Preparation, Bandgap Engineering, and Performance Control of Graphene Nanoribbons

Graphene nanoribbons (GNRs) exhibit a series of essential electronic properties, especially in establishing tunable bandgaps. The bandgaps are determined by structural features of GNRs, including orientation, width, backbone/edge structure, heteroatom doping, and overall quality. These parameters af...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 34; no. 8; pp. 3588 - 3615
Main Authors Luo, Hao, Yu, Gui
Format Journal Article
LanguageEnglish
Published American Chemical Society 26.04.2022
Online AccessGet full text

Cover

Loading…
Abstract Graphene nanoribbons (GNRs) exhibit a series of essential electronic properties, especially in establishing tunable bandgaps. The bandgaps are determined by structural features of GNRs, including orientation, width, backbone/edge structure, heteroatom doping, and overall quality. These parameters affect the electronic properties of the GNRs to a large extent. To better incorporate GNRs into nanoscale electronic devices, obtaining high-quality GNRs with precisely defined bandgaps is a significant necessity. To date, different preparation techniques have offered a vast range of available materials for fabricating GNRs, where hydrocarbon gases and halogen-containing aromatic molecular precursors are the most important candidates. Therefore, it is fundamental to categorize the existing techniques in preparation, bandgap modulation, application of GNRs, and obtaining systematic knowledge on how to take advantage of this frontier material. Herein, overall understandings on the synthesis strategies and bandgap engineering tactics related to GNRs are presented in detail. Various techniques of top-down approaches and bottom-up syntheses, the origin of GNRs’ bandgap from quantum confinement effect, a diversity of bandgap engineering tools, and the applications of GNR-based devices are comprehensively reviewed with critical comparisons. In addition, the remaining challenges and promising opportunities are listed to catalyze upcoming findings pushing forward the ultimate applications of GNRs.
AbstractList Graphene nanoribbons (GNRs) exhibit a series of essential electronic properties, especially in establishing tunable bandgaps. The bandgaps are determined by structural features of GNRs, including orientation, width, backbone/edge structure, heteroatom doping, and overall quality. These parameters affect the electronic properties of the GNRs to a large extent. To better incorporate GNRs into nanoscale electronic devices, obtaining high-quality GNRs with precisely defined bandgaps is a significant necessity. To date, different preparation techniques have offered a vast range of available materials for fabricating GNRs, where hydrocarbon gases and halogen-containing aromatic molecular precursors are the most important candidates. Therefore, it is fundamental to categorize the existing techniques in preparation, bandgap modulation, application of GNRs, and obtaining systematic knowledge on how to take advantage of this frontier material. Herein, overall understandings on the synthesis strategies and bandgap engineering tactics related to GNRs are presented in detail. Various techniques of top-down approaches and bottom-up syntheses, the origin of GNRs’ bandgap from quantum confinement effect, a diversity of bandgap engineering tools, and the applications of GNR-based devices are comprehensively reviewed with critical comparisons. In addition, the remaining challenges and promising opportunities are listed to catalyze upcoming findings pushing forward the ultimate applications of GNRs.
Author Luo, Hao
Yu, Gui
AuthorAffiliation School of Chemical Sciences
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: University of Chinese Academy of Sciences
– name: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences
– name: School of Chemical Sciences
Author_xml – sequence: 1
  givenname: Hao
  surname: Luo
  fullname: Luo, Hao
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Gui
  orcidid: 0000-0001-8324-397X
  surname: Yu
  fullname: Yu, Gui
  email: yugui@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNqFkMFKAzEQhoNUsK0-gpAH6K5JdrNp8aSlVqFoBT0v2exsm9JNlsl68O1NbfHgpaeBGb6f-b8RGTjvgJBbzlLOBL_TJqRmC22re8CUG5YLLi_IkEvBEsmYGJAhm85UkitZXJFRCDvGeESnQ_K-Rug06t56N6GP2tUb3dGF21gHgNZtJjTu6Bqw8dhqZ4DOvevR76lv6BJ1twUH9FU7j7aqvAvX5LLR-wA3pzkmn0-Lj_lzsnpbvswfVokWquiTeqpAGZNXTSGNUQB5w0Go-HkNwFXGjMgrU9RyJvJZAyBypRWvI5TJrKiqbEzuj7kGfQgITWls_9ujR233JWflwU4Z7ZR_dsqTnUjLf3SHttX4fZbjR-5w3vkvdLHjGeYHgVGC5Q
CitedBy_id crossref_primary_10_1039_D4SC07106A
crossref_primary_10_1088_1402_4896_ad9d94
crossref_primary_10_1007_s10825_024_02158_5
crossref_primary_10_3390_molecules29174245
crossref_primary_10_1021_acs_inorgchem_4c02894
crossref_primary_10_1088_1402_4896_ad92be
crossref_primary_10_1016_j_rio_2023_100575
crossref_primary_10_1021_acsbiomaterials_4c01142
crossref_primary_10_1002_anie_202305258
crossref_primary_10_3390_biomedicines10061320
crossref_primary_10_1021_acsomega_2c08169
crossref_primary_10_1002_smll_202401767
crossref_primary_10_1016_j_rineng_2022_100474
crossref_primary_10_1016_j_synthmet_2023_117355
crossref_primary_10_1007_s11696_023_03081_y
crossref_primary_10_1021_acs_chemmater_3c03073
crossref_primary_10_2147_IJN_S461300
crossref_primary_10_1007_s12648_025_03563_7
crossref_primary_10_1002_macp_202200232
crossref_primary_10_1007_s00542_024_05732_w
crossref_primary_10_1021_acsami_4c22050
crossref_primary_10_1002_cjoc_202300614
crossref_primary_10_3390_molecules29020349
crossref_primary_10_1002_ange_202305258
crossref_primary_10_1002_adma_202413771
crossref_primary_10_1007_s10825_024_02263_5
crossref_primary_10_1088_1361_648X_aced30
crossref_primary_10_1021_jacs_3c04130
crossref_primary_10_1088_1361_6463_ad2a12
Cites_doi 10.1021/acs.nanolett.6b04727
10.1038/s41467-017-00692-4
10.1021/jp2125872
10.1103/PhysRevB.102.075421
10.1021/nn101324x
10.3390/nano11010033
10.1021/jp408695c
10.1038/nature08105
10.1002/anie.201706895
10.1021/jacs.9b08060
10.1103/PhysRevLett.99.216802
10.1021/jacs.1c01355
10.1038/s41467-017-00734-x
10.1038/srep02465
10.1021/acsnano.7b07077
10.1038/nmat1849
10.1038/s41598-021-84626-7
10.1021/acsnano.7b03220
10.1038/s41586-018-0154-7
10.1103/PhysRevB.96.245422
10.1002/chem.201605859
10.1021/jacs.0c03946
10.1038/s41563-020-00806-2
10.1038/nphys2576
10.1021/jacs.7b05055
10.1038/s41467-020-19051-x
10.1021/ja107071g
10.1021/acsnano.7b03522
10.1021/nl901631z
10.1103/PhysRevB.95.045425
10.1021/nl080583r
10.1002/adma.201800690
10.1038/nature04233
10.1021/jacs.8b06210
10.3390/nano11071701
10.1103/PhysRevB.84.115406
10.1002/anie.201602541
10.1021/acsanm.9b00327
10.1021/acs.jpclett.1c02541
10.1038/ncomms10177
10.1021/nl900811r
10.1002/adma.202001893
10.1038/nphys1991
10.1038/srep06320
10.1021/jacs.6b13093
10.1002/anie.201509130
10.1038/s41598-021-89709-z
10.1103/PhysRevLett.119.076401
10.1103/PhysRevLett.110.216804
10.1126/science.1252268
10.1021/jacs.6b07061
10.1103/PhysRevLett.97.216803
10.1021/jacs.0c05235
10.1039/D1CC01769A
10.1021/ja300811p
10.1103/PhysRevLett.98.206805
10.1038/srep00983
10.1021/nn3021376
10.1021/nn401948e
10.1021/acsnano.7b08658
10.1103/PhysRevLett.120.216601
10.1038/nnano.2014.184
10.1021/acsnano.7b06765
10.1021/jacs.1c09000
10.1021/acs.jpclett.9b01079
10.3390/nano9101493
10.1038/s41467-019-09565-4
10.1103/PhysRevLett.99.186801
10.1002/adma.201003847
10.1021/ja307697j
10.1002/adma.201905957
10.1103/PhysRevB.59.8271
10.1039/C8SC03780A
10.1021/acsnano.9b10191
10.1021/nn303127y
10.1021/acsnano.0c07591
10.1038/s41467-018-06940-5
10.1002/adma.201305034
10.1021/acsnano.6b04671
10.1038/ncomms9006
10.1063/1.4855116
10.1126/science.1130681
10.1039/D1CC01901E
10.1021/acs.nanolett.6b04698
10.1002/anie.201906379
10.1038/s41586-018-0376-8
10.1093/nsr/nwaa298
10.1038/ncomms5253
10.1103/PhysRevB.91.115428
10.1021/nn203841q
10.1038/ncomms14815
10.1038/ncomms11507
10.1126/science.aay3588
10.1038/nchem.2614
10.1002/smll.201001401
10.1021/acs.nanolett.0c03503
10.1002/adma.201306081
10.1038/nnano.2014.307
10.1039/D1CC01173A
10.1021/acsnano.7b02316
10.1038/nchem.1819
10.1038/nmat1967
10.1021/ja503533y
10.1021/acs.nanolett.7b01244
10.1021/ja108464s
10.1021/nn203129a
10.1021/acs.nanolett.9b00758
10.1021/acs.nanolett.0c02077
10.1021/jacs.8b10407
10.1021/jacs.6b10374
10.1038/nnano.2012.145
10.1002/anie.201209735
10.1038/nature09211
10.1021/jacs.0c06109
10.1021/acs.jpclett.7b02767
10.1021/jacs.5b02523
10.1039/D0CS01541E
10.1038/ncomms4189
10.1021/acsnano.8b04489
10.1002/anie.202000488
10.1002/smll.201804526
10.1038/ncomms15635
10.1002/chem.201602007
10.1038/s41467-021-22774-0
10.1038/nature05545
10.1007/s12274-017-1550-2
10.1021/acsnano.6b07352
10.1021/acs.nanolett.6b01542
10.1021/nn202996r
10.1021/acsnano.0c00604
10.1126/science.aav4954
10.1038/ncomms14703
10.1126/science.aad8038
10.1021/jacs.6b13089
10.1038/nnano.2012.169
10.1021/acsnano.6b06405
10.1021/acs.accounts.8b00293
10.1016/j.carbon.2017.01.018
10.1021/nn303730v
10.1038/ncomms2399
10.1021/acs.jpcc.5b09986
10.1063/1.4716983
10.1002/adma.201000618
10.1021/acs.jpcc.8b03748
10.1039/C5CP03139G
10.1021/jacs.7b00776
10.1021/acs.nanolett.7b04240
10.1038/ncomms11797
10.1038/s41586-018-0375-9
10.1021/jacs.1c01882
10.1126/science.abb8880
10.1002/anie.201611834
10.1038/nature17151
10.1021/acsnano.6b02625
10.1002/adma.201906054
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.chemmater.1c04215
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5002
EndPage 3615
ExternalDocumentID 10_1021_acs_chemmater_1c04215
a941777675
GroupedDBID 29B
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
JG
K2
LG6
P2P
ROL
TN5
TWZ
UI2
UPT
VF5
VG9
W1F
X
YZZ
-~X
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
ID FETCH-LOGICAL-a276t-d87e7cc4bf65cc7ee4f1e27215dee1730c24bc6d59249fee247a71d7e73536bb3
IEDL.DBID ACS
ISSN 0897-4756
IngestDate Thu Apr 24 23:11:07 EDT 2025
Tue Jul 01 03:35:46 EDT 2025
Thu Apr 28 04:09:20 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a276t-d87e7cc4bf65cc7ee4f1e27215dee1730c24bc6d59249fee247a71d7e73536bb3
ORCID 0000-0001-8324-397X
PageCount 28
ParticipantIDs crossref_citationtrail_10_1021_acs_chemmater_1c04215
crossref_primary_10_1021_acs_chemmater_1c04215
acs_journals_10_1021_acs_chemmater_1c04215
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-26
PublicationDateYYYYMMDD 2022-04-26
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-26
  day: 26
PublicationDecade 2020
PublicationTitle Chemistry of materials
PublicationTitleAlternate Chem. Mater
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref152/cit152
ref153/cit153
ref154/cit154
ref27/cit27
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref92/cit92
ref155/cit155
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref149/cit149
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref26/cit26
ref142/cit142
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref124/cit124
  doi: 10.1021/acs.nanolett.6b04727
– ident: ref110/cit110
  doi: 10.1038/s41467-017-00692-4
– ident: ref122/cit122
  doi: 10.1021/jp2125872
– ident: ref130/cit130
  doi: 10.1103/PhysRevB.102.075421
– ident: ref52/cit52
  doi: 10.1021/nn101324x
– ident: ref58/cit58
  doi: 10.3390/nano11010033
– ident: ref142/cit142
  doi: 10.1021/jp408695c
– ident: ref9/cit9
  doi: 10.1038/nature08105
– ident: ref30/cit30
  doi: 10.1002/anie.201706895
– ident: ref129/cit129
  doi: 10.1021/jacs.9b08060
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.99.216802
– ident: ref113/cit113
  doi: 10.1021/jacs.1c01355
– ident: ref16/cit16
  doi: 10.1038/s41467-017-00734-x
– ident: ref68/cit68
  doi: 10.1038/srep02465
– ident: ref94/cit94
  doi: 10.1021/acsnano.7b07077
– ident: ref1/cit1
  doi: 10.1038/nmat1849
– ident: ref43/cit43
  doi: 10.1038/s41598-021-84626-7
– ident: ref70/cit70
  doi: 10.1021/acsnano.7b03220
– ident: ref154/cit154
  doi: 10.1038/s41586-018-0154-7
– ident: ref14/cit14
  doi: 10.1103/PhysRevB.96.245422
– ident: ref107/cit107
  doi: 10.1002/chem.201605859
– ident: ref140/cit140
  doi: 10.1021/jacs.0c03946
– ident: ref39/cit39
  doi: 10.1038/s41563-020-00806-2
– ident: ref11/cit11
  doi: 10.1038/nphys2576
– ident: ref90/cit90
  doi: 10.1021/jacs.7b05055
– ident: ref40/cit40
  doi: 10.1038/s41467-020-19051-x
– ident: ref56/cit56
  doi: 10.1021/ja107071g
– ident: ref29/cit29
  doi: 10.1021/acsnano.7b03522
– ident: ref61/cit61
  doi: 10.1021/nl901631z
– ident: ref15/cit15
  doi: 10.1103/PhysRevB.95.045425
– ident: ref60/cit60
  doi: 10.1021/nl080583r
– ident: ref79/cit79
  doi: 10.1002/adma.201800690
– ident: ref2/cit2
  doi: 10.1038/nature04233
– ident: ref136/cit136
  doi: 10.1021/jacs.8b06210
– ident: ref50/cit50
  doi: 10.3390/nano11071701
– ident: ref135/cit135
  doi: 10.1103/PhysRevB.84.115406
– ident: ref63/cit63
  doi: 10.1002/anie.201602541
– ident: ref141/cit141
  doi: 10.1021/acsanm.9b00327
– ident: ref23/cit23
  doi: 10.1021/acs.jpclett.1c02541
– ident: ref25/cit25
  doi: 10.1038/ncomms10177
– ident: ref59/cit59
  doi: 10.1021/nl900811r
– ident: ref35/cit35
  doi: 10.1002/adma.202001893
– ident: ref45/cit45
  doi: 10.1038/nphys1991
– ident: ref31/cit31
  doi: 10.1038/srep06320
– ident: ref105/cit105
  doi: 10.1021/jacs.6b13093
– ident: ref106/cit106
  doi: 10.1002/anie.201509130
– ident: ref153/cit153
  doi: 10.1038/s41598-021-89709-z
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.119.076401
– ident: ref95/cit95
  doi: 10.1103/PhysRevLett.110.216804
– ident: ref69/cit69
  doi: 10.1126/science.1252268
– ident: ref109/cit109
  doi: 10.1021/jacs.6b07061
– ident: ref41/cit41
  doi: 10.1103/PhysRevLett.97.216803
– ident: ref116/cit116
  doi: 10.1021/jacs.0c05235
– ident: ref49/cit49
  doi: 10.1039/D1CC01769A
– ident: ref77/cit77
  doi: 10.1021/ja300811p
– ident: ref13/cit13
  doi: 10.1103/PhysRevLett.98.206805
– ident: ref85/cit85
  doi: 10.1038/srep00983
– ident: ref82/cit82
  doi: 10.1021/nn3021376
– ident: ref84/cit84
  doi: 10.1021/nn401948e
– ident: ref93/cit93
  doi: 10.1021/acsnano.7b08658
– ident: ref57/cit57
  doi: 10.1103/PhysRevLett.120.216601
– ident: ref134/cit134
  doi: 10.1038/nnano.2014.184
– ident: ref127/cit127
  doi: 10.1021/acsnano.7b06765
– ident: ref102/cit102
  doi: 10.1021/jacs.1c09000
– ident: ref73/cit73
  doi: 10.1021/acs.jpclett.9b01079
– ident: ref155/cit155
  doi: 10.3390/nano9101493
– ident: ref4/cit4
  doi: 10.1038/s41467-019-09565-4
– ident: ref121/cit121
  doi: 10.1103/PhysRevLett.99.186801
– ident: ref47/cit47
  doi: 10.1002/adma.201003847
– ident: ref103/cit103
  doi: 10.1021/ja307697j
– ident: ref32/cit32
  doi: 10.1002/adma.201905957
– ident: ref125/cit125
  doi: 10.1103/PhysRevB.59.8271
– ident: ref98/cit98
  doi: 10.1039/C8SC03780A
– ident: ref126/cit126
  doi: 10.1021/acsnano.9b10191
– ident: ref147/cit147
  doi: 10.1021/nn303127y
– ident: ref152/cit152
  doi: 10.1021/acsnano.0c07591
– ident: ref67/cit67
  doi: 10.1038/s41467-018-06940-5
– ident: ref89/cit89
  doi: 10.1002/adma.201305034
– ident: ref10/cit10
  doi: 10.1021/acsnano.6b04671
– ident: ref71/cit71
  doi: 10.1038/ncomms9006
– ident: ref150/cit150
  doi: 10.1063/1.4855116
– ident: ref7/cit7
  doi: 10.1126/science.1130681
– ident: ref146/cit146
  doi: 10.1039/D1CC01901E
– ident: ref8/cit8
  doi: 10.1021/acs.nanolett.6b04698
– ident: ref33/cit33
  doi: 10.1002/anie.201906379
– ident: ref21/cit21
  doi: 10.1038/s41586-018-0376-8
– ident: ref81/cit81
  doi: 10.1093/nsr/nwaa298
– ident: ref27/cit27
  doi: 10.1038/ncomms5253
– ident: ref12/cit12
  doi: 10.1103/PhysRevB.91.115428
– ident: ref36/cit36
  doi: 10.1021/nn203841q
– ident: ref26/cit26
  doi: 10.1038/ncomms14815
– ident: ref118/cit118
  doi: 10.1038/ncomms11507
– ident: ref22/cit22
  doi: 10.1126/science.aay3588
– ident: ref91/cit91
  doi: 10.1038/nchem.2614
– ident: ref38/cit38
  doi: 10.1002/smll.201001401
– ident: ref44/cit44
  doi: 10.1021/acs.nanolett.0c03503
– ident: ref46/cit46
  doi: 10.1002/adma.201306081
– ident: ref92/cit92
  doi: 10.1038/nnano.2014.307
– ident: ref137/cit137
  doi: 10.1039/D1CC01173A
– ident: ref96/cit96
  doi: 10.1021/acsnano.7b02316
– ident: ref97/cit97
  doi: 10.1038/nchem.1819
– ident: ref6/cit6
  doi: 10.1038/nmat1967
– ident: ref112/cit112
  doi: 10.1021/ja503533y
– ident: ref128/cit128
  doi: 10.1021/acs.nanolett.7b01244
– ident: ref51/cit51
  doi: 10.1021/ja108464s
– ident: ref86/cit86
  doi: 10.1021/nn203129a
– ident: ref99/cit99
  doi: 10.1021/acs.nanolett.9b00758
– ident: ref119/cit119
  doi: 10.1021/acs.nanolett.0c02077
– ident: ref131/cit131
  doi: 10.1021/jacs.8b10407
– ident: ref28/cit28
  doi: 10.1021/jacs.6b10374
– ident: ref75/cit75
  doi: 10.1038/nnano.2012.145
– ident: ref143/cit143
  doi: 10.1002/anie.201209735
– ident: ref18/cit18
  doi: 10.1038/nature09211
– ident: ref87/cit87
  doi: 10.1021/jacs.0c06109
– ident: ref117/cit117
  doi: 10.1021/acs.jpclett.7b02767
– ident: ref138/cit138
  doi: 10.1021/jacs.5b02523
– ident: ref34/cit34
  doi: 10.1039/D0CS01541E
– ident: ref108/cit108
  doi: 10.1038/ncomms4189
– ident: ref133/cit133
  doi: 10.1021/acsnano.8b04489
– ident: ref145/cit145
  doi: 10.1002/anie.202000488
– ident: ref120/cit120
  doi: 10.1002/smll.201804526
– ident: ref17/cit17
  doi: 10.1038/ncomms15635
– ident: ref123/cit123
  doi: 10.1002/chem.201602007
– ident: ref151/cit151
  doi: 10.1038/s41467-021-22774-0
– ident: ref3/cit3
  doi: 10.1038/nature05545
– ident: ref100/cit100
  doi: 10.1007/s12274-017-1550-2
– ident: ref53/cit53
  doi: 10.1021/acsnano.6b07352
– ident: ref148/cit148
  doi: 10.1021/acs.nanolett.6b01542
– ident: ref80/cit80
  doi: 10.1021/nn202996r
– ident: ref149/cit149
  doi: 10.1021/acsnano.0c00604
– ident: ref19/cit19
  doi: 10.1126/science.aav4954
– ident: ref74/cit74
  doi: 10.1038/ncomms14703
– ident: ref5/cit5
  doi: 10.1126/science.aad8038
– ident: ref104/cit104
  doi: 10.1021/jacs.6b13089
– ident: ref83/cit83
  doi: 10.1038/nnano.2012.169
– ident: ref114/cit114
  doi: 10.1021/acsnano.6b06405
– ident: ref78/cit78
  doi: 10.1021/acs.accounts.8b00293
– ident: ref66/cit66
  doi: 10.1016/j.carbon.2017.01.018
– ident: ref55/cit55
  doi: 10.1021/nn303730v
– ident: ref62/cit62
  doi: 10.1038/ncomms2399
– ident: ref144/cit144
  doi: 10.1021/acs.jpcc.5b09986
– ident: ref48/cit48
  doi: 10.1063/1.4716983
– ident: ref54/cit54
  doi: 10.1002/adma.201000618
– ident: ref139/cit139
  doi: 10.1021/acs.jpcc.8b03748
– ident: ref65/cit65
  doi: 10.1039/C5CP03139G
– ident: ref88/cit88
  doi: 10.1021/jacs.7b00776
– ident: ref72/cit72
  doi: 10.1021/acs.nanolett.7b04240
– ident: ref76/cit76
  doi: 10.1038/ncomms11797
– ident: ref24/cit24
  doi: 10.1038/s41586-018-0375-9
– ident: ref101/cit101
  doi: 10.1021/jacs.1c01882
– ident: ref20/cit20
  doi: 10.1126/science.abb8880
– ident: ref111/cit111
  doi: 10.1002/anie.201611834
– ident: ref115/cit115
  doi: 10.1038/nature17151
– ident: ref64/cit64
  doi: 10.1021/acsnano.6b02625
– ident: ref132/cit132
  doi: 10.1002/adma.201906054
SSID ssj0011028
Score 2.521309
SecondaryResourceType review_article
Snippet Graphene nanoribbons (GNRs) exhibit a series of essential electronic properties, especially in establishing tunable bandgaps. The bandgaps are determined by...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 3588
Title Preparation, Bandgap Engineering, and Performance Control of Graphene Nanoribbons
URI http://dx.doi.org/10.1021/acs.chemmater.1c04215
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI6mcQAOPAaI8VIOnNCyrWmarMcxMSYk0BBM2q1qEhcQ0E17XPj1OGs3JqHxuEZ1FbmO_bmOPxNyjicmCTHtYsJPBBPW-ExbDxhCV7QW63smdj_0b-9kpydu-kG_QGorKvjcq8UGlf8M7wjgYFT1DFqZaypf47KhXLbVbD0sygYuWs5gY6iYUIGct-yseo0LSWa8FJKWYkt7m3TnHTrZlZLX6nSiq-bjO2HjX7e9Q7ZynEmbmWHskgKkJbLemo93K5HNJSbCPXLfHUHGAj5IK_QyTu1TPKRLj1QortHuV5sBbWWX3OkgodeO9RqdJkVfPRi9aI2mvE967avHVofl0xZYzJWcMNtQoIwROpGBMQpAJB5wTBADC-ChIzBcaCNt4DK2BIALFSvPopAf-FJr_4AU00EKh4SGIWipHPIC6QBKCFY2UKpuAAGBCsrkAtUT5adlHM0K4dyL3OJCZ1GuszIR868TmZy33I3PePtNrLoQG2bEHT8LHP1nU8dkg7s-iLpgXJ6Q4mQ0hVNEJxN9NrPITy4M4nI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQOAAH3ojxzIETWsbapgk9wgSMp4bYBLeqSVyEgG7a48Kvx-m6MSEB4mrVkZs69ucm_gJwQCsmjajs4iJIBRfWBFxbDzlBV_IWG3gmcT_0b-9koy2unsKnGZDjXhgyok8j9fNN_C92Ae_Iyeg13gnHYa_qGXI211s-S4DEd0XXSf1hsnvgkmaOHiPFhQrluHPnp2FcZjL9qcw0lWLOl-BxYlx-suS1Ohzoqvn4xtv4f-uXYbFAnexk5CYrMIPZKszVx5e9rcLCFC_hGtw3ezjiBO9kFXaaZPY56bKpRyqMZKz51XTA6qMj76yTsgvHgU0hlFHk7vRetCbHXof2-Vmr3uDF3Qs88ZUccHusUBkjdCpDYxSiSD30qVwMLaJHYcH4QhtpQ1e_pYi-UInyLCkFYSC1DjaglHUy3AQWRailcjgMpYMrEVp5TFo1gwQPVFiGQ5qeuFg7_TjfFve92AkncxYXc1YGMf5IsSlYzN1lGm9_qVUnat0RjcfvClv_MWof5hqt25v45vLuehvmfdchURPclztQGvSGuEu4ZaD3cif9BMAY6tM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQkVgOLAVEWX3ghOrSJI7dHEuhlK0qgkqVOESxPUEISKsuF76ecZqWCgkQXK2M5WXseZOZeSbkCE9MHKDbxbgXc8aN9pgyDjCErqgtxnN0ZH_o3zZFo82vOn4ny6q0tTA4iAH2NEiD-PZU90ycMQw4J7Ydp_KGWA76JUejwtn68nkburOOV7V2P40gWMOZIshAMi59Mane-a4ba530YMY6zZiZ-ip5nA4wzS55KY2GqqTfv3A3_m8Ga2QlQ5-0OlaXdTIHSZ4s1iaPvuXJ8gw_4Qa5a_VhzA3eTYr0NErMU9SjM58UKbbR1mfxAa2NU99pN6YXlgsbr1KKN3i3_6wUKvgmadfPH2oNlr3BwCJXiiEzFQlSa65i4WstAXjsgItuo28AHLwetMuVFsa3flwM4HIZScegkOd7Qilvi-SSbgLbhAYBKCEtHgNhYUsARlRQqqwBYYL0C-QYlyfMztAgTMPjrhPaxumahdmaFQifbFSoMzZz-6jG629ipalYb0zn8bPAzl8GdUgWWmf18Oayeb1LllxbKFHmzBV7JDfsj2Af4ctQHaR6-gFZqe1W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation%2C+Bandgap+Engineering%2C+and+Performance+Control+of+Graphene+Nanoribbons&rft.jtitle=Chemistry+of+materials&rft.au=Luo%2C+Hao&rft.au=Yu%2C+Gui&rft.date=2022-04-26&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=34&rft.issue=8&rft.spage=3588&rft.epage=3615&rft_id=info:doi/10.1021%2Facs.chemmater.1c04215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_chemmater_1c04215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon