Tremella-like Zn–Al–Zr-Layered Double-Hydroxide/Graphene Oxide Nanocomposites for Enhanced Phosphorus Recovery
By virtue of the hydroxyl and carboxyl groups on the graphene oxide (GO) plane, three-dimensional tremella-like Zn–Al–Zr-layered double-hydroxide/GO (Zn–Al–Zr LDH/GO) nanocomposites have been successfully prepared via the self-assembly process. As compared to Zn–Al–Zr LDH, the Zn–Al–Zr LDH/GO nanoco...
Saved in:
Published in | ACS applied nano materials Vol. 7; no. 2; pp. 2143 - 2154 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
26.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By virtue of the hydroxyl and carboxyl groups on the graphene oxide (GO) plane, three-dimensional tremella-like Zn–Al–Zr-layered double-hydroxide/GO (Zn–Al–Zr LDH/GO) nanocomposites have been successfully prepared via the self-assembly process. As compared to Zn–Al–Zr LDH, the Zn–Al–Zr LDH/GO nanocomposite (LDH/GO-4) possesses a hierarchical pore structure; it shows an enlarged pore width which endows it with enhanced phosphorus (P) adsorption capacity, and the fitting of nonlinear Langmuir showed that the maximum adsorption capacity reaches 36.86 ± 0.76 mg-P/g. The fitting of the kinetic model confirmed that the adsorption process was predominantly chemisorption. Meanwhile, fitting of the thermodynamic model indicated that the adsorption process was endothermic, stochastic, and spontaneous. For LDH/GO-4, the [−C–O–Zn(OH) x ] and [−COO–ZrO(OH) x ] groups are its chief active sites to chemically absorb P. In this study, LDH/GO-4 can make the total phosphorus (TP) concentration of the real river water decline from 0.28 mg/L to near zero in 24 h, while the Phoslock commercial product only achieves a TP removal rate of 46.43% under the same conditions. Moreover, LDH/GO-4 also has good reusability in a steady recovery of P, and the removal rate of TP was still over 95% after it experienced the adsorption–desorption of P for five cycles. Thus, LDH/GO-4 shows great potential for application in the sustainable P recovery field. |
---|---|
AbstractList | By virtue of the hydroxyl and carboxyl groups on the graphene oxide (GO) plane, three-dimensional tremella-like Zn–Al–Zr-layered double-hydroxide/GO (Zn–Al–Zr LDH/GO) nanocomposites have been successfully prepared via the self-assembly process. As compared to Zn–Al–Zr LDH, the Zn–Al–Zr LDH/GO nanocomposite (LDH/GO-4) possesses a hierarchical pore structure; it shows an enlarged pore width which endows it with enhanced phosphorus (P) adsorption capacity, and the fitting of nonlinear Langmuir showed that the maximum adsorption capacity reaches 36.86 ± 0.76 mg-P/g. The fitting of the kinetic model confirmed that the adsorption process was predominantly chemisorption. Meanwhile, fitting of the thermodynamic model indicated that the adsorption process was endothermic, stochastic, and spontaneous. For LDH/GO-4, the [−C–O–Zn(OH) x ] and [−COO–ZrO(OH) x ] groups are its chief active sites to chemically absorb P. In this study, LDH/GO-4 can make the total phosphorus (TP) concentration of the real river water decline from 0.28 mg/L to near zero in 24 h, while the Phoslock commercial product only achieves a TP removal rate of 46.43% under the same conditions. Moreover, LDH/GO-4 also has good reusability in a steady recovery of P, and the removal rate of TP was still over 95% after it experienced the adsorption–desorption of P for five cycles. Thus, LDH/GO-4 shows great potential for application in the sustainable P recovery field. |
Author | Li, Dongmei Yu, Miao Chen, Lin Xiong, Kun Ren, Jianhui Wang, Jun Huang, Yao-Yao |
AuthorAffiliation | National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry Southwest University of Science and Technology Nantong Environmental Security Intelligent Technology Co., Ltd Tianfu Institute of Research and Innovation |
AuthorAffiliation_xml | – name: Tianfu Institute of Research and Innovation – name: National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics – name: State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry – name: Southwest University of Science and Technology – name: Nantong Environmental Security Intelligent Technology Co., Ltd |
Author_xml | – sequence: 1 givenname: Jianhui surname: Ren fullname: Ren, Jianhui organization: Southwest University of Science and Technology – sequence: 2 givenname: Yao-Yao surname: Huang fullname: Huang, Yao-Yao organization: National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics – sequence: 3 givenname: Dongmei surname: Li fullname: Li, Dongmei organization: Nantong Environmental Security Intelligent Technology Co., Ltd – sequence: 4 givenname: Miao surname: Yu fullname: Yu, Miao organization: Southwest University of Science and Technology – sequence: 5 givenname: Lin surname: Chen fullname: Chen, Lin organization: Southwest University of Science and Technology – sequence: 6 givenname: Jun surname: Wang fullname: Wang, Jun organization: Tianfu Institute of Research and Innovation – sequence: 7 givenname: Kun orcidid: 0000-0003-3781-2005 surname: Xiong fullname: Xiong, Kun email: quentin_xiong@swust.edu.cn organization: Tianfu Institute of Research and Innovation |
BookMark | eNp1kMFKw0AQhhepYK29es5Z2HZ3k23MsdTaCsWK1EsvYbKZkNRkN-ymYm6-g2_ok5jSHkToZf6ZYb4f5r8mPW00EnLL2YgzwcegHOhq5Csmg4BfkL6QYUBZFLLen_6KDJ3bMcZ4xCc-Y31iNxYrLEugZfGO3lb_fH1Py65sLV1BixZT78HskxLpsk2t-SxSHC8s1Dlq9NaH0XsGbZSpauOKBp2XGevNdQ5adexLblydG7t33isq84G2vSGXGZQOhycdkLfH-Wa2pKv14mk2XVEQYdBQlcpkEoWRTCX4HOG-EwUME4GRnAhMEh4GfqqkLxMuFJcyFRKZAPAzwQLuD8jo6Kuscc5iFte2qMC2MWfxIbT4GFp8Cq0Dgn-AKhpoCqMbC0V5Hrs7Yt0-3pm91d1X545_AaKghkk |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2024_123922 |
Cites_doi | 10.1016/j.jece.2022.108484 10.1021/acs.energyfuels.3c00242 10.1016/j.scitotenv.2019.136111 10.1016/j.cej.2010.03.006 10.1016/j.cej.2022.140153 10.1016/j.scitotenv.2021.148281 10.1016/j.cej.2022.138277 10.1016/j.scitotenv.2021.147382 10.1016/j.watres.2021.117017 10.1016/j.scitotenv.2022.156802 10.1021/acs.est.9b06812 10.1021/acs.chemmater.5b02999 10.1016/j.scitotenv.2021.152752 10.1016/j.watres.2020.116303 10.1016/j.jhazmat.2019.121734 10.1016/j.cej.2021.132754 10.1016/j.watres.2018.12.048 10.3390/nano12203680 10.1016/j.cej.2020.124242 10.1016/j.cej.2021.133166 10.1016/j.scitotenv.2020.143664 10.1088/0031-8949/2/1-2/014 10.1016/j.biortech.2020.124128 10.1016/j.aca.2015.07.030 10.1016/j.wroa.2019.100029 10.1021/acs.est.0c02882 10.1016/j.jhazmat.2018.11.047 10.1016/j.carbon.2009.11.037 10.1021/acs.energyfuels.3c00340 10.1021/acs.est.2c06668 10.1039/D2NJ03584G 10.1021/acs.est.9b05569 10.1007/s11356-022-20049-9 10.1016/j.matchemphys.2021.124559 10.1016/j.cis.2021.102598 10.1016/j.cej.2019.122431 10.1016/j.watres.2023.119604 10.1016/j.cej.2019.122566 10.1016/j.chemosphere.2022.137434 10.1021/cm902413c 10.1016/j.cej.2022.137627 10.1007/s00204-016-1921-6 10.1021/acs.est.0c05577 10.1016/j.cej.2022.136057 10.1016/j.msec.2017.08.044 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsanm.3c05441 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2574-0970 |
EndPage | 2154 |
ExternalDocumentID | 10_1021_acsanm_3c05441 c460601659 |
GroupedDBID | ABFRP ABQRX ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a274t-cd5b69795d5a31ea85a3ca0eb2e9562ebb1743dc535b12c155d25e02aa3f20413 |
IEDL.DBID | ACS |
ISSN | 2574-0970 |
IngestDate | Thu Apr 24 23:00:40 EDT 2025 Tue Jul 01 02:47:59 EDT 2025 Mon Jan 29 05:12:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | phosphorus recovery graphene oxide self-assembly layered double hydroxide eutrophication |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a274t-cd5b69795d5a31ea85a3ca0eb2e9562ebb1743dc535b12c155d25e02aa3f20413 |
ORCID | 0000-0003-3781-2005 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1021_acsanm_3c05441 crossref_citationtrail_10_1021_acsanm_3c05441 acs_journals_10_1021_acsanm_3c05441 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-26 |
PublicationDateYYYYMMDD | 2024-01-26 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied nano materials |
PublicationTitleAlternate | ACS Appl. Nano Mater |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.1016/j.jece.2022.108484 – ident: ref1/cit1 doi: 10.1021/acs.energyfuels.3c00242 – ident: ref14/cit14 doi: 10.1016/j.scitotenv.2019.136111 – ident: ref45/cit45 doi: 10.1016/j.cej.2010.03.006 – ident: ref12/cit12 doi: 10.1016/j.cej.2022.140153 – ident: ref17/cit17 doi: 10.1016/j.scitotenv.2021.148281 – ident: ref29/cit29 doi: 10.1016/j.cej.2022.138277 – ident: ref18/cit18 doi: 10.1016/j.scitotenv.2021.147382 – ident: ref6/cit6 doi: 10.1016/j.watres.2021.117017 – ident: ref11/cit11 doi: 10.1016/j.scitotenv.2022.156802 – ident: ref16/cit16 doi: 10.1021/acs.est.9b06812 – ident: ref41/cit41 doi: 10.1021/acs.chemmater.5b02999 – ident: ref10/cit10 doi: 10.1016/j.scitotenv.2021.152752 – ident: ref24/cit24 doi: 10.1016/j.watres.2020.116303 – ident: ref8/cit8 doi: 10.1016/j.jhazmat.2019.121734 – ident: ref31/cit31 doi: 10.1016/j.cej.2021.132754 – ident: ref5/cit5 doi: 10.1016/j.watres.2018.12.048 – ident: ref32/cit32 doi: 10.3390/nano12203680 – ident: ref15/cit15 doi: 10.1016/j.cej.2020.124242 – ident: ref22/cit22 doi: 10.1016/j.cej.2021.133166 – ident: ref26/cit26 doi: 10.1016/j.scitotenv.2020.143664 – ident: ref43/cit43 doi: 10.1088/0031-8949/2/1-2/014 – ident: ref36/cit36 doi: 10.1016/j.biortech.2020.124128 – ident: ref40/cit40 doi: 10.1016/j.aca.2015.07.030 – ident: ref37/cit37 doi: 10.1016/j.wroa.2019.100029 – ident: ref9/cit9 doi: 10.1021/acs.est.0c02882 – ident: ref3/cit3 doi: 10.1016/j.jhazmat.2018.11.047 – ident: ref42/cit42 doi: 10.1016/j.carbon.2009.11.037 – ident: ref2/cit2 doi: 10.1021/acs.energyfuels.3c00340 – ident: ref7/cit7 doi: 10.1021/acs.est.2c06668 – ident: ref30/cit30 doi: 10.1039/D2NJ03584G – ident: ref38/cit38 doi: 10.1021/acs.est.9b05569 – ident: ref20/cit20 doi: 10.1007/s11356-022-20049-9 – ident: ref33/cit33 doi: 10.1016/j.matchemphys.2021.124559 – ident: ref34/cit34 doi: 10.1016/j.cis.2021.102598 – ident: ref13/cit13 doi: 10.1016/j.cej.2019.122431 – ident: ref23/cit23 doi: 10.1016/j.watres.2023.119604 – ident: ref25/cit25 doi: 10.1016/j.cej.2019.122566 – ident: ref27/cit27 doi: 10.1016/j.chemosphere.2022.137434 – ident: ref44/cit44 doi: 10.1021/cm902413c – ident: ref21/cit21 doi: 10.1016/j.cej.2022.137627 – ident: ref4/cit4 doi: 10.1007/s00204-016-1921-6 – ident: ref19/cit19 doi: 10.1021/acs.est.0c05577 – ident: ref35/cit35 doi: 10.1016/j.cej.2022.136057 – ident: ref39/cit39 doi: 10.1016/j.msec.2017.08.044 |
SSID | ssj0001916300 |
Score | 2.2662482 |
Snippet | By virtue of the hydroxyl and carboxyl groups on the graphene oxide (GO) plane, three-dimensional tremella-like Zn–Al–Zr-layered double-hydroxide/GO (Zn–Al–Zr... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2143 |
Title | Tremella-like Zn–Al–Zr-Layered Double-Hydroxide/Graphene Oxide Nanocomposites for Enhanced Phosphorus Recovery |
URI | http://dx.doi.org/10.1021/acsanm.3c05441 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eEHzxLt4JKPiUrUmbrX0csjnEGzhB9lKSk4yNzU7W7WE--R_8h_4ST7rqxDH0paUQ0pDb-b6Tk-8QchbxABQoy8BAyAIT-sxd6GSCW96SWivtubvDN7el-mNw9SSfpv6O3yf4ghcVpCp5LvjguXRZi2RZlMKyo1mVi4epNwVRjp_dN8EpGDAvKntfCo0zVTg7BOkPO_TDoNTWJ-pGaaZD6OJIuoXRUBfgdVal8c-2bpC1HFXSymQabJIFm2yRlSy6E9JtMmg4LyAOOOt1upY2k4-390oPH80Bu1Zjl66TIpLWPcvqY4MN6hhbvHRS1rgT0jv3SXEb7rv4cxfkZVOKWJdWk3YWP0Dv2_30pd0fjFLq6CyujvEOeaxVGxd1lidbYAqJ6RDHSupSVI6kkcrnVoX4AuUh8bZIoYTV2nEXA9KXmgtAGGKEtJ5Qym8JD03hLllK-ondIxQZnNEQKoQOPLAcwhYvGxnpAMDjVqt9coodFeeLJY2zc3DB40nvxXnv7RP2NUAx5HrlLm1Gb2758-_yLxOljjklD_71_0OyKhDAOHeLKB2RpeFgZI8RgAz1STb3PgHxWdnE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH64IHpxF3cHFDxNm5lk2uRYpLVqXcAK4iXMVirWVJr2UE_-B_-hv8Q3aaqiCHpJyDBMHrO975t5C8BBxAIttbRUGx3SwIQ-dQ6dlDPLWkIpqTznO3x-UarfBKe34nYCimNfGBQixZbS7BL_M7oAK2KZTB4LvvZc1qxJmEYkwh3bqhxdfx6qINjxM7cTnIkB9aKyNw7U-KMJp450-kUdfdErtQW4-pAoMyd5KAz6qqCfvwVr_IfIizCfY0xSGU2KJZiwyTLMZLaeOl2BXtOdCeLw0879gyV3ydvLa6WDj7sebcihS95JEFerjqX1oUG57o0tHrvA1rgvkkv3SXBT7jprdGfyZVOCyJdUk3ZmTUCu2t30qd3tDVLiyC2uleEq3NSqzaM6zVMvUIk0tY8jJ1QpKkfCCOkzK0N8aekhDbdIqLhVyjEZo4UvFOMaQYnhwnpcSr_FPVSMazCVdBO7DgT5nFE6lAgkWGCZDlusbESkAq09ZpXcgH3sqDhfOmmc3YpzFo96L857bwPoeJxinUcvd0k0Or_WP_yo_zSK2_FLzc0__X8PZuvN80bcOLk424I5jtDGHcTw0jZM9XsDu4PQpK92s-n4Dn7q4iU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5cULy4i7sDCp6mZiaZNjmW2lp3wQriJcxWKta0NO2hnvwP_kN_ie-lcUER9JKQMCSPmTfzvm_mLYTsRTwwyijHjDUhC2zoMwzoZII73pRaK-1h7PD5RbF-E5zcyts8jhtjYUCIFL6UZof4OKu7tplnGOAH8F4ljwXfeFg5a5xM4pkdMq5y5fpzYwUAj5-FnoA2BsyLSt57ssYfn0CTZNIvJumLbanNkcaHVJlLyUNh0NcF8_QtYeM_xZ4nsznWpOWRciyQMZcskqnM59OkS6TXwL1BUAPWvn9w9C55fX4pt-Fy12NnaohFPCnga912rD60INu9dQdHmOAa1kd6iY8UFucOeqWj65dLKSBgWk1amVcBvWp10m6r0xukFEkuzJnhMrmpVRuVOstLMDAFdLUPIyh1MSpF0krlc6dCuBnlAR13QKyE0xoZjTXSl5oLA-DECuk8oZTfFB4YyBUykXQSt0oo8DqrTagAUPDAcRM2ecnKSAfGeNxptUZ2oaPifAqlcXY6Lng86r047701wt7HKjZ5FnMsptH-tf3-R_vuKH_HLy3X__T_HTJ9dViLz44vTjfIjACEg_sxorhJJvq9gdsChNLX25lGvgHNtOSo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tremella-like+Zn%E2%80%93Al%E2%80%93Zr-Layered+Double-Hydroxide%2FGraphene+Oxide+Nanocomposites+for+Enhanced+Phosphorus+Recovery&rft.jtitle=ACS+applied+nano+materials&rft.au=Ren%2C+Jianhui&rft.au=Huang%2C+Yao-Yao&rft.au=Li%2C+Dongmei&rft.au=Yu%2C+Miao&rft.date=2024-01-26&rft.pub=American+Chemical+Society&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=7&rft.issue=2&rft.spage=2143&rft.epage=2154&rft_id=info:doi/10.1021%2Facsanm.3c05441&rft.externalDocID=c460601659 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon |