page: 531 ident: Bib0021 article-title: Style-based inverse kinematics publication-title: ACM Transactions on Graphics doi: 10.1145/1015706.1015755 – start-page: 11117 year: 2021 end-page: 11126 ident: Bib0019 article-title: SOMA: Solving optical marker-based MoCap automatically publication-title: Proceedings of the International Conference on Computer Vision. – start-page: 265 year: 2021 end-page: 275 ident: Bib0046 article-title: Lobstr: Real-time lower-body pose prediction from sparse upper-body tracking signals publication-title: Proceedings of the Computer Graphics Forum – volume: 5 start-page: 1688 issue: 7 year: 1985 end-page: 1703 ident: Bib0017 article-title: The coordination of arm movements: An experimentally confirmed mathematical model publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.05-07-01688.1985 – start-page: 1 year: 2017 end-page: 6 ident: Bib0013 article-title: On solving the inverse kinematics problem using neural networks publication-title: Proceedings of the 24th International Conference on Mechatronics and Machine Vision in Practice. doi: 10.1109/M2VIP.2017.8211457 – volume: 36 start-page: 349 issue: 2 year: 2017 end-page: 360 ident: Bib0042 article-title: Sparse inertial poser: Automatic 3D human pose estimation from sparse IMUs publication-title: Computer Graphics Forum doi: 10.1111/cgf.13131 – volume: 128 start-page: 855 issue: 4 year: 2020 end-page: 872 ident: Bib0033 article-title: Modeling human motion with quaternion-based neural networks publication-title: International Journal of Computer Vision doi: 10.1007/s11263-019-01245-6 – start-page: 5738 year: 2019 end-page: 5746 ident: Bib0052 article-title: On the continuity of rotation representations in neural networks publication-title: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR.2019.00589 – start-page: 1880 year: 2020 end-page: 1893 ident: Bib0014 article-title: On the plausibility of virtual body animation features in virtual reality publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2020.3025175 – ident: Bib0029 – start-page: 443 year: 2022a end-page: 460 ident: Bib0025 article-title: AvatarPoser: Articulated full-body pose tracking from sparse motion sensing publication-title: Proceedings of the Computer Vision. doi: 10.1007/978-3-031-20065-6_26 – year: 2018 ident: Bib0034 article-title: QuaterNet: A quaternion-based recurrent model for human motion publication-title: Proceedings of the British Machine Vision Conference. – volume: 30 year: 2017 ident: Bib0040 article-title: Attention is all you need publication-title: Proceedings of the Advances in Neural Information Processing Systems – volume: 5 start-page: 23 issue: 2 year: 2021 ident: Bib0002 article-title: CoolMoves: User motion accentuation in virtual reality publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3463499 – volume: 8 start-page: 176241 year: 2020 end-page: 176262 ident: Bib0011 article-title: HUMAN4D: A human-centric multimodal dataset for motions and immersive media publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026276 – start-page: 1 year: 2022b end-page: 9 ident: Bib0026 article-title: Transformer inertial poser: Real-time human motion reconstruction from sparse IMUs with simultaneous terrain generation publication-title: Proceedings of the SIGGRAPH Asia 2022 Conference Papers. doi: 10.1145/3550469.3555428 – start-page: 698 year: 2011 end-page: 703 ident: Bib0009 article-title: Learning inverse kinematics with structured prediction publication-title: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems doi: 10.1109/IROS.2011.6094666 – volume: 37 start-page: 185:1–185:15 issue: 6 year: 2018 ident: Bib0023 article-title: Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time publication-title: ACM Transactions on Graphics doi: 10.1145/3272127.3275108 – start-page: 77 year: 2022a end-page: 80 ident: Bib0035 article-title: AvatarGo: Plug and play self-avatars for VR publication-title: Proceedings of the Eurographics 2022 - Short Papers doi: 10.2312/egs20221037 – year: 2023 ident: Bib0050 article-title: Animation fidelity in self-avatars: Impact on user performance and sense of agency publication-title: Proceedings of the IEEE VR doi: 10.1109/VR55154.2023.00044 – year: 2022b ident: Bib0036 article-title: Combining motion matching and orientation prediction to animate avatars for consumer-grade VR devices publication-title: Computer Graphics Forum doi: 10.1111/cgf.14628 – start-page: 5345 year: 2020 end-page: 5354 ident: Bib0053 article-title: Monocular real-time hand shape and motion capture using multi-modal data publication-title: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR42600.2020.00539 – volume: 40 start-page: 86:1–86:13 issue: 4 year: 2021 ident: Bib0049 article-title: TransPose: Real-time 3D human translation and pose estimation with six inertial sensors publication-title: ACM Transactions on Graphics doi: 10.1145/3450626.3459786 – volume: 3 year: 2022 ident: Bib0031 article-title: QuickVR: A standard library for virtual embodiment in unity publication-title: Frontiers in Virtual Reality doi: 10.3389/frvir.2022.937191 – volume: 41 issue: 8 year: 2022 ident: Bib0005 article-title: Pose representations for deep skeletal animation publication-title: Computer Graphics Forum doi: 10.1111/cgf.14632 – volume: 26 start-page: 2062 issue: 5 year: 2020 end-page: 2072 ident: Bib0018 article-title: Avatar and sense of embodiment: Studying the relative preference between appearance, control and point of view publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2020.2973077 – volume: 26 start-page: 1 issue: 1 year: 2022 end-page: 14 ident: Bib0020 article-title: Evaluation of the impact of different levels of self-representation and body tracking on the sense of presence and embodiment in immersive VR publication-title: Virtual Reality doi: 10.1007/s10055-021-00530-5 – start-page: 13157 year: 2022 end-page: 13168 ident: Bib0048 article-title: Physical inertial poser (PIP): Physics-aware real-time human motion tracking from sparse inertial sensors publication-title: Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR52688.2022.01282 – start-page: 13243 year: 2022 end-page: 13252 ident: Bib0003 article-title: FLAG: Flow-based 3D avatar generation from sparse observations publication-title: Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR52688.2022.01290 – volume: 7 start-page: 7177 issue: 3 year: 2022 end-page: 7184 ident: Bib0004 article-title: IKFlow: Generating diverse inverse kinematics solutions publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2022.3181374 – year: 2016 ident: Bib0012 article-title: Motion matching and the road to next-gen animation publication-title: Proceedings of the Game Developers Conference. – year: 2022 ident: Bib0051 article-title: PE-DLS: A novel method for performing real-time full-body motion reconstruction in VR based on Vive trackers publication-title: Virtual Reality doi: 10.1007/s10055-022-00635-5 – year: 2000 ident: Bib0045 article-title: 3D motion tracking – year: 2017 ident: Bib0038 article-title: Final IK – start-page: 11687 year: 2021 end-page: 11697 ident: Bib0015 article-title: Full-body motion from a single head-mounted device: Generating SMPL poses from partial observations publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision doi: 10.1109/ICCV48922.2021.01148 – year: 2019 ident: Bib0032 article-title: PyTorch: An imperative style, high-performance deep learning library publication-title: Proceedings of theAdvances in Neural Information Processing Systems – volume: 39 issue: 4 year: 2020 ident: Bib0001 article-title: Skeleton-aware networks for deep motion retargeting publication-title: ACM Transactions on Graphics doi: 10.1145/3386569.3392462 – ident: Bib0008 – year: 2013 ident: Bib0024 article-title: Dual Quaternions – volume: 124 start-page: 103386 year: 2020 ident: Bib0037 article-title: Learning inverse kinematics and dynamics of a robotic manipulator using generative adversarial networks publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2019.103386 – volume: 37 start-page: 35 issue: 6 year: 2018 end-page: 58 ident: Bib0006 article-title: Inverse kinematics techniques in computer graphics: A survey publication-title: Computer Graphics Forum doi: 10.1111/cgf.13310 – ident: Bib0047 doi: 10.1145/3592099 – start-page: 5442 year: 2019 end-page: 5451 ident: Bib0030 article-title: AMASS: Archive of motion capture as surface shapes publication-title: Proceedings of the International Conference on Computer Vision – volume: 36 start-page: 418 issue: 8 year: 2017 end-page: 428 ident: Bib0022 article-title: Multi-variate gaussian-based inverse kinematics publication-title: Computer Graphics Forum doi: 10.1111/cgf.13089 – start-page: 756 year: 2019 end-page: 766 ident: Bib0039 article-title: The impact of avatar tracking errors on user experience in VR publication-title: Proceedings of the IEEE VR doi: 10.1109/VR.2019.8798108 – volume: 12 start-page: 27 issue: 4 year: 2019 ident: Bib0007 article-title: Digital dance ethnography: Organizing large dance collections publication-title: Journal on Computing and Cultural Heritage doi: 10.1145/3344383 – volume: 23 start-page: 155 issue: 2 year: 2019 end-page: 168 ident: Bib0010 article-title: Real-time body tracking in virtual reality using a vive tracker publication-title: Virtual Reality doi: 10.1007/s10055-018-0374-z – start-page: 1 year: 2022 end-page: 8 ident: Bib0043 article-title: QuestSim: Human motion tracking from sparse sensors with simulated avatars publication-title: Proceedings of the SIGGRAPH Asia 2022 Conference Papers doi: 10.1145/3550469.3555411 – volume: 31 start-page: 69 issue: 3 year: 2011 end-page: 77 ident: Bib0044 article-title: Natural character posing from a large motion database publication-title: IEEE Computer Graphics and Applications doi: 10.1109/MCG.2009.111 – ident: e_1_3_2_2_1 doi: 10.1145/3386569.3392462 – ident: e_1_3_2_30_1 – ident: e_1_3_2_32_1 doi: 10.3389/frvir.2022.937191 – ident: e_1_3_2_49_1 doi: 10.1109/CVPR52688.2022.01282 – ident: e_1_3_2_53_1 doi: 10.1109/CVPR.2019.00589 – ident: e_1_3_2_20_1 doi: 10.1109/ICCV48922.2021.01093 – ident: e_1_3_2_38_1 doi: 10.1016/j.robot.2019.103386 – ident: e_1_3_2_17_1 doi: 10.1016/j.protcy.2013.12.451 – ident: e_1_3_2_36_1 doi: 10.2312/egs20221037 – ident: e_1_3_2_22_1 doi: 10.1145/1015706.1015755 – ident: e_1_3_2_26_1 doi: 10.1007/978-3-031-20065-6_26 – ident: e_1_3_2_44_1 doi: 10.1145/3550469.3555411 – volume: 30 volume-title: Proceedings of the Advances in Neural Information Processing Systems year: 2017 ident: e_1_3_2_41_1 – volume-title: Proceedings of the Game Developers Conference. year: 2016 ident: e_1_3_2_13_1 – ident: e_1_3_2_16_1 doi: 10.1109/ICCV48922.2021.01148 – ident: e_1_3_2_9_1 – ident: e_1_3_2_12_1 doi: 10.1109/ACCESS.2020.3026276 – ident: e_1_3_2_6_1 doi: 10.1111/cgf.14632 – ident: e_1_3_2_15_1 doi: 10.1109/TVCG.2020.3025175 – ident: e_1_3_2_18_1 doi: 10.1523/JNEUROSCI.05-07-01688.1985 – ident: e_1_3_2_52_1 doi: 10.1007/s10055-022-00635-5 – ident: e_1_3_2_31_1 doi: 10.1109/ICCV.2019.00554 – ident: e_1_3_2_54_1 doi: 10.1109/CVPR42600.2020.00539 – volume-title: Proceedings of the British Machine Vision Conference. year: 2018 ident: e_1_3_2_35_1 – ident: e_1_3_2_45_1 doi: 10.1109/MCG.2009.111 – ident: e_1_3_2_39_1 – ident: e_1_3_2_14_1 doi: 10.1109/M2VIP.2017.8211457 – ident: e_1_3_2_28_1 doi: 10.1145/1230100.1230107 – ident: e_1_3_2_29_1 doi: 10.1145/2816795.2818013 – ident: e_1_3_2_7_1 doi: 10.1111/cgf.13310 – ident: e_1_3_2_23_1 doi: 10.1111/cgf.13089 – ident: e_1_3_2_25_1 – ident: e_1_3_2_3_1 doi: 10.1145/3463499 – ident: e_1_3_2_34_1 doi: 10.1007/s11263-019-01245-6 – ident: e_1_3_2_51_1 doi: 10.1109/VR55154.2023.00044 – ident: e_1_3_2_27_1 doi: 10.1145/3550469.3555428 – ident: e_1_3_2_48_1 doi: 10.1145/3592099 – ident: e_1_3_2_5_1 doi: 10.1109/LRA.2022.3181374 – ident: e_1_3_2_11_1 doi: 10.1007/s10055-018-0374-z – ident: e_1_3_2_8_1 doi: 10.1145/3344383 – ident: e_1_3_2_19_1 doi: 10.1109/TVCG.2020.2973077 – ident: e_1_3_2_24_1 doi: 10.1145/3272127.3275108 – ident: e_1_3_2_46_1 – ident: e_1_3_2_40_1 doi: 10.1109/VR.2019.8798108 – ident: e_1_3_2_47_1 doi: 10.1111/cgf.142631 – ident: e_1_3_2_43_1 doi: 10.1111/cgf.13131 – ident: e_1_3_2_21_1 doi: 10.1007/s10055-021-00530-5 – ident: e_1_3_2_37_1 doi: 10.1111/cgf.14628 – ident: e_1_3_2_10_1 doi: 10.1109/IROS.2011.6094666 – ident: e_1_3_2_50_1 doi: 10.1145/3450626.3459786 – volume-title: Proceedings of theAdvances in Neural Information Processing Systems year: 2019 ident: e_1_3_2_33_1 – ident: e_1_3_2_42_1 doi: 10.1002/cav.2013 – ident: e_1_3_2_4_1 doi: 10.1109/CVPR52688.2022.01290 |
SSID | ssj0006446 |
Score | 2.5705283 |
Snippet | Accurate and reliable human motion reconstruction is crucial for creating natural interactions of full-body avatars in Virtual Reality (VR) and entertainment... |
SourceID | crossref acm |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Animation Computing methodologies Learning paradigms Motion capture Motion processing |
SubjectTermsDisplay | Computing methodologies -- Animation Computing methodologies -- Learning paradigms Computing methodologies -- Motion capture Computing methodologies -- Motion processing |
Title | SparsePoser: Real-time Full-body Motion Reconstruction from Sparse Data |
URI | https://dl.acm.org/doi/10.1145/3625264 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA-6XfQgPnG-yEG8SLRrknb1NnwNURHcYJ5GmqagzHbIdtC_3i9Nm2VT8HEpW5avo_l--R7N90DokAsR-YknSMQlJUywkERUprDdlQKN02yFooi2uA86PXbT533nxFRnl4zjE_nxbV7Jf7gKY8BXnSX7B87am8IAfAb-whU4DNdf8fhxBG6pesjhz0xgmxgS3Sy-COkgcZ68w54tGKy9zGmtWJNUYqiB72Phmqjt8zvdOKLqIl4cJxRlrZ24-Add9SCrThCObyfP9qenSTHeEYCtbAonLUqSfGJjKIUlgK-TF1GmI74N85kXET51JLiRVyAsiPawjGop5SkPSUhN55xK4Jq6TDPAMtKz6ahhk1r6VcAzXQsDtC73TfXz2RLac6rNBhya9Gs-KAkXUd0Ht8KvoXr74u720epusA6L0-3qUUyatSY9LUm1FSNfHSvGMUe6q2il9CNw24BiDS2obB0tO9UlN9C1A48zbMGBLTiwAQeeBQfW4MCGFmtwbKLe1WX3vEPKvhlEwFONCQ8ilTAOpnbiccl8BnsxUHGoz9haLPa9xKOpH6RNCbYjZyISUrA0VBSsWdlSId1CtSzP1DbClKk4YGFKAwVrIDwRSx6B2AaDh4FpSRtoHVZjMDKVUarlbaCjanUGsiw1rzueDAdzfGggbCdW95ibsvPzlF20NMXjHqrBeql9MBXH8UHJ30_zumZo |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SparsePoser%3A+Real-time+Full-body+Motion+Reconstruction+from+Sparse+Data&rft.jtitle=ACM+transactions+on+graphics&rft.au=Ponton%2C+Jose+Luis&rft.au=Yun%2C+Haoran&rft.au=Aristidou%2C+Andreas&rft.au=Andujar%2C+Carlos&rft.date=2023-10-31&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1145%2F3625264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3625264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon |