Room-Temperature Intercalation and ∼1000-Fold Chemical Expansion for Scalable Preparation of High-Quality Graphene

Low-cost, scalable preparation of high-quality graphene has been a critical challenge that hampers its large-scale application. We here propose a novel, scalable liquidphase exfoliation method in which the intercalation, expansion, and exfoliation of graphite are achieved all under ambient condition...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 28; no. 7; pp. 2138 - 2146
Main Authors Lin, Shan, Dong, Lei, Zhang, Jiajia, Lu, Hongbin
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.04.2016
Online AccessGet full text

Cover

Loading…
Abstract Low-cost, scalable preparation of high-quality graphene has been a critical challenge that hampers its large-scale application. We here propose a novel, scalable liquidphase exfoliation method in which the intercalation, expansion, and exfoliation of graphite are achieved all under ambient conditions, not involving any heating or high-temperature treatment. We demonstrate that such room-temperature liquid-phase intercalation and expansion allow graphite flakes to expand up to 1000 times. Significantly different from thermally expanded graphite, the resulting chemically expanded graphite (CEG) exhibits a uniform, open, porous structure with a specific surface area (847 m2/g) comparable to the theoretical value of three-layer graphene. The CEG obtained is able to be exfoliated under mild conditions to give high-quality graphene with a yield of 70% relative to the starting graphite. The exfoliated graphene sheets have very few defects, with an atomic ratio of carbon to oxygen (C/O ratio) of 28. The as-prepared graphene exhibits an electrical conductivity of 1.17 × 105 S/m and the corresponding transparent films also reveal superior optical and electrical performance.
AbstractList Low-cost, scalable preparation of high-quality graphene has been a critical challenge that hampers its large-scale application. We here propose a novel, scalable liquidphase exfoliation method in which the intercalation, expansion, and exfoliation of graphite are achieved all under ambient conditions, not involving any heating or high-temperature treatment. We demonstrate that such room-temperature liquid-phase intercalation and expansion allow graphite flakes to expand up to 1000 times. Significantly different from thermally expanded graphite, the resulting chemically expanded graphite (CEG) exhibits a uniform, open, porous structure with a specific surface area (847 m2/g) comparable to the theoretical value of three-layer graphene. The CEG obtained is able to be exfoliated under mild conditions to give high-quality graphene with a yield of 70% relative to the starting graphite. The exfoliated graphene sheets have very few defects, with an atomic ratio of carbon to oxygen (C/O ratio) of 28. The as-prepared graphene exhibits an electrical conductivity of 1.17 × 105 S/m and the corresponding transparent films also reveal superior optical and electrical performance.
Author Zhang, Jiajia
Dong, Lei
Lu, Hongbin
Lin, Shan
AuthorAffiliation Fudan University
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials and Department of Macromolecular Science
AuthorAffiliation_xml – name: Fudan University
– name: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials and Department of Macromolecular Science
Author_xml – sequence: 1
  givenname: Shan
  surname: Lin
  fullname: Lin, Shan
– sequence: 2
  givenname: Lei
  surname: Dong
  fullname: Dong, Lei
– sequence: 3
  givenname: Jiajia
  surname: Zhang
  fullname: Zhang, Jiajia
– sequence: 4
  givenname: Hongbin
  surname: Lu
  fullname: Lu, Hongbin
  email: hongbinlu@fudan.edu.cn
BookMark eNqFkEtOwzAYhC1UJNrCEZB8ARfbiWNHrFDVl1SJV1lHjmPTVIkdOalEb8ChOA0nwaEVCzZdzWL-b37NjMDAOqsBuCV4QjAld1K1E7XVdS077ScsxwzH0QUYEkYxYhjTARhikXIUc5ZcgVHb7jAmARVD0L04V6ONrhvtZbf3Gq5sSFGykl3pLJS2gN-fXwRjjOauKuA0PCqDDWcfjbRtf2Och689kVcaPnndSH-EnYHL8n2LnveyKrsDXHjZbLXV1-DSyKrVNycdg7f5bDNdovXjYjV9WCNJedIhTSjJMdciSGIoK2LDI56keRIXgjGVFjGLlDBMMi1iGVFqSK6VUIoLwtMoGgN2zFXeta3XJmt8WUt_yAjO-umyMF32N112mi5w9_84VXa_lTovy-osTY50b-_c3tvQ8QzzA1mdj0k
CitedBy_id crossref_primary_10_1021_acssuschemeng_9b05060
crossref_primary_10_1016_j_apsusc_2021_150052
crossref_primary_10_1016_j_jlp_2024_105249
crossref_primary_10_1021_acs_chemmater_2c01557
crossref_primary_10_1002_adfm_201902171
crossref_primary_10_1016_j_trechm_2022_09_009
crossref_primary_10_1007_s11581_017_2379_0
crossref_primary_10_1016_S1872_5805_20_60488_7
crossref_primary_10_1016_j_carbon_2021_01_109
crossref_primary_10_1016_j_est_2023_106678
crossref_primary_10_1016_j_carbon_2021_09_013
crossref_primary_10_1021_acsanm_3c02359
crossref_primary_10_1088_1361_6528_ab3b40
crossref_primary_10_1002_smll_201903610
crossref_primary_10_1016_j_carbon_2017_05_065
crossref_primary_10_1021_acsami_2c21866
crossref_primary_10_1016_j_jmat_2020_06_009
crossref_primary_10_1002_adfm_202203124
crossref_primary_10_3390_safety10010031
crossref_primary_10_1007_s11270_023_06539_7
crossref_primary_10_1016_j_ensm_2021_02_014
crossref_primary_10_3389_fphy_2018_00149
crossref_primary_10_1016_j_coco_2020_100500
crossref_primary_10_1002_aenm_201903724
crossref_primary_10_1039_D0TC04576D
crossref_primary_10_1038_s41467_017_02580_3
crossref_primary_10_1016_j_apsusc_2018_03_089
crossref_primary_10_1016_j_matlet_2018_06_011
crossref_primary_10_1016_j_carbon_2019_02_052
crossref_primary_10_1039_C8TC02756K
crossref_primary_10_1021_acsami_8b17060
crossref_primary_10_1039_D0NR03677C
crossref_primary_10_26599_CF_2024_9200024
crossref_primary_10_1021_acsomega_8b02902
crossref_primary_10_1007_s40843_020_1540_4
crossref_primary_10_1007_s11814_022_1084_5
crossref_primary_10_1021_acsomega_9b00676
crossref_primary_10_1016_j_cej_2019_122592
crossref_primary_10_15625_2525_2518_17531
crossref_primary_10_1016_j_cej_2024_156379
crossref_primary_10_1002_app_49586
crossref_primary_10_1016_j_jpowsour_2019_226899
crossref_primary_10_1021_acs_chemmater_6b04734
crossref_primary_10_1039_C6CP06813H
crossref_primary_10_1039_D1NR05873H
crossref_primary_10_1016_j_porgcoat_2019_105223
crossref_primary_10_1016_j_cclet_2021_05_064
crossref_primary_10_1016_j_carbon_2018_07_047
crossref_primary_10_1021_acs_iecr_4c04367
crossref_primary_10_1021_acs_iecr_9b03607
crossref_primary_10_1063_1_5054823
crossref_primary_10_1186_s11671_019_2951_9
crossref_primary_10_3390_molecules27030716
crossref_primary_10_1016_j_jallcom_2023_172553
crossref_primary_10_1007_s10934_023_01428_0
crossref_primary_10_1016_j_ijhydene_2021_09_248
crossref_primary_10_1021_acs_jpcc_0c01314
crossref_primary_10_1021_acsami_9b11596
crossref_primary_10_1039_D0RA10115J
crossref_primary_10_1002_adfm_201706705
crossref_primary_10_1016_j_jelechem_2022_116545
crossref_primary_10_1007_s42823_022_00450_7
crossref_primary_10_1016_j_compscitech_2018_01_022
crossref_primary_10_1016_j_est_2023_109902
crossref_primary_10_3390_c8020027
crossref_primary_10_2174_1385272826666220621141128
crossref_primary_10_1016_j_energy_2020_119743
crossref_primary_10_1039_D1NR07748A
crossref_primary_10_1016_j_mtchem_2024_102093
crossref_primary_10_1080_25740881_2024_2372805
crossref_primary_10_1016_j_jcis_2021_10_098
crossref_primary_10_1021_acs_chemmater_6b03748
crossref_primary_10_1590_s1517_707620210002_1293
crossref_primary_10_1002_eem2_12400
crossref_primary_10_3390_ijms231810838
crossref_primary_10_1002_app_52400
crossref_primary_10_1007_s10853_022_07092_0
crossref_primary_10_1016_j_carbon_2018_06_071
crossref_primary_10_1016_j_carbon_2017_11_002
crossref_primary_10_1002_adfm_201706010
crossref_primary_10_1016_j_cej_2020_125758
crossref_primary_10_1016_j_mattod_2024_04_007
crossref_primary_10_1016_j_ultsonch_2020_105108
crossref_primary_10_1002_adma_201908494
crossref_primary_10_1021_acsnano_8b06051
crossref_primary_10_1557_jmr_2018_470
crossref_primary_10_1016_j_jwpe_2021_102232
crossref_primary_10_1021_acsami_1c03906
crossref_primary_10_1021_acssuschemeng_9b03427
crossref_primary_10_1002_admi_202001899
crossref_primary_10_1016_j_matlet_2018_08_028
crossref_primary_10_1021_acs_chemmater_7b02752
crossref_primary_10_1007_s00231_021_03097_8
crossref_primary_10_1039_C8NR04557G
crossref_primary_10_1016_j_matdes_2022_111304
crossref_primary_10_3390_molecules29081825
crossref_primary_10_1039_D2TA02300H
crossref_primary_10_1039_C7CS00485K
crossref_primary_10_1016_j_cej_2021_131122
crossref_primary_10_1016_j_cej_2018_08_146
crossref_primary_10_1016_j_jlp_2023_105154
crossref_primary_10_1002_ls_1518
crossref_primary_10_1039_C6NR05902C
crossref_primary_10_1016_j_colsurfa_2017_10_074
crossref_primary_10_3390_polym10010061
crossref_primary_10_1016_j_electacta_2019_05_090
crossref_primary_10_1016_j_nanoen_2020_104482
crossref_primary_10_1021_acs_chemmater_0c04505
Cites_doi 10.1007/BF01115794
10.1016/S0008-6223(02)00183-5
10.1021/ja5017156
10.1061/(ASCE)1090-0241(2006)132:7(931)
10.1002/smll.200902066
10.1039/C3NR05374A
10.1038/nnano.2014.229
10.1021/ja210725p
10.1021/nl8031444
10.1126/science.1200770
10.1038/ncomms6716
10.1016/j.pmatsci.2004.01.001
10.1021/ja203725d
10.1021/nn2044609
10.1038/nnano.2008.215
10.1080/00018730110113644
10.1021/nl071822y
10.1038/nnano.2011.94
10.1002/adma.201503816
10.1038/ncomms3995
10.1021/nl3004732
10.1038/nature04969
10.1021/jacs.5b09000
10.1021/cm0630800
10.1002/adma.201100261
10.1016/S0379-6779(98)00070-8
10.1016/S0008-6223(00)00155-X
10.1126/science.1102896
10.1021/nn400207e
10.1021/nn8003636
10.1103/PhysRevLett.93.247401
10.1002/cssc.201200680
10.1016/j.carbon.2008.09.045
10.1002/adma.200900726
10.1016/j.carbon.2010.02.001
10.1063/1.2838745
10.1038/srep01134
10.1016/j.carbon.2015.04.042
10.1038/nphoton.2010.186
10.1021/cm101132g
10.1021/ja807449u
10.1038/nchem.2315
10.1021/acsnano.5b06840
10.1073/pnas.1200339109
10.1021/nl061702a
10.1038/nnano.2013.46
10.1038/nnano.2008.210
10.1103/PhysRevLett.97.187401
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID N~.
AAYXX
CITATION
DOI 10.1021/acs.chemmater.5b05043
DatabaseName American Chemical Society (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (Open Access)
  url: https://pubs.acs.org
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5002
EndPage 2146
ExternalDocumentID 10_1021_acs_chemmater_5b05043
c35711053
GroupedDBID 29B
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
N~.
P2P
ROL
TN5
TWZ
UI2
UPT
VF5
VG9
W1F
X
YZZ
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a276t-e121b07e821b6f25d4f73769b64d855c9d453c8f5a5e84a322f1bec8cc7817933
IEDL.DBID N~.
ISSN 0897-4756
IngestDate Tue Jul 01 01:13:17 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a276t-e121b07e821b6f25d4f73769b64d855c9d453c8f5a5e84a322f1bec8cc7817933
OpenAccessLink http://dx.doi.org/10.1021/acs.chemmater.5b05043
PageCount 9
ParticipantIDs crossref_primary_10_1021_acs_chemmater_5b05043
crossref_citationtrail_10_1021_acs_chemmater_5b05043
acs_journals_10_1021_acs_chemmater_5b05043
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-12
PublicationDateYYYYMMDD 2016-04-12
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-12
  day: 12
PublicationDecade 2010
PublicationTitle Chemistry of materials
PublicationTitleAlternate Chem. Mater
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
Novoselov K. S. (ref1/cit1) 2004; 306
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1007/BF01115794
– ident: ref31/cit31
  doi: 10.1016/S0008-6223(02)00183-5
– ident: ref23/cit23
  doi: 10.1021/ja5017156
– ident: ref32/cit32
  doi: 10.1061/(ASCE)1090-0241(2006)132:7(931)
– ident: ref48/cit48
  doi: 10.1002/smll.200902066
– ident: ref7/cit7
  doi: 10.1039/C3NR05374A
– ident: ref10/cit10
  doi: 10.1038/nnano.2014.229
– ident: ref22/cit22
  doi: 10.1021/ja210725p
– ident: ref38/cit38
  doi: 10.1021/nl8031444
– ident: ref5/cit5
  doi: 10.1126/science.1200770
– ident: ref11/cit11
  doi: 10.1038/ncomms6716
– ident: ref17/cit17
  doi: 10.1016/j.pmatsci.2004.01.001
– ident: ref18/cit18
  doi: 10.1021/ja203725d
– ident: ref4/cit4
  doi: 10.1021/nn2044609
– ident: ref14/cit14
  doi: 10.1038/nnano.2008.215
– ident: ref40/cit40
  doi: 10.1080/00018730110113644
– ident: ref41/cit41
  doi: 10.1021/nl071822y
– ident: ref30/cit30
  doi: 10.1038/nnano.2011.94
– ident: ref6/cit6
  doi: 10.1002/adma.201503816
– ident: ref24/cit24
  doi: 10.1038/ncomms3995
– ident: ref47/cit47
  doi: 10.1021/nl3004732
– ident: ref2/cit2
  doi: 10.1038/nature04969
– ident: ref13/cit13
  doi: 10.1021/jacs.5b09000
– ident: ref20/cit20
  doi: 10.1021/cm0630800
– ident: ref29/cit29
  doi: 10.1002/adma.201100261
– ident: ref26/cit26
  doi: 10.1016/S0379-6779(98)00070-8
– ident: ref33/cit33
  doi: 10.1016/S0008-6223(00)00155-X
– volume: 306
  start-page: 66
  year: 2004
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.1102896
– ident: ref28/cit28
  doi: 10.1021/nn400207e
– ident: ref42/cit42
  doi: 10.1021/nn8003636
– ident: ref43/cit43
  doi: 10.1103/PhysRevLett.93.247401
– ident: ref8/cit8
  doi: 10.1002/cssc.201200680
– ident: ref45/cit45
  doi: 10.1016/j.carbon.2008.09.045
– ident: ref46/cit46
  doi: 10.1002/adma.200900726
– ident: ref21/cit21
  doi: 10.1016/j.carbon.2010.02.001
– ident: ref39/cit39
  doi: 10.1063/1.2838745
– ident: ref25/cit25
  doi: 10.1038/srep01134
– ident: ref34/cit34
  doi: 10.1016/j.carbon.2015.04.042
– ident: ref3/cit3
  doi: 10.1038/nphoton.2010.186
– ident: ref19/cit19
  doi: 10.1021/cm101132g
– ident: ref15/cit15
  doi: 10.1021/ja807449u
– ident: ref9/cit9
  doi: 10.1038/nchem.2315
– ident: ref12/cit12
  doi: 10.1021/acsnano.5b06840
– ident: ref35/cit35
  doi: 10.1073/pnas.1200339109
– ident: ref37/cit37
  doi: 10.1021/nl061702a
– ident: ref44/cit44
  doi: 10.1038/nnano.2013.46
– ident: ref16/cit16
  doi: 10.1038/nnano.2008.210
– ident: ref36/cit36
  doi: 10.1103/PhysRevLett.97.187401
SSID ssj0011028
Score 2.5245697
Snippet Low-cost, scalable preparation of high-quality graphene has been a critical challenge that hampers its large-scale application. We here propose a novel,...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 2138
Title Room-Temperature Intercalation and ∼1000-Fold Chemical Expansion for Scalable Preparation of High-Quality Graphene
URI http://dx.doi.org/10.1021/acs.chemmater.5b05043
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKGYABQQFRPioPTEhuGzd2nBFVLRUDQrSVukW244ihtKgNEizM_Ch-Db-Eu3xUXQpiSaRE51jPdu7pzn5HyJWz0uqgg3raAVxCZ5g23DCFOTXdtrjxEHdb3MvB2L-biEmFtDZk8LnX0hbAf3LPQODcoilMGzW3tsg2lzD1sNLlR3OVNkBvmdHGEL4bCFke2dnUDLoku1xzSWu-pX9A9gtSSG_yUTwkFTerkZ1uWYutRvbWZAOPSPoIbJeNHDDeXBGZZnE9QDuDmepZTL8_vzCmzvrzaUxLVQDae4PFj_ExClyVDtHCTB19WLhcAhxezBOKez9YLq7xTm9R0Rp-iMdk3O-NugNWVE9gmgcyZc7jnmkHTsFNJlzEfgJjIkMj_VgJYcPYFx2rEqGFU76GhZ14MKDK2kDhqu2ckOpsPnOnhFpoUHPrQqG0n3iB9hzHM6xhHMbSS2SdXAOMUTH7l1GW2OZehA9XmEcF5nXil2hHttAhx3IY07_Mmiuzl1yI43eDs_906pzsAhOSLBNxvCDVdPHqLoFtpKYBbLs7bGTz7AcK49Xf
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2LHB05ILk0aO8kRVS0FCkJQBLfIdpwLpUVtkIAv4KP4Gr6EmSylQgLEJZEcjTPxTMZPnvEzwL410ii_RnzaPl5Cq7nSruYB5dRU1VDhIVVbXMjWjXd6J-4mQJZ7YVCJIfY0zJL4X-wCziG14Wc8II6zg4rQVaLemoRpBCQuefZR_XqUPaBJM0OPIb7eF7LcufNTNzQzmeHYzDQ2xTQX4HakXFZZcl95SnXFvH7jbfy_9oswX6BOdpS7yRJM2N4yzNTLw96WYW6Ml3AF0iuE07xjEVLnlMssWzhEc2Z2ZKoXs4-3d1q0581-N2Yl7QBrPGN0oQU4hmCYXZOE7lp2ObA5xzg-6CeMikt4zt7xwo6JMhsj7ircNBudeosXxzNw5foy5dZxHV31bYA3mbgi9hI0ugy19OJACBPGnqiZIBFK2MBTGDkSBz0mMMYPKCzU1mCq1-_ZdWAGO1SusaEIlJc4vnKsS5tkwziMpZPIDTjAEYyK32sYZZlz14mocTSsUTGsG-CVdoxMQXRO5210_xKrjMQec6aP3wU2_6PUHsy0OuftqH1ycbYFswi7JM8YI7dhKh082R2ENqnezfz4E-P2-Ek
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSDwGBAVEeXpgQnKp09hJRlQaykNVBa3EFjmOM5W0aoIECzM_il_DL-Euj6oLIJZEcnSWfc75PvnO3xFyZrTUymkjn7YDD8-ETIVWyFyMqamWxsRDzLboy97Ivn0ST2VWJd6FgUGk0FOaB_HRqqdRXDIM8Atsh6k8A5Yzs6YIW0i_tUxWAJK0sGxD_705jyCg48wRpAdDcISsbu_81A16J50ueKcFN-Nvkc0SH9LLYkG3yZJJ6mStU5Vlq5ONBQbBHZI9APBlQwPgtyBHpvkRHyg-1zhVSUS_Pj7xeJ35k3FEK4IA2n2FfQCPyijAVvqIEuHY0MHMFGzg8GESU0wDYQXPxhu9RnJr2Bt3ycjvDjs9VhZSYMpyZMYMt3jYcowLLxlbIrJjWB7phdKOXCG0F9mird1YKGFcW4GNxxzW1tXacdGA23uklkwSs0-ohg6VpY0nXGXH3FHcWHid1Yu8SPJYNsg5qDEoDSEN8hi3xQNsnOs8KHXeIHal7UCXlORYGWP8l1hzLjYtODl-Fzj4z6BOyergyg_ub_p3h2Qd8JFkObXjEallsxdzDBgkC0_yn-0b_dXbmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-Temperature+Intercalation+and+%E2%88%BC1000-Fold+Chemical+Expansion+for+Scalable+Preparation+of+High-Quality+Graphene&rft.jtitle=Chemistry+of+materials&rft.au=Lin%2C+Shan&rft.au=Dong%2C+Lei&rft.au=Zhang%2C+Jiajia&rft.au=Lu%2C+Hongbin&rft.date=2016-04-12&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=28&rft.issue=7&rft.spage=2138&rft.epage=2146&rft_id=info:doi/10.1021%2Facs.chemmater.5b05043&rft.externalDocID=c35711053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon