Bending–Rotation Coupling in the Viscoelasticity of Semiflexible PolymersRigorous Perturbation Analysis from the Rod Limit
Brownian motion and viscoelasticity of semiflexible polymers is a subject that has been studied for many years. Still, rigorous analysis has been hindered due to the difficulty in handling the constraint that polymer chains cannot be stretched along the contour. Here, we show a straightforward metho...
Saved in:
Published in | Macromolecules Vol. 57; no. 11; pp. 5289 - 5299 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
11.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brownian motion and viscoelasticity of semiflexible polymers is a subject that has been studied for many years. Still, rigorous analysis has been hindered due to the difficulty in handling the constraint that polymer chains cannot be stretched along the contour. Here, we show a straightforward method to solve the problem. We consider a stiff polymer that has a persistent length L p much larger than the contour length L. We express the polymer configuration using three types of variables: the position vector of the center of mass R c, the unit vector n along the main axis, and the normal coordinates u p for bending. Solving the Smoluchowski equation for the distribution function of these variables, we calculate the equilibrium time correlation function ⟨ P (t)· P (0)⟩ of the end-to-end vector P and the complex modulus G*(ω) of dilute solution. They include the bending effect to the first order in θ ≡ L/L p and reduce to the exact results for the rigid rod in the limit of θ → 0. The rotational diffusion coefficient increases slightly by the semiflexibility because the equilibrium length of the semiflexible polymer is smaller than that of the rigid rod with the same contour length. The storage modulus shows the same asymptotic dependence G′(ω) ∼ ω3/4 predicted by Shankar, Pasquali, and Morse [J. Rheol. 2002, 46, 1111–1154]. The high-frequency viscosity is predicted to be dependent on the thickness of the semiflexible polymers. |
---|---|
AbstractList | Brownian motion and viscoelasticity of semiflexible polymers is a subject that has been studied for many years. Still, rigorous analysis has been hindered due to the difficulty in handling the constraint that polymer chains cannot be stretched along the contour. Here, we show a straightforward method to solve the problem. We consider a stiff polymer that has a persistent length L ₚ much larger than the contour length L. We express the polymer configuration using three types of variables: the position vector of the center of mass R c, the unit vector n along the main axis, and the normal coordinates u ₚ for bending. Solving the Smoluchowski equation for the distribution function of these variables, we calculate the equilibrium time correlation function ⟨P(t)·P(0)⟩ of the end-to-end vector P and the complex modulus G*(ω) of dilute solution. They include the bending effect to the first order in θ ≡ L/L ₚ and reduce to the exact results for the rigid rod in the limit of θ → 0. The rotational diffusion coefficient increases slightly by the semiflexibility because the equilibrium length of the semiflexible polymer is smaller than that of the rigid rod with the same contour length. The storage modulus shows the same asymptotic dependence G′(ω) ∼ ω³/⁴ predicted by Shankar, Pasquali, and Morse [J. Rheol. 2002, 46, 1111–1154]. The high-frequency viscosity is predicted to be dependent on the thickness of the semiflexible polymers. Brownian motion and viscoelasticity of semiflexible polymers is a subject that has been studied for many years. Still, rigorous analysis has been hindered due to the difficulty in handling the constraint that polymer chains cannot be stretched along the contour. Here, we show a straightforward method to solve the problem. We consider a stiff polymer that has a persistent length L p much larger than the contour length L. We express the polymer configuration using three types of variables: the position vector of the center of mass R c, the unit vector n along the main axis, and the normal coordinates u p for bending. Solving the Smoluchowski equation for the distribution function of these variables, we calculate the equilibrium time correlation function ⟨ P (t)· P (0)⟩ of the end-to-end vector P and the complex modulus G*(ω) of dilute solution. They include the bending effect to the first order in θ ≡ L/L p and reduce to the exact results for the rigid rod in the limit of θ → 0. The rotational diffusion coefficient increases slightly by the semiflexibility because the equilibrium length of the semiflexible polymer is smaller than that of the rigid rod with the same contour length. The storage modulus shows the same asymptotic dependence G′(ω) ∼ ω3/4 predicted by Shankar, Pasquali, and Morse [J. Rheol. 2002, 46, 1111–1154]. The high-frequency viscosity is predicted to be dependent on the thickness of the semiflexible polymers. |
Author | Seto, Ryohei Xiong, Zhongqiang Doi, Masao |
AuthorAffiliation | Chinese Academy of Sciences Institute of Theoretical Physics Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Graduate School of Information Science University of Hyogo University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Institute of Theoretical Physics – name: Chinese Academy of Sciences – name: Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) – name: Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute – name: University of Chinese Academy of Sciences – name: Graduate School of Information Science – name: University of Hyogo |
Author_xml | – sequence: 1 givenname: Zhongqiang orcidid: 0000-0001-6247-2300 surname: Xiong fullname: Xiong, Zhongqiang organization: Chinese Academy of Sciences – sequence: 2 givenname: Ryohei orcidid: 0000-0002-4099-034X surname: Seto fullname: Seto, Ryohei organization: University of Hyogo – sequence: 3 givenname: Masao surname: Doi fullname: Doi, Masao email: doi.masao.y3@a.mail.nagoya-u.ac.jp organization: Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) |
BookMark | eNp9kE1OwzAQhS0EEuXnBiy8ZJNix3YTL6HiT6oEKj_byHUmxciJi-1IdAV3YMFVOA8H4Ay4FLasRpp572net4M2O9cBQgeUDCnJ6ZHSYdgq7V3r7JBrQgTLN9CAipxkomRiEw0IyXkmc1lso50QHgmhVHA2QC8n0NWmm3--vk1dVNG4Do9dv7Bph02H4wPgexO0A6tCNNrEJXYNvoHWNBaezcwCvnZ22YIPX-8fUzN33vUBX4OPvZ-tA487ZZfBBNykF38ip67GE9OauIe2GmUD7P_OXXR3dno7vsgmV-eX4-NJpvKCx6zmpKkZYwBqlEupOddMKKlntVAAQHlRl1ICJVAWcsQZFE0tR4IIntOSasl20eE6d-HdUw8hVm1qBdaqDtK_FaOCjSgpRZGkfC1NQEPw0FQLb1rllxUl1Yp3lXhXf7yrX97JRta21fXR9T6VDv9bvgHJ9o55 |
Cites_doi | 10.1016/S0006-3495(98)74029-9 10.1126/science.8171335 10.1021/ma9803032 10.1103/PhysRevLett.89.258101 10.1098/rsif.2017.0491 10.1103/PhysRevLett.82.3717 10.1063/1.1728067 10.1214/aoms/1177729893 10.1051/jp2:1997214 10.1021/ma00152a014 10.1038/nmat1685 10.1103/PhysRevLett.77.4470 10.1103/RevModPhys.86.995 10.1002/recl.19490681203 10.1016/S0006-3495(96)79630-3 10.1103/PhysRevLett.108.038103 10.1083/jcb.120.4.923 10.1038/nature08908 10.1103/PhysRevLett.99.058303 10.1103/physreve.58.r1241 10.1063/1.1727098 10.1122/1.1501927 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.macromol.4c00532 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5835 |
EndPage | 5299 |
ExternalDocumentID | 10_1021_acs_macromol_4c00532 c13116950 |
GroupedDBID | -~X .K2 4.4 55A 5GY 5VS 7~N AABXI AAHBH ABFRP ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ LG6 P2P ROL TN5 TWZ UI2 VF5 VG9 W1F WH7 YZZ 53G AAYXX ABBLG ABLBI CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-a274t-d40fd333eea6299c44c35a9cbd5aeee147d899e10e879643e7fd9650542181c93 |
IEDL.DBID | ACS |
ISSN | 0024-9297 1520-5835 |
IngestDate | Thu Jul 10 19:16:11 EDT 2025 Tue Jul 01 02:58:05 EDT 2025 Tue Jun 25 16:50:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a274t-d40fd333eea6299c44c35a9cbd5aeee147d899e10e879643e7fd9650542181c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4099-034X 0000-0001-6247-2300 |
PQID | 3153610857 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3153610857 crossref_primary_10_1021_acs_macromol_4c00532 acs_journals_10_1021_acs_macromol_4c00532 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-11 |
PublicationDateYYYYMMDD | 2024-06-11 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Macromolecules |
PublicationTitleAlternate | Macromolecules |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref17/cit17 ref6/cit6 ref3/cit3 Doi M. (ref10/cit10) 1986 ref18/cit18 ref19/cit19 ref21/cit21 ref11/cit11 ref12/cit12 ref15/cit15 ref16/cit16 ref22/cit22 ref23/cit23 ref13/cit13 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref4/cit4 ref1/cit1 ref20/cit20 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1016/S0006-3495(98)74029-9 – ident: ref1/cit1 doi: 10.1126/science.8171335 – ident: ref11/cit11 doi: 10.1021/ma9803032 – ident: ref4/cit4 doi: 10.1103/PhysRevLett.89.258101 – ident: ref21/cit21 doi: 10.1098/rsif.2017.0491 – ident: ref8/cit8 doi: 10.1103/PhysRevLett.82.3717 – ident: ref13/cit13 doi: 10.1063/1.1728067 – ident: ref23/cit23 doi: 10.1214/aoms/1177729893 – ident: ref15/cit15 doi: 10.1051/jp2:1997214 – ident: ref17/cit17 doi: 10.1021/ma00152a014 – ident: ref5/cit5 doi: 10.1038/nmat1685 – ident: ref3/cit3 doi: 10.1103/PhysRevLett.77.4470 – ident: ref16/cit16 doi: 10.1103/RevModPhys.86.995 – ident: ref9/cit9 doi: 10.1002/recl.19490681203 – ident: ref2/cit2 doi: 10.1016/S0006-3495(96)79630-3 – ident: ref20/cit20 doi: 10.1103/PhysRevLett.108.038103 – ident: ref7/cit7 doi: 10.1083/jcb.120.4.923 – ident: ref6/cit6 doi: 10.1038/nature08908 – ident: ref19/cit19 doi: 10.1103/PhysRevLett.99.058303 – volume-title: The Theory of Polymer Dynamics year: 1986 ident: ref10/cit10 – ident: ref14/cit14 doi: 10.1103/physreve.58.r1241 – ident: ref12/cit12 doi: 10.1063/1.1727098 – ident: ref22/cit22 doi: 10.1122/1.1501927 |
SSID | ssj0011543 |
Score | 2.4518635 |
Snippet | Brownian motion and viscoelasticity of semiflexible polymers is a subject that has been studied for many years. Still, rigorous analysis has been hindered due... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5289 |
SubjectTerms | diffusivity equations polymers storage modulus viscoelasticity viscosity |
Title | Bending–Rotation Coupling in the Viscoelasticity of Semiflexible PolymersRigorous Perturbation Analysis from the Rod Limit |
URI | http://dx.doi.org/10.1021/acs.macromol.4c00532 https://www.proquest.com/docview/3153610857 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEF6hcKAXyk8roIAWqZcenGJ77bWPNCKKKhVQQqrcrN31OIoIXhQ7B7jAO3DgVfo8fYA-AzN2TJVWVdurZY2t2fF-33jmm2XsvTSpMrEPTqQyTFCoQywWsXRSoRFtI5CRJqHwl7OwNxSfR8HoZ6L4awXfcz8qU7SvVdWcNm0LQ1GDW-6qF0aSkq2TzuClaoB0oK4oe8JB2JeNVO4PVgiQTLEMSMv7cQUy3dfsvJHq1L0lV-15qdvm7vfJjf_4_htsfcE3-UkdIJtsBfItttZpjnnbZvefoBK2fH947Nu6Ls87dk5C3TGf5BwJIv86KYwF5NnUgl3ecpvxARrIaJimngK_sNNb-v_94-lbfzK2Mzsv-AXMEM10bbAZfcJJzVKZ7NuUV-KqN2zYPb3s9JzFqQyOwgy2xFU8zlLf9wFUiFhmhDB-oGKj00ABgCtkijkcuMcQkczVB5mlMfLAQBCbwLh4y1q5zWGHcTfLjNY61XQENkRaKRNGgdQVaTOB2WUf0HvJ4qsqkqpg7rkJXWxcmixcusucZhmTm3pQx1_uP2rWOkGPU5lE5YD-SXwEgZBEGXLvP57_jr3yKO7oWCN3n7XK2RwOkK-U-rAK0mfAou1h |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtRADLaqcigX_hEFCoMEBw5ZmmSySQ49lC3Vlv6o2raotzAzcaoVSwZtskLLBd6BA0_AO_AEfRAegGfAniRFRUKIQyWuUeSZ2J6xHfuzAR7HJlcmDdFLVEEBCleIpTKNvVxqsrYJxolmoPDuXn94JF8eR8cL8LXDwtAmKqJUuST-r-4C_jN-9la5GrVJTxpWnqCtpdzG-XuK1Kq1rQ0S65Mg2HxxOBh67TABT1HgVdPiq0UehiGi6tMVbKQ0YaRSo_NIIaIv45xCD_RXMWF0ZohxkafkvkSSjaDhnkt0018i_yfgGG99cHCWrCAvpElkB9IjbyPuEHp_2DXbQVOdt4PnzYCzbZtX4fSMK66k5U1vVuue-fBbw8j_nm3X4ErrXYv15jhchwUsb8DSoBtqdxM-PkcH4_n-6fPINlUIYmBnDEs-EeNSkDssXo0rY5GiCi44r-fCFuKACBTcOlRPUOzbyZz_9v_48m00PrFTO6vEPk7JduuGYNfoRTB2x5Ec2Vw4KNktOLqQ778Ni6Ut8Q4IvyiM1jrXPPAbE62U6SdRrJ2LaiKzDE9JWll7h1SZKw8I_IwfdiLMWhEug9dpT_auaUvyl_cfdSqWEcc5KaRKJP5kIZm8PkNQ4rv_sP5DWBoe7u5kO1t72_fgcsCqzwOd_PuwWE9nuEKeWq0fuHMi4PVFa9hPX35PeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtRADB5VRQIuLT9FLYUySHDgkKVJJpvkwKFsu2opVKstRb2l8-NUqy6ZapMVWi7wDhx4Bt6AZ-hj8AA8Q-1JUqlIqOLQA9dR5Exsz9iO_dmMPYu1kToNwUtkjgEKVYilIo09IxRa2wTiRBFQ-N1ed_tAvDmMDufYjxYLg5sokVLpkvh0qk9N3nQY8F_S-kfp6tTGHaFJgYKmnnIXZp8wWitf7WyiaJ8HQX_rfW_bawYKeBKDrwo3sJ6bMAwBZBevYS2EDiOZamUiCQC-iA2GH-CvQ0IIzRDi3KTowkSCDKGmvkt429-gTCHFeRu9_YuEBXoidTI7EB56HHGL0vvLrskW6vKyLbxsCpx96y-yswvOuLKWk860Uh39-Y-mkf8F6-6whcbL5hv1sbjL5qC4x2712uF299mX1-DgPL--fhvauhqB9-yU4MnHfFRwdIv5h1GpLWB0QYXn1YzbnO8jgZxaiKox8IEdz-iv_-_vP4ejYzux05IPYII2XNUE24YvnDA8juTQGu4gZUvs4Fq-_wGbL2wBy4z7ea6VUkbR4G9IlJS6m0Sxcq6qjvQKe4HSypq7pMxcmUDgZ7TYijBrRLjCvFaDstO6PckVzz9t1SxDjlNySBaA_MlCNH1dgqLED__h_U_YzcFmP3u7s7e7ym4HpP0018l_xOaryRQeo8NWqTV3VDg7um4FOwc8-lH8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bending%E2%80%93Rotation+Coupling+in+the+Viscoelasticity+of+Semiflexible+Polymers%E2%80%94Rigorous+Perturbation+Analysis+from+the+Rod+Limit&rft.jtitle=Macromolecules&rft.au=Xiong%2C+Zhongqiang&rft.au=Seto%2C+Ryohei&rft.au=Doi%2C+Masao&rft.date=2024-06-11&rft.issn=1520-5835&rft.volume=57&rft.issue=11+p.5289-5299&rft.spage=5289&rft.epage=5299&rft_id=info:doi/10.1021%2Facs.macromol.4c00532&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-9297&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-9297&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-9297&client=summon |