Head Pose Estimation Patterns as Deepfake Detectors
The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing deep learning and facial landmarks have yielded...
Saved in:
Published in | ACM transactions on multimedia computing communications and applications Vol. 20; no. 11; pp. 1 - 24 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
ACM
12.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing deep learning and facial landmarks have yielded intriguing results. Facial landmarks are traits that are solely tied to the subject’s head posture. Based on this observation, we study how Head Pose Estimation (HPE) patterns may be utilized to detect deepfakes in this work. The HPE patterns studied are based on FSA-Net, SynergyNet, and WSM, which are among the most performant approaches on the state-of-the-art. Finally, using a machine learning technique based on K-Nearest Neighbor and Dynamic Time Warping, their temporal patterns are categorized as authentic or false. We also offer a set of experiments for examining the feasibility of using deep learning techniques on such patterns. The findings reveal that the ability to recognize a deepfake video utilizing an HPE pattern is dependent on the HPE methodology. On the contrary, performance is less dependent on the performance of the utilized HPE technique. Experiments are carried out on the FaceForensics++ dataset that presents both identity swap and expression swap examples. The findings show that FSA-Net is an effective feature extraction method for determining whether a pattern belongs to a deepfake or not. The approach is also robust in comparison to deepfake videos created using various methods or for different goals. In the mean the method obtain 86% of accuracy on the identity swap task and 86.5% of accuracy on the expression swap. These findings offer up various possibilities and future directions for solving the deepfake detection problem using specialized HPE approaches, which are also known to be fast and reliable. |
---|---|
AbstractList | The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing deep learning and facial landmarks have yielded intriguing results. Facial landmarks are traits that are solely tied to the subject’s head posture. Based on this observation, we study how Head Pose Estimation (HPE) patterns may be utilized to detect deepfakes in this work. The HPE patterns studied are based on FSA-Net, SynergyNet, and WSM, which are among the most performant approaches on the state-of-the-art. Finally, using a machine learning technique based on K-Nearest Neighbor and Dynamic Time Warping, their temporal patterns are categorized as authentic or false. We also offer a set of experiments for examining the feasibility of using deep learning techniques on such patterns. The findings reveal that the ability to recognize a deepfake video utilizing an HPE pattern is dependent on the HPE methodology. On the contrary, performance is less dependent on the performance of the utilized HPE technique. Experiments are carried out on the FaceForensics++ dataset that presents both identity swap and expression swap examples. The findings show that FSA-Net is an effective feature extraction method for determining whether a pattern belongs to a deepfake or not. The approach is also robust in comparison to deepfake videos created using various methods or for different goals. In the mean the method obtain 86% of accuracy on the identity swap task and 86.5% of accuracy on the expression swap. These findings offer up various possibilities and future directions for solving the deepfake detection problem using specialized HPE approaches, which are also known to be fast and reliable. |
ArticleNumber | 342 |
Author | Becattini, Federico Loia, Vincenzo Pero, Chiara Hao, Fei Bisogni, Carmen |
Author_xml | – sequence: 1 givenname: Federico orcidid: 0000-0003-2537-2700 surname: Becattini fullname: Becattini, Federico email: federico.becattini@unisi.it organization: Università degli Studi di Siena, Siena, Italy – sequence: 2 givenname: Carmen orcidid: 0000-0003-1358-006X surname: Bisogni fullname: Bisogni, Carmen email: cbisogni@unisa.it organization: Università degli Studi di Salerno, Fisciano, Italy – sequence: 3 givenname: Vincenzo orcidid: 0000-0003-4807-8942 surname: Loia fullname: Loia, Vincenzo email: loia@unisa.it organization: Università degli Studi di Salerno, Fisciano, Italy – sequence: 4 givenname: Chiara orcidid: 0000-0002-5517-2198 surname: Pero fullname: Pero, Chiara email: cpero@unisa.it organization: Università degli Studi di Salerno, Fisciano, Italy – sequence: 5 givenname: Fei orcidid: 0000-0001-5288-5523 surname: Hao fullname: Hao, Fei email: feehao@gmail.com organization: School of Computer Science, Shaanxi Normal University, Xi’An, China |
BookMark | eNptjzFPwzAQhS1UJNqC2JmyMQVsn89OR1QKRapEB5ijIz5LgTapbC_8ewItHRDTPek-Pb1vIkZd37EQl0reKGXwFqzSM12diLFCVKWtLI6OGd2ZmKT0LiVYNHYsYMnki3WfuFik3G4pt31XrClnjl0qKBX3zLtAHzyEzE3uYzoXp4E2iS8OdypeHxYv82W5en58mt-tStLO5VLPgjfKN84EyQBg0HtCfvMukEftNc6APbGrFDlUmjU4LdFUFozSHmAqrve9TexTihzqXRwWxs9ayfrbtT64DmT5h2za_KOSI7Wbf_irPU_N9lj6-_wC_thdlQ |
CitedBy_id | crossref_primary_10_3390_s23229037 crossref_primary_10_1007_s13198_024_02530_5 crossref_primary_10_1145_3678473 crossref_primary_10_1145_3657297 crossref_primary_10_1016_j_imavis_2025_105418 crossref_primary_10_1145_3706636 crossref_primary_10_1145_3708352 |
Cites_doi | 10.1109/ICOSST57195.2022.10016871 10.1016/j.patcog.2022.108591 10.1109/HORA55278.2022.9799858 10.1109/TIP.2021.3059409 10.1016/j.eswa.2023.119843 10.1109/ICCVW.2019.00156 10.1007/978-3-031-06433-3_19 10.1109/ACCESS.2020.2977346 10.1109/ICCV.2019.00009 10.1109/ICASSP.2019.8683164 10.1109/WIFS.2018.8630761 10.1145/3394171.3413700 10.1109/TPAMI.2020.3046323 10.1109/ICASSP.2019.8683503 10.1109/ACCESS.2022.3154404 10.1109/ACCESS.2019.2909327 10.1109/WACVW58289.2023.00074 10.1109/JSEN.2021.3051497 10.3390/jimaging8100263 10.1109/TPAMI.2021.3093446 10.1049/bme2.12031 10.1145/3558004 10.1109/ICPR48806.2021.9413227 10.1109/TMM.2018.2866770 10.1109/CVPRW50498.2020.00336 10.1109/SSCI47803.2020.9308428 10.1109/CVPR.2017.195 10.1109/3DV53792.2021.00055 10.1109/TIP.2020.2984373 10.1007/978-3-030-58529-7_10 10.1109/CVPR.2019.00118 10.1162/neco.1997.9.8.1735 10.1145/3394171.3413700 10.1109/CVPR42600.2020.00327 10.1109/CVPR.2014.241 10.1007/s10618-019-00619-1 10.1007/978-3-030-66218-9_27 10.1016/j.patrec.2020.10.003 10.1145/3558004 10.1145/3448017.3457387 |
ContentType | Journal Article |
Copyright | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from |
Copyright_xml | – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from |
DBID | AAYXX CITATION |
DOI | 10.1145/3612928 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Head Pose Estimation Patterns as Deepfake Detectors |
EISSN | 1551-6865 |
EndPage | 24 |
ExternalDocumentID | 10_1145_3612928 3612928 |
GrantInformation_xml | – fundername: European Union—NextGenerationEU grantid: PE00000014 |
GroupedDBID | .4S .DC 23M 4.4 5GY 5VS 8US AAKMM AALFJ AAYFX ABPPZ ACM ADBCU ADL ADMLS ADPZR AEBYY AENEX AENSD AFWIH AFWXC AIKLT ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF CCLIF CS3 EBS EDO FEDTE GQ3 GUFHI HGAVV I07 LHSKQ MK~ ML~ P1C P2P RNS ROL TUS W7O ZCA AAYXX AEFXT AEJOY AKRVB CITATION |
ID | FETCH-LOGICAL-a277t-29fd41dc74f0e33345dda5ebd7fad52d2593edae781a7512e2372054863412d33 |
ISSN | 1551-6857 |
IngestDate | Thu Jul 03 08:33:48 EDT 2025 Thu Apr 24 23:04:50 EDT 2025 Fri Feb 21 01:25:30 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | face recognition Head Pose Estimation deep learning DeepFake machine learning |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a277t-29fd41dc74f0e33345dda5ebd7fad52d2593edae781a7512e2372054863412d33 |
ORCID | 0000-0003-4807-8942 0000-0003-1358-006X 0000-0001-5288-5523 0000-0002-5517-2198 0000-0003-2537-2700 |
OpenAccessLink | https://dl.acm.org/doi/pdf/10.1145/3612928 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1145_3612928 crossref_citationtrail_10_1145_3612928 acm_primary_3612928 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-12 |
PublicationDateYYYYMMDD | 2024-09-12 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | ACM transactions on multimedia computing communications and applications |
PublicationTitleAbbrev | ACM TOMM |
PublicationYear | 2024 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | (Bib0006) 2022 (Bib0010) 2014 (Bib0037) 2021; 43 (Bib0020) 2019; 21 (Bib0030) 2021; 21 (Bib0001) 2021 (Bib0017) 2019 (Bib0036) 2021 (Bib0016) 2020 (Bib0021) 2022 (Bib0014) 2021 (Bib0003) 2022; 127 (Bib0004) 2018 (Bib0008) 2021; 30 (Bib0002) 2020; 140 (Bib0032) 2022; 10 (Bib0013) 2022 (Bib0038) 2021 (Bib0005) 2018 (Bib0007) 2020; 29 (Bib0018) 2021 (Bib0028) 2023 (Bib0041) 2023 (Bib0022) 2019; 33 (Bib0042) 2019 (Bib0044) 2021; 10 (Bib0015) 2022; 8 (Bib0011) 2017 (Bib0025) 2020 (Bib0039) 2019; 7 (Bib0019) 1997; 9 (Bib0035) 2005 (Bib0040) 2020 (Bib0033) 2019 (Bib0026) 2020; 8 (Bib0009) 2021 (Bib0023) 2014 (Bib0043) 2019 (Bib0034) 2019 (Bib0012) 2020 (Bib0031) 2022; 44 (Bib0024) 2023; 222 (Bib0029) 2019 (Bib0027) 2020 e_1_3_1_21_2 e_1_3_1_43_2 e_1_3_1_22_2 Shakhnarovich Gregory (e_1_3_1_36_2) 2005 e_1_3_1_44_2 e_1_3_1_23_2 e_1_3_1_45_2 e_1_3_1_24_2 e_1_3_1_8_2 e_1_3_1_7_2 e_1_3_1_40_2 e_1_3_1_41_2 e_1_3_1_9_2 e_1_3_1_20_2 e_1_3_1_42_2 e_1_3_1_4_2 e_1_3_1_29_2 e_1_3_1_3_2 e_1_3_1_6_2 e_1_3_1_5_2 e_1_3_1_25_2 e_1_3_1_26_2 e_1_3_1_2_2 e_1_3_1_27_2 e_1_3_1_28_2 e_1_3_1_32_2 e_1_3_1_33_2 e_1_3_1_34_2 e_1_3_1_35_2 e_1_3_1_13_2 e_1_3_1_12_2 e_1_3_1_11_2 e_1_3_1_30_2 e_1_3_1_10_2 e_1_3_1_31_2 e_1_3_1_17_2 e_1_3_1_16_2 e_1_3_1_15_2 e_1_3_1_14_2 e_1_3_1_37_2 e_1_3_1_19_2 e_1_3_1_38_2 e_1_3_1_18_2 e_1_3_1_39_2 |
References_xml | – year: 2021 ident: Bib0018 article-title: Deepfake detection scheme based on vision transformer and distillation – start-page: 1 year: 2022 end-page: 6 ident: Bib0021 article-title: Deepfakes examiner: An end-to-end deep learning model for deepfakes videos detection publication-title: Proceedings of the 2022 16th International Conference on Open Source Systems and Technologies (ICOSST) doi: 10.1109/ICOSST57195.2022.10016871 – volume: 127 start-page: 108591 year: 2022 ident: Bib0003 article-title: Head pose estimation: An extensive survey on recent techniques and applications publication-title: Pattern Recognition doi: 10.1016/j.patcog.2022.108591 – start-page: 152 year: 2020 end-page: 168 ident: Bib0016 article-title: Towards fast, accurate and stable 3d dense face alignment publication-title: Proceedings of the 16th European Conference on Computer Vision–ECCV 2020 – start-page: 235 year: 2021 end-page: 242 ident: Bib0036 article-title: Speech recognition employing MFCC and dynamic time warping algorithm publication-title: Proceedings of the Innovations in Information and Communication Technologies (IICT-2020) – start-page: 1 year: 2022 end-page: 7 ident: Bib0006 article-title: Analysis survey on deepfake detection and recognition with convolutional neural networks publication-title: Proceedings of the 2022 International Congress on Human-Computer Interaction, Optimization, and Robotic Applications (HORA) doi: 10.1109/HORA55278.2022.9799858 – year: 2017 ident: Bib0011 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 30 start-page: 3192 year: 2021 end-page: 3203 ident: Bib0008 article-title: FASHE: A fractal based strategy for head pose estimation publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2021.3059409 – volume: 222 start-page: 119843 year: 2023 ident: Bib0024 article-title: DFGNN: An interpretable and generalized graph neural network for deepfakes detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.119843 – start-page: 1232 year: 2019 end-page: 1240 ident: Bib0029 article-title: Facial pose estimation by deep learning from label distributions publication-title: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) doi: 10.1109/ICCVW.2019.00156 – volume: 33 start-page: 917 issue: 4 year: 2019 end-page: 963 ident: Bib0022 article-title: Deep learning for time series classification: A review publication-title: Data Mining and Knowledge Discovery – start-page: 219 year: 2022 end-page: 229 ident: Bib0013 article-title: Combining efficientnet and vision transformers for video deepfake detection publication-title: In Proceedings of the International Conference on Image Analysis and Processing–ICIAP 2022. doi: 10.1007/978-3-031-06433-3_19 – volume: 8 start-page: 42458 year: 2020 end-page: 42468 ident: Bib0026 article-title: An end-to-end task-simplified and anchor-guided deep learning framework for image-based head pose estimation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2977346 – volume: 29 start-page: 5457 year: 2020 end-page: 5468 ident: Bib0007 article-title: Web-shaped model for head pose estimation: An approach for best exemplar selection publication-title: IEEE Transactions on Image Processing – start-page: 1 year: 2019 end-page: 11 ident: Bib0033 article-title: FaceForensics++: Learning to detect manipulated facial images publication-title: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV) doi: 10.1109/ICCV.2019.00009 – start-page: 1 year: 2019 end-page: 11 ident: Bib0034 article-title: Faceforensics++: Learning to detect manipulated facial images publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 8261 year: 2019 end-page: 8265 ident: Bib0043 article-title: Exposing deep fakes using inconsistent head poses publication-title: Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) doi: 10.1109/ICASSP.2019.8683164 – year: 2018 ident: Bib0005 article-title: MesoNet: A compact facial video forgery detection network doi: 10.1109/WIFS.2018.8630761 – start-page: 439 year: 2020 end-page: 447 ident: Bib0012 article-title: Not made for each other- audio-visual dissonance-based deepfake detection and localization publication-title: Proceedings of the 28th ACM International Conference on Multimedia (MM’20) doi: 10.1145/3394171.3413700 – start-page: 1087 year: 2019 end-page: 1096 ident: Bib0042 article-title: FSA-Net: Learning fine-grained structure aggregation for head pose estimation from a single image publication-title: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 43 start-page: 2874 issue: 8 year: 2021 end-page: 2881 ident: Bib0037 article-title: Multi-task head pose estimation in-the-wild publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.3046323 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: Bib0019 article-title: Long short-term memory publication-title: Neural Computation – start-page: 1977 year: 2019 end-page: 1981 ident: Bib0017 article-title: Nose, eyes and ears: Head pose estimation by locating facial keypoints publication-title: Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) doi: 10.1109/ICASSP.2019.8683503 – volume: 140 start-page: 179 year: 2020 end-page: 185 ident: Bib0002 article-title: Head pose estimation by regression algorithm publication-title: Pattern Recognition Letters – volume: 10 start-page: 25494 year: 2022 end-page: 25513 ident: Bib0032 article-title: Deepfake detection: A systematic literature review publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3154404 – volume: 7 start-page: 48470 year: 2019 end-page: 48483 ident: Bib0039 article-title: Head pose estimation in the wild assisted by facial landmarks based on convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909327 – start-page: 1 year: 2023 end-page: 11 ident: Bib0041 article-title: Learning pairwise interaction for generalizable DeepFake DETECTION publication-title: Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW) doi: 10.1109/WACVW58289.2023.00074 – start-page: 1867 year: 2014 end-page: 1874 ident: Bib0023 article-title: One millisecond face alignment with an ensemble of regression trees publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2005 ident: Bib0035 publication-title: Nearest-neighbor Methods in Learning and Vision – volume: 21 start-page: 9300 issue: 7 year: 2021 end-page: 9313 ident: Bib0030 article-title: Dynamic time warping-based features with class-specific joint importance maps for action recognition using kinect depth sensor publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3051497 – volume: 8 start-page: 263 issue: 10 year: 2022 ident: Bib0015 article-title: The face deepfake detection challenge publication-title: Journal of Imaging doi: 10.3390/jimaging8100263 – year: 2021 ident: Bib0001 article-title: Face Swap algorithm – year: 2014 ident: Bib0010 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation – start-page: 453 year: 2021 end-page: 463 ident: Bib0038 article-title: Synergy between 3dmm and 3d landmarks for accurate 3d facial geometry publication-title: Proceedings of the 2021 International Conference on 3D Vision (3DV) – volume: 44 start-page: 6111 issue: 10 year: 2022 end-page: 6121 ident: Bib0031 article-title: DeepFake detection based on discrepancies between faces and their context publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2021.3093446 – volume: 10 start-page: 607 issue: 6 year: 2021 end-page: 624 ident: Bib0044 article-title: A survey on deepfake video detection publication-title: IET Biometrics doi: 10.1049/bme2.12031 – year: 2023 ident: Bib0028 article-title: TCSD: Triple complementary streams detector for comprehensive deepfake detection publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications doi: 10.1145/3558004 – year: 2018 ident: Bib0004 article-title: MesoNet: A compact facial video forgery detection network – start-page: 3207 year: 2020 end-page: 3216 ident: Bib0027 article-title: Celeb-df: A large-scale challenging dataset for deepfake forensics publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1725 year: 2021 end-page: 1730 ident: Bib0009 article-title: HP2IFS: Head pose estimation exploiting partitioned iterated function systems publication-title: Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR) doi: 10.1109/ICPR48806.2021.9413227 – volume: 21 start-page: 1035 issue: 4 year: 2019 end-page: 1046 ident: Bib0020 article-title: QuatNet: Quaternion-based head pose estimation with multiregression loss publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2018.2866770 – year: 2021 ident: Bib0014 article-title: Where do deep fakes look? synthetic face detection via gaze tracking publication-title: ACM Symposium on Eye Tracking Research and Applications – start-page: 2794 year: 2020 end-page: 2803 ident: Bib0025 article-title: OC-FakeDect: Classifying deepfakes using one-class variational autoencoder publication-title: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) doi: 10.1109/CVPRW50498.2020.00336 – start-page: 1866 year: 2020 end-page: 1871 ident: Bib0040 article-title: DeepFake detection on publicly available datasets using modified AlexNet publication-title: Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI) doi: 10.1109/SSCI47803.2020.9308428 – ident: e_1_3_1_40_2 doi: 10.1109/ACCESS.2019.2909327 – ident: e_1_3_1_25_2 doi: 10.1016/j.eswa.2023.119843 – ident: e_1_3_1_44_2 doi: 10.1109/ICASSP.2019.8683164 – ident: e_1_3_1_10_2 doi: 10.1109/ICPR48806.2021.9413227 – ident: e_1_3_1_21_2 doi: 10.1109/TMM.2018.2866770 – ident: e_1_3_1_26_2 doi: 10.1109/CVPRW50498.2020.00336 – ident: e_1_3_1_34_2 doi: 10.1109/ICCV.2019.00009 – ident: e_1_3_1_12_2 doi: 10.1109/CVPR.2017.195 – ident: e_1_3_1_39_2 doi: 10.1109/3DV53792.2021.00055 – ident: e_1_3_1_16_2 doi: 10.3390/jimaging8100263 – ident: e_1_3_1_18_2 doi: 10.1109/ICASSP.2019.8683503 – ident: e_1_3_1_7_2 doi: 10.1109/HORA55278.2022.9799858 – ident: e_1_3_1_5_2 doi: 10.1109/WIFS.2018.8630761 – ident: e_1_3_1_8_2 doi: 10.1109/TIP.2020.2984373 – ident: e_1_3_1_4_2 doi: 10.1016/j.patcog.2022.108591 – ident: e_1_3_1_45_2 doi: 10.1049/bme2.12031 – ident: e_1_3_1_9_2 doi: 10.1109/TIP.2021.3059409 – ident: e_1_3_1_27_2 doi: 10.1109/ACCESS.2020.2977346 – ident: e_1_3_1_31_2 doi: 10.1109/JSEN.2021.3051497 – ident: e_1_3_1_38_2 doi: 10.1109/TPAMI.2020.3046323 – ident: e_1_3_1_17_2 doi: 10.1007/978-3-030-58529-7_10 – ident: e_1_3_1_43_2 doi: 10.1109/CVPR.2019.00118 – ident: e_1_3_1_41_2 doi: 10.1109/SSCI47803.2020.9308428 – ident: e_1_3_1_20_2 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_3_1_13_2 doi: 10.1145/3394171.3413700 – ident: e_1_3_1_28_2 doi: 10.1109/CVPR42600.2020.00327 – ident: e_1_3_1_42_2 doi: 10.1109/WACVW58289.2023.00074 – ident: e_1_3_1_11_2 – ident: e_1_3_1_35_2 doi: 10.1109/ICCV.2019.00009 – ident: e_1_3_1_24_2 doi: 10.1109/CVPR.2014.241 – ident: e_1_3_1_30_2 doi: 10.1109/ICCVW.2019.00156 – ident: e_1_3_1_23_2 doi: 10.1007/s10618-019-00619-1 – ident: e_1_3_1_37_2 doi: 10.1007/978-3-030-66218-9_27 – ident: e_1_3_1_33_2 doi: 10.1109/ACCESS.2022.3154404 – ident: e_1_3_1_32_2 doi: 10.1109/TPAMI.2021.3093446 – ident: e_1_3_1_3_2 doi: 10.1016/j.patrec.2020.10.003 – ident: e_1_3_1_22_2 doi: 10.1109/ICOSST57195.2022.10016871 – ident: e_1_3_1_29_2 doi: 10.1145/3558004 – ident: e_1_3_1_19_2 – ident: e_1_3_1_14_2 doi: 10.1007/978-3-031-06433-3_19 – ident: e_1_3_1_6_2 doi: 10.1109/WIFS.2018.8630761 – ident: e_1_3_1_2_2 – ident: e_1_3_1_15_2 doi: 10.1145/3448017.3457387 – volume-title: Nearest-neighbor Methods in Learning and Vision year: 2005 ident: e_1_3_1_36_2 |
SSID | ssj0036546 |
Score | 2.3911648 |
Snippet | The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information... |
SourceID | crossref acm |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Applied computing Computing methodologies Feature selection Investigation techniques |
SubjectTermsDisplay | Applied computing -- Investigation techniques Computing methodologies -- Feature selection |
Title | Head Pose Estimation Patterns as Deepfake Detectors |
URI | https://dl.acm.org/doi/10.1145/3612928 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYKXLjwKCDKSz6suCBDEyd1cqwKqFrRvSwgbpUTOwIBLaLphTM_nJnYTkxB2scliiw7kT1fxjPOfDOE_ChyAf5akrNA8oxFqVQslZFmsJkHuRQi6coq2-ev3vAm-nkX37Va717U0rzMTvO3b3kl_yNVaAO5Ikv2HyRbPxQa4B7kC1eQMFz_SsZDEBCW29UnF_ClGhIiJt3HQ74ZVpA51_qlkI8YG1RWx_Mz3xjtD0ZYIsLVC69-HFQBhhWdpIo2n5eWlNuwSExSZ__Hd-3Sa2iAAVWAwCVmqQCYNafwM4xUskEmzw0D7Wpq4nVvHwB_k7dpo6wNBWdw_yBfpX86EUasqq7gK9Q4YL3EJKE-1X6bqRHhtHDY9dEWeDo18DZnw7f-qvYjzJDBwVpLLdX8U2LthQ2vDkM0pOx4bAcukZUQnA3Qliv989HVb7ejc0v4qudiyNc49MwORdsmf_ZsG89Iud4ga9a7oH0DlU3S0pM2WXeVO6hV5FuEI3IoIoc2yKEOOVTOqEMOrZGzTW4uL64HQ2bLZzAJ0yhZmBYqClQuoqKrOedRrJSMdaZEIVUcKnB8uVZSiySQAuw-HWLFIvBge2DZhIrzHbI8mU70LqEZ7ANFyJXM0OITKkukSkQBb4jTriryDmnD9McvJkGKW88OOXbLMc5txnksfPI0Xlj4DqF1R_eMhS57f-6yT1YbBB6Q5fJ1rg_BYiyzIyvQD9mebE8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Head+Pose+Estimation+Patterns+as+Deepfake+Detectors&rft.jtitle=ACM+transactions+on+multimedia+computing+communications+and+applications&rft.au=Becattini%2C+Federico&rft.au=Bisogni%2C+Carmen&rft.au=Loia%2C+Vincenzo&rft.au=Pero%2C+Chiara&rft.date=2024-09-12&rft.issn=1551-6857&rft.eissn=1551-6865&rft.volume=20&rft.issue=11&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1145%2F3612928&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3612928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-6857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-6857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-6857&client=summon |