Head Pose Estimation Patterns as Deepfake Detectors

The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing deep learning and facial landmarks have yielded...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on multimedia computing communications and applications Vol. 20; no. 11; pp. 1 - 24
Main Authors Becattini, Federico, Bisogni, Carmen, Loia, Vincenzo, Pero, Chiara, Hao, Fei
Format Journal Article
LanguageEnglish
Published New York, NY ACM 12.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing deep learning and facial landmarks have yielded intriguing results. Facial landmarks are traits that are solely tied to the subject’s head posture. Based on this observation, we study how Head Pose Estimation (HPE) patterns may be utilized to detect deepfakes in this work. The HPE patterns studied are based on FSA-Net, SynergyNet, and WSM, which are among the most performant approaches on the state-of-the-art. Finally, using a machine learning technique based on K-Nearest Neighbor and Dynamic Time Warping, their temporal patterns are categorized as authentic or false. We also offer a set of experiments for examining the feasibility of using deep learning techniques on such patterns. The findings reveal that the ability to recognize a deepfake video utilizing an HPE pattern is dependent on the HPE methodology. On the contrary, performance is less dependent on the performance of the utilized HPE technique. Experiments are carried out on the FaceForensics++ dataset that presents both identity swap and expression swap examples. The findings show that FSA-Net is an effective feature extraction method for determining whether a pattern belongs to a deepfake or not. The approach is also robust in comparison to deepfake videos created using various methods or for different goals. In the mean the method obtain 86% of accuracy on the identity swap task and 86.5% of accuracy on the expression swap. These findings offer up various possibilities and future directions for solving the deepfake detection problem using specialized HPE approaches, which are also known to be fast and reliable.
AbstractList The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing deep learning and facial landmarks have yielded intriguing results. Facial landmarks are traits that are solely tied to the subject’s head posture. Based on this observation, we study how Head Pose Estimation (HPE) patterns may be utilized to detect deepfakes in this work. The HPE patterns studied are based on FSA-Net, SynergyNet, and WSM, which are among the most performant approaches on the state-of-the-art. Finally, using a machine learning technique based on K-Nearest Neighbor and Dynamic Time Warping, their temporal patterns are categorized as authentic or false. We also offer a set of experiments for examining the feasibility of using deep learning techniques on such patterns. The findings reveal that the ability to recognize a deepfake video utilizing an HPE pattern is dependent on the HPE methodology. On the contrary, performance is less dependent on the performance of the utilized HPE technique. Experiments are carried out on the FaceForensics++ dataset that presents both identity swap and expression swap examples. The findings show that FSA-Net is an effective feature extraction method for determining whether a pattern belongs to a deepfake or not. The approach is also robust in comparison to deepfake videos created using various methods or for different goals. In the mean the method obtain 86% of accuracy on the identity swap task and 86.5% of accuracy on the expression swap. These findings offer up various possibilities and future directions for solving the deepfake detection problem using specialized HPE approaches, which are also known to be fast and reliable.
ArticleNumber 342
Author Becattini, Federico
Loia, Vincenzo
Pero, Chiara
Hao, Fei
Bisogni, Carmen
Author_xml – sequence: 1
  givenname: Federico
  orcidid: 0000-0003-2537-2700
  surname: Becattini
  fullname: Becattini, Federico
  email: federico.becattini@unisi.it
  organization: Università degli Studi di Siena, Siena, Italy
– sequence: 2
  givenname: Carmen
  orcidid: 0000-0003-1358-006X
  surname: Bisogni
  fullname: Bisogni, Carmen
  email: cbisogni@unisa.it
  organization: Università degli Studi di Salerno, Fisciano, Italy
– sequence: 3
  givenname: Vincenzo
  orcidid: 0000-0003-4807-8942
  surname: Loia
  fullname: Loia, Vincenzo
  email: loia@unisa.it
  organization: Università degli Studi di Salerno, Fisciano, Italy
– sequence: 4
  givenname: Chiara
  orcidid: 0000-0002-5517-2198
  surname: Pero
  fullname: Pero, Chiara
  email: cpero@unisa.it
  organization: Università degli Studi di Salerno, Fisciano, Italy
– sequence: 5
  givenname: Fei
  orcidid: 0000-0001-5288-5523
  surname: Hao
  fullname: Hao, Fei
  email: feehao@gmail.com
  organization: School of Computer Science, Shaanxi Normal University, Xi’An, China
BookMark eNptjzFPwzAQhS1UJNqC2JmyMQVsn89OR1QKRapEB5ijIz5LgTapbC_8ewItHRDTPek-Pb1vIkZd37EQl0reKGXwFqzSM12diLFCVKWtLI6OGd2ZmKT0LiVYNHYsYMnki3WfuFik3G4pt31XrClnjl0qKBX3zLtAHzyEzE3uYzoXp4E2iS8OdypeHxYv82W5en58mt-tStLO5VLPgjfKN84EyQBg0HtCfvMukEftNc6APbGrFDlUmjU4LdFUFozSHmAqrve9TexTihzqXRwWxs9ayfrbtT64DmT5h2za_KOSI7Wbf_irPU_N9lj6-_wC_thdlQ
CitedBy_id crossref_primary_10_3390_s23229037
crossref_primary_10_1007_s13198_024_02530_5
crossref_primary_10_1145_3678473
crossref_primary_10_1145_3657297
crossref_primary_10_1016_j_imavis_2025_105418
crossref_primary_10_1145_3706636
crossref_primary_10_1145_3708352
Cites_doi 10.1109/ICOSST57195.2022.10016871
10.1016/j.patcog.2022.108591
10.1109/HORA55278.2022.9799858
10.1109/TIP.2021.3059409
10.1016/j.eswa.2023.119843
10.1109/ICCVW.2019.00156
10.1007/978-3-031-06433-3_19
10.1109/ACCESS.2020.2977346
10.1109/ICCV.2019.00009
10.1109/ICASSP.2019.8683164
10.1109/WIFS.2018.8630761
10.1145/3394171.3413700
10.1109/TPAMI.2020.3046323
10.1109/ICASSP.2019.8683503
10.1109/ACCESS.2022.3154404
10.1109/ACCESS.2019.2909327
10.1109/WACVW58289.2023.00074
10.1109/JSEN.2021.3051497
10.3390/jimaging8100263
10.1109/TPAMI.2021.3093446
10.1049/bme2.12031
10.1145/3558004
10.1109/ICPR48806.2021.9413227
10.1109/TMM.2018.2866770
10.1109/CVPRW50498.2020.00336
10.1109/SSCI47803.2020.9308428
10.1109/CVPR.2017.195
10.1109/3DV53792.2021.00055
10.1109/TIP.2020.2984373
10.1007/978-3-030-58529-7_10
10.1109/CVPR.2019.00118
10.1162/neco.1997.9.8.1735
10.1145/3394171.3413700
10.1109/CVPR42600.2020.00327
10.1109/CVPR.2014.241
10.1007/s10618-019-00619-1
10.1007/978-3-030-66218-9_27
10.1016/j.patrec.2020.10.003
10.1145/3558004
10.1145/3448017.3457387
ContentType Journal Article
Copyright Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Copyright_xml – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
DBID AAYXX
CITATION
DOI 10.1145/3612928
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Head Pose Estimation Patterns as Deepfake Detectors
EISSN 1551-6865
EndPage 24
ExternalDocumentID 10_1145_3612928
3612928
GrantInformation_xml – fundername: European Union—NextGenerationEU
  grantid: PE00000014
GroupedDBID .4S
.DC
23M
4.4
5GY
5VS
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACM
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
CCLIF
CS3
EBS
EDO
FEDTE
GQ3
GUFHI
HGAVV
I07
LHSKQ
MK~
ML~
P1C
P2P
RNS
ROL
TUS
W7O
ZCA
AAYXX
AEFXT
AEJOY
AKRVB
CITATION
ID FETCH-LOGICAL-a277t-29fd41dc74f0e33345dda5ebd7fad52d2593edae781a7512e2372054863412d33
ISSN 1551-6857
IngestDate Thu Jul 03 08:33:48 EDT 2025
Thu Apr 24 23:04:50 EDT 2025
Fri Feb 21 01:25:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords face recognition
Head Pose Estimation
deep learning
DeepFake
machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a277t-29fd41dc74f0e33345dda5ebd7fad52d2593edae781a7512e2372054863412d33
ORCID 0000-0003-4807-8942
0000-0003-1358-006X
0000-0001-5288-5523
0000-0002-5517-2198
0000-0003-2537-2700
OpenAccessLink https://dl.acm.org/doi/pdf/10.1145/3612928
PageCount 24
ParticipantIDs crossref_primary_10_1145_3612928
crossref_citationtrail_10_1145_3612928
acm_primary_3612928
PublicationCentury 2000
PublicationDate 2024-09-12
PublicationDateYYYYMMDD 2024-09-12
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-12
  day: 12
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle ACM transactions on multimedia computing communications and applications
PublicationTitleAbbrev ACM TOMM
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
References (Bib0006) 2022
(Bib0010) 2014
(Bib0037) 2021; 43
(Bib0020) 2019; 21
(Bib0030) 2021; 21
(Bib0001) 2021
(Bib0017) 2019
(Bib0036) 2021
(Bib0016) 2020
(Bib0021) 2022
(Bib0014) 2021
(Bib0003) 2022; 127
(Bib0004) 2018
(Bib0008) 2021; 30
(Bib0002) 2020; 140
(Bib0032) 2022; 10
(Bib0013) 2022
(Bib0038) 2021
(Bib0005) 2018
(Bib0007) 2020; 29
(Bib0018) 2021
(Bib0028) 2023
(Bib0041) 2023
(Bib0022) 2019; 33
(Bib0042) 2019
(Bib0044) 2021; 10
(Bib0015) 2022; 8
(Bib0011) 2017
(Bib0025) 2020
(Bib0039) 2019; 7
(Bib0019) 1997; 9
(Bib0035) 2005
(Bib0040) 2020
(Bib0033) 2019
(Bib0026) 2020; 8
(Bib0009) 2021
(Bib0023) 2014
(Bib0043) 2019
(Bib0034) 2019
(Bib0012) 2020
(Bib0031) 2022; 44
(Bib0024) 2023; 222
(Bib0029) 2019
(Bib0027) 2020
e_1_3_1_21_2
e_1_3_1_43_2
e_1_3_1_22_2
Shakhnarovich Gregory (e_1_3_1_36_2) 2005
e_1_3_1_44_2
e_1_3_1_23_2
e_1_3_1_45_2
e_1_3_1_24_2
e_1_3_1_8_2
e_1_3_1_7_2
e_1_3_1_40_2
e_1_3_1_41_2
e_1_3_1_9_2
e_1_3_1_20_2
e_1_3_1_42_2
e_1_3_1_4_2
e_1_3_1_29_2
e_1_3_1_3_2
e_1_3_1_6_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_26_2
e_1_3_1_2_2
e_1_3_1_27_2
e_1_3_1_28_2
e_1_3_1_32_2
e_1_3_1_33_2
e_1_3_1_34_2
e_1_3_1_35_2
e_1_3_1_13_2
e_1_3_1_12_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_10_2
e_1_3_1_31_2
e_1_3_1_17_2
e_1_3_1_16_2
e_1_3_1_15_2
e_1_3_1_14_2
e_1_3_1_37_2
e_1_3_1_19_2
e_1_3_1_38_2
e_1_3_1_18_2
e_1_3_1_39_2
References_xml – year: 2021
  ident: Bib0018
  article-title: Deepfake detection scheme based on vision transformer and distillation
– start-page: 1
  year: 2022
  end-page: 6
  ident: Bib0021
  article-title: Deepfakes examiner: An end-to-end deep learning model for deepfakes videos detection
  publication-title: Proceedings of the 2022 16th International Conference on Open Source Systems and Technologies (ICOSST)
  doi: 10.1109/ICOSST57195.2022.10016871
– volume: 127
  start-page: 108591
  year: 2022
  ident: Bib0003
  article-title: Head pose estimation: An extensive survey on recent techniques and applications
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2022.108591
– start-page: 152
  year: 2020
  end-page: 168
  ident: Bib0016
  article-title: Towards fast, accurate and stable 3d dense face alignment
  publication-title: Proceedings of the 16th European Conference on Computer Vision–ECCV 2020
– start-page: 235
  year: 2021
  end-page: 242
  ident: Bib0036
  article-title: Speech recognition employing MFCC and dynamic time warping algorithm
  publication-title: Proceedings of the Innovations in Information and Communication Technologies (IICT-2020)
– start-page: 1
  year: 2022
  end-page: 7
  ident: Bib0006
  article-title: Analysis survey on deepfake detection and recognition with convolutional neural networks
  publication-title: Proceedings of the 2022 International Congress on Human-Computer Interaction, Optimization, and Robotic Applications (HORA)
  doi: 10.1109/HORA55278.2022.9799858
– year: 2017
  ident: Bib0011
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 30
  start-page: 3192
  year: 2021
  end-page: 3203
  ident: Bib0008
  article-title: FASHE: A fractal based strategy for head pose estimation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2021.3059409
– volume: 222
  start-page: 119843
  year: 2023
  ident: Bib0024
  article-title: DFGNN: An interpretable and generalized graph neural network for deepfakes detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.119843
– start-page: 1232
  year: 2019
  end-page: 1240
  ident: Bib0029
  article-title: Facial pose estimation by deep learning from label distributions
  publication-title: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)
  doi: 10.1109/ICCVW.2019.00156
– volume: 33
  start-page: 917
  issue: 4
  year: 2019
  end-page: 963
  ident: Bib0022
  article-title: Deep learning for time series classification: A review
  publication-title: Data Mining and Knowledge Discovery
– start-page: 219
  year: 2022
  end-page: 229
  ident: Bib0013
  article-title: Combining efficientnet and vision transformers for video deepfake detection
  publication-title: In Proceedings of the International Conference on Image Analysis and Processing–ICIAP 2022.
  doi: 10.1007/978-3-031-06433-3_19
– volume: 8
  start-page: 42458
  year: 2020
  end-page: 42468
  ident: Bib0026
  article-title: An end-to-end task-simplified and anchor-guided deep learning framework for image-based head pose estimation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977346
– volume: 29
  start-page: 5457
  year: 2020
  end-page: 5468
  ident: Bib0007
  article-title: Web-shaped model for head pose estimation: An approach for best exemplar selection
  publication-title: IEEE Transactions on Image Processing
– start-page: 1
  year: 2019
  end-page: 11
  ident: Bib0033
  article-title: FaceForensics++: Learning to detect manipulated facial images
  publication-title: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
  doi: 10.1109/ICCV.2019.00009
– start-page: 1
  year: 2019
  end-page: 11
  ident: Bib0034
  article-title: Faceforensics++: Learning to detect manipulated facial images
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 8261
  year: 2019
  end-page: 8265
  ident: Bib0043
  article-title: Exposing deep fakes using inconsistent head poses
  publication-title: Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
  doi: 10.1109/ICASSP.2019.8683164
– year: 2018
  ident: Bib0005
  article-title: MesoNet: A compact facial video forgery detection network
  doi: 10.1109/WIFS.2018.8630761
– start-page: 439
  year: 2020
  end-page: 447
  ident: Bib0012
  article-title: Not made for each other- audio-visual dissonance-based deepfake detection and localization
  publication-title: Proceedings of the 28th ACM International Conference on Multimedia (MM’20)
  doi: 10.1145/3394171.3413700
– start-page: 1087
  year: 2019
  end-page: 1096
  ident: Bib0042
  article-title: FSA-Net: Learning fine-grained structure aggregation for head pose estimation from a single image
  publication-title: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 43
  start-page: 2874
  issue: 8
  year: 2021
  end-page: 2881
  ident: Bib0037
  article-title: Multi-task head pose estimation in-the-wild
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.3046323
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: Bib0019
  article-title: Long short-term memory
  publication-title: Neural Computation
– start-page: 1977
  year: 2019
  end-page: 1981
  ident: Bib0017
  article-title: Nose, eyes and ears: Head pose estimation by locating facial keypoints
  publication-title: Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  doi: 10.1109/ICASSP.2019.8683503
– volume: 140
  start-page: 179
  year: 2020
  end-page: 185
  ident: Bib0002
  article-title: Head pose estimation by regression algorithm
  publication-title: Pattern Recognition Letters
– volume: 10
  start-page: 25494
  year: 2022
  end-page: 25513
  ident: Bib0032
  article-title: Deepfake detection: A systematic literature review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3154404
– volume: 7
  start-page: 48470
  year: 2019
  end-page: 48483
  ident: Bib0039
  article-title: Head pose estimation in the wild assisted by facial landmarks based on convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909327
– start-page: 1
  year: 2023
  end-page: 11
  ident: Bib0041
  article-title: Learning pairwise interaction for generalizable DeepFake DETECTION
  publication-title: Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)
  doi: 10.1109/WACVW58289.2023.00074
– start-page: 1867
  year: 2014
  end-page: 1874
  ident: Bib0023
  article-title: One millisecond face alignment with an ensemble of regression trees
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2005
  ident: Bib0035
  publication-title: Nearest-neighbor Methods in Learning and Vision
– volume: 21
  start-page: 9300
  issue: 7
  year: 2021
  end-page: 9313
  ident: Bib0030
  article-title: Dynamic time warping-based features with class-specific joint importance maps for action recognition using kinect depth sensor
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3051497
– volume: 8
  start-page: 263
  issue: 10
  year: 2022
  ident: Bib0015
  article-title: The face deepfake detection challenge
  publication-title: Journal of Imaging
  doi: 10.3390/jimaging8100263
– year: 2021
  ident: Bib0001
  article-title: Face Swap algorithm
– year: 2014
  ident: Bib0010
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
– start-page: 453
  year: 2021
  end-page: 463
  ident: Bib0038
  article-title: Synergy between 3dmm and 3d landmarks for accurate 3d facial geometry
  publication-title: Proceedings of the 2021 International Conference on 3D Vision (3DV)
– volume: 44
  start-page: 6111
  issue: 10
  year: 2022
  end-page: 6121
  ident: Bib0031
  article-title: DeepFake detection based on discrepancies between faces and their context
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2021.3093446
– volume: 10
  start-page: 607
  issue: 6
  year: 2021
  end-page: 624
  ident: Bib0044
  article-title: A survey on deepfake video detection
  publication-title: IET Biometrics
  doi: 10.1049/bme2.12031
– year: 2023
  ident: Bib0028
  article-title: TCSD: Triple complementary streams detector for comprehensive deepfake detection
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications
  doi: 10.1145/3558004
– year: 2018
  ident: Bib0004
  article-title: MesoNet: A compact facial video forgery detection network
– start-page: 3207
  year: 2020
  end-page: 3216
  ident: Bib0027
  article-title: Celeb-df: A large-scale challenging dataset for deepfake forensics
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1725
  year: 2021
  end-page: 1730
  ident: Bib0009
  article-title: HP2IFS: Head pose estimation exploiting partitioned iterated function systems
  publication-title: Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR)
  doi: 10.1109/ICPR48806.2021.9413227
– volume: 21
  start-page: 1035
  issue: 4
  year: 2019
  end-page: 1046
  ident: Bib0020
  article-title: QuatNet: Quaternion-based head pose estimation with multiregression loss
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2018.2866770
– year: 2021
  ident: Bib0014
  article-title: Where do deep fakes look? synthetic face detection via gaze tracking
  publication-title: ACM Symposium on Eye Tracking Research and Applications
– start-page: 2794
  year: 2020
  end-page: 2803
  ident: Bib0025
  article-title: OC-FakeDect: Classifying deepfakes using one-class variational autoencoder
  publication-title: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
  doi: 10.1109/CVPRW50498.2020.00336
– start-page: 1866
  year: 2020
  end-page: 1871
  ident: Bib0040
  article-title: DeepFake detection on publicly available datasets using modified AlexNet
  publication-title: Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI)
  doi: 10.1109/SSCI47803.2020.9308428
– ident: e_1_3_1_40_2
  doi: 10.1109/ACCESS.2019.2909327
– ident: e_1_3_1_25_2
  doi: 10.1016/j.eswa.2023.119843
– ident: e_1_3_1_44_2
  doi: 10.1109/ICASSP.2019.8683164
– ident: e_1_3_1_10_2
  doi: 10.1109/ICPR48806.2021.9413227
– ident: e_1_3_1_21_2
  doi: 10.1109/TMM.2018.2866770
– ident: e_1_3_1_26_2
  doi: 10.1109/CVPRW50498.2020.00336
– ident: e_1_3_1_34_2
  doi: 10.1109/ICCV.2019.00009
– ident: e_1_3_1_12_2
  doi: 10.1109/CVPR.2017.195
– ident: e_1_3_1_39_2
  doi: 10.1109/3DV53792.2021.00055
– ident: e_1_3_1_16_2
  doi: 10.3390/jimaging8100263
– ident: e_1_3_1_18_2
  doi: 10.1109/ICASSP.2019.8683503
– ident: e_1_3_1_7_2
  doi: 10.1109/HORA55278.2022.9799858
– ident: e_1_3_1_5_2
  doi: 10.1109/WIFS.2018.8630761
– ident: e_1_3_1_8_2
  doi: 10.1109/TIP.2020.2984373
– ident: e_1_3_1_4_2
  doi: 10.1016/j.patcog.2022.108591
– ident: e_1_3_1_45_2
  doi: 10.1049/bme2.12031
– ident: e_1_3_1_9_2
  doi: 10.1109/TIP.2021.3059409
– ident: e_1_3_1_27_2
  doi: 10.1109/ACCESS.2020.2977346
– ident: e_1_3_1_31_2
  doi: 10.1109/JSEN.2021.3051497
– ident: e_1_3_1_38_2
  doi: 10.1109/TPAMI.2020.3046323
– ident: e_1_3_1_17_2
  doi: 10.1007/978-3-030-58529-7_10
– ident: e_1_3_1_43_2
  doi: 10.1109/CVPR.2019.00118
– ident: e_1_3_1_41_2
  doi: 10.1109/SSCI47803.2020.9308428
– ident: e_1_3_1_20_2
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_3_1_13_2
  doi: 10.1145/3394171.3413700
– ident: e_1_3_1_28_2
  doi: 10.1109/CVPR42600.2020.00327
– ident: e_1_3_1_42_2
  doi: 10.1109/WACVW58289.2023.00074
– ident: e_1_3_1_11_2
– ident: e_1_3_1_35_2
  doi: 10.1109/ICCV.2019.00009
– ident: e_1_3_1_24_2
  doi: 10.1109/CVPR.2014.241
– ident: e_1_3_1_30_2
  doi: 10.1109/ICCVW.2019.00156
– ident: e_1_3_1_23_2
  doi: 10.1007/s10618-019-00619-1
– ident: e_1_3_1_37_2
  doi: 10.1007/978-3-030-66218-9_27
– ident: e_1_3_1_33_2
  doi: 10.1109/ACCESS.2022.3154404
– ident: e_1_3_1_32_2
  doi: 10.1109/TPAMI.2021.3093446
– ident: e_1_3_1_3_2
  doi: 10.1016/j.patrec.2020.10.003
– ident: e_1_3_1_22_2
  doi: 10.1109/ICOSST57195.2022.10016871
– ident: e_1_3_1_29_2
  doi: 10.1145/3558004
– ident: e_1_3_1_19_2
– ident: e_1_3_1_14_2
  doi: 10.1007/978-3-031-06433-3_19
– ident: e_1_3_1_6_2
  doi: 10.1109/WIFS.2018.8630761
– ident: e_1_3_1_2_2
– ident: e_1_3_1_15_2
  doi: 10.1145/3448017.3457387
– volume-title: Nearest-neighbor Methods in Learning and Vision
  year: 2005
  ident: e_1_3_1_36_2
SSID ssj0036546
Score 2.3911648
Snippet The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Applied computing
Computing methodologies
Feature selection
Investigation techniques
SubjectTermsDisplay Applied computing -- Investigation techniques
Computing methodologies -- Feature selection
Title Head Pose Estimation Patterns as Deepfake Detectors
URI https://dl.acm.org/doi/10.1145/3612928
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYKXLjwKCDKSz6suCBDEyd1cqwKqFrRvSwgbpUTOwIBLaLphTM_nJnYTkxB2scliiw7kT1fxjPOfDOE_ChyAf5akrNA8oxFqVQslZFmsJkHuRQi6coq2-ev3vAm-nkX37Va717U0rzMTvO3b3kl_yNVaAO5Ikv2HyRbPxQa4B7kC1eQMFz_SsZDEBCW29UnF_ClGhIiJt3HQ74ZVpA51_qlkI8YG1RWx_Mz3xjtD0ZYIsLVC69-HFQBhhWdpIo2n5eWlNuwSExSZ__Hd-3Sa2iAAVWAwCVmqQCYNafwM4xUskEmzw0D7Wpq4nVvHwB_k7dpo6wNBWdw_yBfpX86EUasqq7gK9Q4YL3EJKE-1X6bqRHhtHDY9dEWeDo18DZnw7f-qvYjzJDBwVpLLdX8U2LthQ2vDkM0pOx4bAcukZUQnA3Qliv989HVb7ejc0v4qudiyNc49MwORdsmf_ZsG89Iud4ga9a7oH0DlU3S0pM2WXeVO6hV5FuEI3IoIoc2yKEOOVTOqEMOrZGzTW4uL64HQ2bLZzAJ0yhZmBYqClQuoqKrOedRrJSMdaZEIVUcKnB8uVZSiySQAuw-HWLFIvBge2DZhIrzHbI8mU70LqEZ7ANFyJXM0OITKkukSkQBb4jTriryDmnD9McvJkGKW88OOXbLMc5txnksfPI0Xlj4DqF1R_eMhS57f-6yT1YbBB6Q5fJ1rg_BYiyzIyvQD9mebE8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Head+Pose+Estimation+Patterns+as+Deepfake+Detectors&rft.jtitle=ACM+transactions+on+multimedia+computing+communications+and+applications&rft.au=Becattini%2C+Federico&rft.au=Bisogni%2C+Carmen&rft.au=Loia%2C+Vincenzo&rft.au=Pero%2C+Chiara&rft.date=2024-09-12&rft.issn=1551-6857&rft.eissn=1551-6865&rft.volume=20&rft.issue=11&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1145%2F3612928&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3612928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-6857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-6857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-6857&client=summon