Precise Cathode Interfacial Engineering for Enhanced Electrochemical and Thermal Stability of Lithium-Ion Batteries

Lithium-ion batteries (LIBs) have continued achieving higher energy densities by utilizing various high-capacity, high-voltage cathode materials. However, they still show severe challenges regarding their reliability and electrolyte–cathode stability during operation especially at high-voltage charg...

Full description

Saved in:
Bibliographic Details
Published inACS applied energy materials Vol. 6; no. 5; pp. 2999 - 3009
Main Authors Kum, Lenin W., Vallo, Nick, Singh, Deependra Kumar, Kumar, Jitendra
Format Journal Article
LanguageEnglish
Published American Chemical Society 13.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium-ion batteries (LIBs) have continued achieving higher energy densities by utilizing various high-capacity, high-voltage cathode materials. However, they still show severe challenges regarding their reliability and electrolyte–cathode stability during operation especially at high-voltage charging that is needed to achieve higher energy density. Therefore, ensuring the stability of cathodes with electrolytes becomes much more critical for the safe and extended cycling of high-energy LIBs. Herein, we present a comprehensive investigation on maximizing cathode–electrolyte interfacial stability by employing a thin-film coating of various superionic single Li+ ceramic conductors on the commonly used lithium cobalt oxide (LCO) cathode. In the present investigation, the lithium aluminum germanium phosphate (Li1.5Al0.5Ge1.5(PO4)3; LAGP) ceramic electrolyte is found to be the best LCO surface stabilizer among commonly known ceramic conductors. The investigation of different synthesis parameters, such as the coating thickness, sintering temperature and time, annealing atmosphere, and so on, has been accomplished. The optimized performance has been obtained with an LAGP coating of a thickness of 0.6 wt % (LAGP amount) annealed at 830 °C for 1 h in a pure oxygen atmosphere. When cycled in a voltage window of 3–4.3 V, 0.6 wt % LAGP on the LCO cell shows a discharge capacity of 180.87 and 163.91 mAh/g at 0.2 and 4C, respectively; in comparison, a pure LCO-based LIB shows 149.82 and 78.90 mAh/g at 0.2 and 4C. Furthermore, LAGP-coated LCO-based LIBs when compared to the pristine LCO-based LIBs show (i) remarkably better thermal stability, (ii) lower voltage polarizations during cycling, and (iii) an enabled higher voltage charge of up to 4.8 V.
AbstractList Lithium-ion batteries (LIBs) have continued achieving higher energy densities by utilizing various high-capacity, high-voltage cathode materials. However, they still show severe challenges regarding their reliability and electrolyte–cathode stability during operation especially at high-voltage charging that is needed to achieve higher energy density. Therefore, ensuring the stability of cathodes with electrolytes becomes much more critical for the safe and extended cycling of high-energy LIBs. Herein, we present a comprehensive investigation on maximizing cathode–electrolyte interfacial stability by employing a thin-film coating of various superionic single Li+ ceramic conductors on the commonly used lithium cobalt oxide (LCO) cathode. In the present investigation, the lithium aluminum germanium phosphate (Li1.5Al0.5Ge1.5(PO4)3; LAGP) ceramic electrolyte is found to be the best LCO surface stabilizer among commonly known ceramic conductors. The investigation of different synthesis parameters, such as the coating thickness, sintering temperature and time, annealing atmosphere, and so on, has been accomplished. The optimized performance has been obtained with an LAGP coating of a thickness of 0.6 wt % (LAGP amount) annealed at 830 °C for 1 h in a pure oxygen atmosphere. When cycled in a voltage window of 3–4.3 V, 0.6 wt % LAGP on the LCO cell shows a discharge capacity of 180.87 and 163.91 mAh/g at 0.2 and 4C, respectively; in comparison, a pure LCO-based LIB shows 149.82 and 78.90 mAh/g at 0.2 and 4C. Furthermore, LAGP-coated LCO-based LIBs when compared to the pristine LCO-based LIBs show (i) remarkably better thermal stability, (ii) lower voltage polarizations during cycling, and (iii) an enabled higher voltage charge of up to 4.8 V.
Author Kumar, Jitendra
Singh, Deependra Kumar
Kum, Lenin W.
Vallo, Nick
AuthorAffiliation Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering
AuthorAffiliation_xml – name: Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering
Author_xml – sequence: 1
  givenname: Lenin W.
  orcidid: 0000-0003-4401-3228
  surname: Kum
  fullname: Kum, Lenin W.
  email: leninwungk1@udayton.edu
  organization: Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering
– sequence: 2
  givenname: Nick
  surname: Vallo
  fullname: Vallo, Nick
  organization: Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering
– sequence: 3
  givenname: Deependra Kumar
  surname: Singh
  fullname: Singh, Deependra Kumar
  organization: Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering
– sequence: 4
  givenname: Jitendra
  orcidid: 0000-0002-2039-4436
  surname: Kumar
  fullname: Kumar, Jitendra
  email: jitendra.kumar@udri.udayton.edu
  organization: Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering
BookMark eNp1kM1LAzEQxYNUsNZePecsbE2yH2mOWqoWCgrW85JNJt2U3USS9ND_3kh78OJp3gzvPYbfLZo47wChe0oWlDD6KFWUMC6YIhUR4gpNWc2rgoiGTf7oGzSP8UAIoYI2TIgpih8BlI2AVzL1XgPeuATBSGXlgNdubx1AsG6PjQ9576VToPF6AJWCVz2MVmWjdBrveghj1p9Jdnaw6YS9wVubensci413-FmmXG0h3qFrI4cI88ucoa-X9W71VmzfXzerp20hGa9SofiyarqSmaaE2shaa2CqEpUhRDNqeEk5UQwUMabTsltyrutKcloL1QnOaDlDi3OvCj7GAKb9DnaU4dRS0v5Sa8_U2gu1HHg4B_K9PfhjcPm9_8w_xp5y3w
CitedBy_id crossref_primary_10_1016_j_cej_2024_150534
crossref_primary_10_3390_polym16040464
crossref_primary_10_1021_acsomega_4c00318
Cites_doi 10.1016/j.rser.2021.111301
10.1016/j.etran.2021.100105
10.1149/1.3122903
10.1016/j.jechem.2020.12.017
10.3390/coatings11070744
10.1021/acsami.1c20787
10.3390/electrochem1020011
10.1016/j.egyr.2021.08.182
10.1002/adfm.202010095
10.1002/slct.201703084
10.1016/j.ensm.2020.10.026
10.1007/s11581-011-0611-x
10.1016/j.elecom.2007.02.008
10.1109/TVT.2011.2132812
10.1016/j.electacta.2021.138138
10.1038/s41565-021-00855-x
10.1557/mrs.2015.259
10.1016/S0167-2738(02)00067-X
10.1038/nmat1672
10.1016/j.mattod.2021.04.003
10.37934/arfmts.88.2.123132
10.1021/acsaem.0c03047
10.1002/ente.202100422
10.1021/cm403846a
10.1002/aenm.201802057
10.1021/acsaem.9b02291
10.1021/acs.chemmater.6b03870
10.1007/s11581-019-03422-6
10.1016/j.ensm.2020.11.008
10.1149/1945-7111/ac7359
10.1039/D1TA06683H
10.1016/j.ceramint.2020.10.225
10.1021/acsami.6b11630
10.1021/acsami.6b12085
10.1016/j.jelechem.2022.116250
10.1002/adfm.202009694
10.1016/j.applthermaleng.2020.116158
10.1021/acsami.6b16233
10.3390/en14051248
10.1149/2.0091707jes
10.1039/b904116h
10.1002/aenm.202002689
10.1021/acsami.1c19443
10.1016/j.mattod.2020.12.017
10.1016/j.mattod.2014.10.040
10.1016/j.ceramint.2021.03.162
10.1002/cssc.201900725
10.1016/j.electacta.2021.138227
10.1016/j.electacta.2007.10.040
10.1016/j.ensm.2020.03.031
10.1016/j.commatsci.2021.110324
10.1016/j.egyr.2021.05.027
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsaem.2c04099
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2574-0962
EndPage 3009
ExternalDocumentID 10_1021_acsaem_2c04099
a342844863
GroupedDBID ABFRP
ABQRX
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
W1F
AAYXX
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a274t-c7846b32f63e5fa5dde2c494f00d21f73170c2ec0ffbdab877d54a7159cb97213
IEDL.DBID ACS
ISSN 2574-0962
IngestDate Fri Aug 23 01:57:05 EDT 2024
Wed Mar 15 05:33:33 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords artificial cathode−electrolyte interphase
Li metal anode
high-voltage charge
annealing temperature
single Li+ ceramic conductor
thermal stability
lithium-ion cathode−electrolyte stability
voltage polarization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a274t-c7846b32f63e5fa5dde2c494f00d21f73170c2ec0ffbdab877d54a7159cb97213
ORCID 0000-0003-4401-3228
0000-0002-2039-4436
PageCount 11
ParticipantIDs crossref_primary_10_1021_acsaem_2c04099
acs_journals_10_1021_acsaem_2c04099
PublicationCentury 2000
PublicationDate 20230313
2023-03-13
PublicationDateYYYYMMDD 2023-03-13
PublicationDate_xml – month: 03
  year: 2023
  text: 20230313
  day: 13
PublicationDecade 2020
PublicationTitle ACS applied energy materials
PublicationTitleAlternate ACS Appl. Energy Mater
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Wangjun F. (ref42/cit42) 2022; 917
Micah Z. (ref2/cit2) 2021; 14
Raphael Z. (ref9/cit9) 2016; 8
Pei M. (ref18/cit18) 2021; 9
Janani N. (ref45/cit45) 2011; 17
Thabang S. (ref23/cit23) 2021; 11
Xingang L. (ref36/cit36) 2017; 9
George E. B. (ref5/cit5) 2017; 164
Chul-Ho J. (ref21/cit21) 2021; 31
Narumi O. (ref46/cit46) 2007; 9
Ju-Myung K. (ref26/cit26) 2021; 46
Lenin Wung K. (ref43/cit43) 2022; 14
Taberna P. (ref4/cit4) 2006; 5
Jayasree S. S. (ref27/cit27) 2018; 3
Jianyuan L. (ref51/cit51) 2021; 16
Shunli W. (ref14/cit14) 2021; 7
Yu H. (ref16/cit16) 2021; 4
Xin W. (ref35/cit35) 2021; 47
Shuoqing Z. (ref13/cit13) 2021; 34
Nitta N. (ref30/cit30) 2015; 18
Tao J. (ref40/cit40) 2022; 5
Haijun R. (ref56/cit56) 2021; 186
Lena S. (ref55/cit55) 2021; 14
Hyo B. L. (ref32/cit32) 2022; 14
Hu G.-R. (ref34/cit34) 2008; 53
Yasunori B. (ref57/cit57) 2002; 148
Shu-qi Y. (ref41/cit41) 2021; 47
Zhou A. (ref31/cit31) 2016; 8
Ravi M. (ref3/cit3) 2010; 25
Brian L. (ref8/cit8) 2009; 2
Kyusung P. (ref47/cit47) 2016; 28
Zaijun C. (ref20/cit20) 2021; 378
Wang C. W. (ref33/cit33) 2020; 3
Ju-Myung K. (ref39/cit39) 2021; 46
Yuan L. (ref19/cit19) 2019
Hailin Z. (ref15/cit15) 2021; 7
Muhammad R. (ref54/cit54) 2021; 88
Zu-Guo S. (ref11/cit11) 2021; 148
Satyavani T. V. S. L. (ref10/cit10) 2016; 19
Kun Joong K. (ref48/cit48) 2021; 11
Baohe Y. (ref53/cit53) 2022; 169
He H. (ref7/cit7) 2011; 60
Kaiqiang Q. (ref17/cit17) 2021; 31
Biwei X. (ref28/cit28) 2018; 8
Zeyuan L. (ref44/cit44) 2020; 29
Qitao S. (ref12/cit12) 2021; 34
Yu L. (ref22/cit22) 2021; 60
Lin C. (ref52/cit52) 2021; 7
Tian X. (ref29/cit29) 2020; 26
Shim J. H. (ref25/cit25) 2014; 26
Crabtree G. (ref1/cit1) 2015; 40
Xinchao H. (ref37/cit37) 2021; 380
Das T. (ref24/cit24) 2021; 191
Yujia L. (ref38/cit38) 2021; 9
Mitsuru Y. (ref6/cit6) 2020; 1
Rachel D. (ref50/cit50) 2019; 12
Kumar B. (ref49/cit49) 2009; 156
References_xml – volume: 148
  start-page: 111301
  year: 2021
  ident: ref11/cit11
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2021.111301
  contributor:
    fullname: Zu-Guo S.
– volume: 7
  start-page: 100105
  year: 2021
  ident: ref15/cit15
  publication-title: eTransportation
  doi: 10.1016/j.etran.2021.100105
  contributor:
    fullname: Hailin Z.
– volume: 156
  start-page: A506
  year: 2009
  ident: ref49/cit49
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3122903
  contributor:
    fullname: Kumar B.
– volume: 60
  start-page: 32
  year: 2021
  ident: ref22/cit22
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.12.017
  contributor:
    fullname: Yu L.
– volume: 11
  start-page: 744
  year: 2021
  ident: ref23/cit23
  publication-title: Coatings
  doi: 10.3390/coatings11070744
  contributor:
    fullname: Thabang S.
– volume: 25
  start-page: 139
  year: 2010
  ident: ref3/cit3
  publication-title: ECS Trans.
  contributor:
    fullname: Ravi M.
– volume: 14
  start-page: 4100
  year: 2022
  ident: ref43/cit43
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c20787
  contributor:
    fullname: Lenin Wung K.
– volume: 1
  start-page: 124
  year: 2020
  ident: ref6/cit6
  publication-title: Electrochem
  doi: 10.3390/electrochem1020011
  contributor:
    fullname: Mitsuru Y.
– volume: 7
  start-page: 5562
  year: 2021
  ident: ref14/cit14
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2021.08.182
  contributor:
    fullname: Shunli W.
– volume: 31
  start-page: 2010095
  year: 2021
  ident: ref21/cit21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010095
  contributor:
    fullname: Chul-Ho J.
– volume: 3
  start-page: 2763
  year: 2018
  ident: ref27/cit27
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201703084
  contributor:
    fullname: Jayasree S. S.
– volume: 34
  start-page: 735
  year: 2021
  ident: ref12/cit12
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2020.10.026
  contributor:
    fullname: Qitao S.
– volume: 17
  start-page: 575
  year: 2011
  ident: ref45/cit45
  publication-title: Ionics
  doi: 10.1007/s11581-011-0611-x
  contributor:
    fullname: Janani N.
– volume: 9
  start-page: 1486
  year: 2007
  ident: ref46/cit46
  publication-title: Electrochem. Communications
  doi: 10.1016/j.elecom.2007.02.008
  contributor:
    fullname: Narumi O.
– volume: 60
  start-page: 1461
  year: 2011
  ident: ref7/cit7
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2011.2132812
  contributor:
    fullname: He H.
– volume: 378
  start-page: 138138
  year: 2021
  ident: ref20/cit20
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2021.138138
  contributor:
    fullname: Zaijun C.
– volume: 16
  start-page: 599
  year: 2021
  ident: ref51/cit51
  publication-title: Nature Nanotechnology
  doi: 10.1038/s41565-021-00855-x
  contributor:
    fullname: Jianyuan L.
– volume: 40
  start-page: 1067
  year: 2015
  ident: ref1/cit1
  publication-title: MRS Bulletin
  doi: 10.1557/mrs.2015.259
  contributor:
    fullname: Crabtree G.
– volume: 148
  start-page: 311
  year: 2002
  ident: ref57/cit57
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00067-X
  contributor:
    fullname: Yasunori B.
– volume: 5
  start-page: 567
  year: 2006
  ident: ref4/cit4
  publication-title: Nature Mater
  doi: 10.1038/nmat1672
  contributor:
    fullname: Taberna P.
– volume: 46
  start-page: 6
  year: 2021
  ident: ref39/cit39
  publication-title: Materials Today
  doi: 10.1016/j.mattod.2021.04.003
  contributor:
    fullname: Ju-Myung K.
– volume: 88
  start-page: 123
  year: 2021
  ident: ref54/cit54
  publication-title: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
  doi: 10.37934/arfmts.88.2.123132
  contributor:
    fullname: Muhammad R.
– volume: 4
  start-page: 2489
  year: 2021
  ident: ref16/cit16
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c03047
  contributor:
    fullname: Yu H.
– volume: 19
  start-page: 178
  year: 2016
  ident: ref10/cit10
  publication-title: International Journal
  contributor:
    fullname: Satyavani T. V. S. L.
– volume: 9
  start-page: 2100422
  year: 2021
  ident: ref38/cit38
  publication-title: Energy Technol
  doi: 10.1002/ente.202100422
  contributor:
    fullname: Yujia L.
– volume: 26
  start-page: 2537
  year: 2014
  ident: ref25/cit25
  publication-title: Chem. Mater.
  doi: 10.1021/cm403846a
  contributor:
    fullname: Shim J. H.
– volume: 8
  start-page: 1802057
  year: 2018
  ident: ref28/cit28
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802057
  contributor:
    fullname: Biwei X.
– volume: 3
  start-page: 2593
  year: 2020
  ident: ref33/cit33
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b02291
  contributor:
    fullname: Wang C. W.
– volume: 28
  start-page: 8051
  year: 2016
  ident: ref47/cit47
  publication-title: Chemistry of Materials
  doi: 10.1021/acs.chemmater.6b03870
  contributor:
    fullname: Kyusung P.
– volume: 26
  start-page: 2715
  year: 2020
  ident: ref29/cit29
  publication-title: Ionics
  doi: 10.1007/s11581-019-03422-6
  contributor:
    fullname: Tian X.
– volume: 34
  start-page: 716
  year: 2021
  ident: ref13/cit13
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2020.11.008
  contributor:
    fullname: Shuoqing Z.
– volume: 169
  start-page: 060513
  year: 2022
  ident: ref53/cit53
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac7359
  contributor:
    fullname: Baohe Y.
– volume: 14
  start-page: 1635
  year: 2021
  ident: ref2/cit2
  publication-title: Environment Science
  contributor:
    fullname: Micah Z.
– volume: 9
  start-page: 25237
  year: 2021
  ident: ref18/cit18
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA06683H
  contributor:
    fullname: Pei M.
– volume: 47
  start-page: 6434
  year: 2021
  ident: ref35/cit35
  publication-title: Ceramics International
  doi: 10.1016/j.ceramint.2020.10.225
  contributor:
    fullname: Xin W.
– volume: 8
  start-page: 34123
  year: 2016
  ident: ref31/cit31
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11630
  contributor:
    fullname: Zhou A.
– volume: 8
  start-page: 32637
  year: 2016
  ident: ref9/cit9
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12085
  contributor:
    fullname: Raphael Z.
– volume: 917
  start-page: 116250
  year: 2022
  ident: ref42/cit42
  publication-title: J. Electroanalytical Chem.
  doi: 10.1016/j.jelechem.2022.116250
  contributor:
    fullname: Wangjun F.
– volume: 31
  start-page: 2009694
  year: 2021
  ident: ref17/cit17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009694
  contributor:
    fullname: Kaiqiang Q.
– volume: 186
  start-page: 116158
  year: 2021
  ident: ref56/cit56
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2020.116158
  contributor:
    fullname: Haijun R.
– start-page: 1901019
  year: 2019
  ident: ref19/cit19
  publication-title: Small
  contributor:
    fullname: Yuan L.
– volume: 9
  start-page: 11696
  year: 2017
  ident: ref36/cit36
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.6b16233
  contributor:
    fullname: Xingang L.
– volume: 14
  start-page: 1248
  year: 2021
  ident: ref55/cit55
  publication-title: Energies
  doi: 10.3390/en14051248
  contributor:
    fullname: Lena S.
– volume: 164
  start-page: A5019
  year: 2017
  ident: ref5/cit5
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0091707jes
  contributor:
    fullname: George E. B.
– volume: 2
  start-page: 638
  year: 2009
  ident: ref8/cit8
  publication-title: Energy Environ. Sci.
  doi: 10.1039/b904116h
  contributor:
    fullname: Brian L.
– volume: 11
  start-page: 2002689
  year: 2021
  ident: ref48/cit48
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002689
  contributor:
    fullname: Kun Joong K.
– volume: 14
  start-page: 2731
  year: 2022
  ident: ref32/cit32
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c19443
  contributor:
    fullname: Hyo B. L.
– volume: 46
  start-page: 155
  year: 2021
  ident: ref26/cit26
  publication-title: Materials Today
  doi: 10.1016/j.mattod.2020.12.017
  contributor:
    fullname: Ju-Myung K.
– volume: 18
  start-page: 252
  year: 2015
  ident: ref30/cit30
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2014.10.040
  contributor:
    fullname: Nitta N.
– volume: 47
  start-page: 18397
  year: 2021
  ident: ref41/cit41
  publication-title: Ceramics International
  doi: 10.1016/j.ceramint.2021.03.162
  contributor:
    fullname: Shu-qi Y.
– volume: 12
  start-page: 3713
  year: 2019
  ident: ref50/cit50
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201900725
  contributor:
    fullname: Rachel D.
– volume: 380
  start-page: 138227
  year: 2021
  ident: ref37/cit37
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2021.138227
  contributor:
    fullname: Xinchao H.
– volume: 5
  start-page: 305
  year: 2022
  ident: ref40/cit40
  publication-title: ACS Applied Energy Materials
  contributor:
    fullname: Tao J.
– volume: 53
  start-page: 2567
  year: 2008
  ident: ref34/cit34
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2007.10.040
  contributor:
    fullname: Hu G.-R.
– volume: 29
  start-page: 71
  year: 2020
  ident: ref44/cit44
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2020.03.031
  contributor:
    fullname: Zeyuan L.
– volume: 191
  start-page: 110324
  year: 2021
  ident: ref24/cit24
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110324
  contributor:
    fullname: Das T.
– volume: 7
  start-page: 3050
  year: 2021
  ident: ref52/cit52
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2021.05.027
  contributor:
    fullname: Lin C.
SSID ssj0001916299
Score 2.2867153
Snippet Lithium-ion batteries (LIBs) have continued achieving higher energy densities by utilizing various high-capacity, high-voltage cathode materials. However, they...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 2999
Title Precise Cathode Interfacial Engineering for Enhanced Electrochemical and Thermal Stability of Lithium-Ion Batteries
URI http://dx.doi.org/10.1021/acsaem.2c04099
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46X_TBuzhvBBR86mzTJG0fZWxMURF0sLeSKxNdK7Z70F_vSdux4RB9LIQQTr_kfDk55zsIXcQ85lwbAC_V3KNSCE-SSHiGxowGlikeu0Lh-wc-GNLbERvN4x0_X_BJcCVUIcykQxTALUlW0RqJYGc4EtR9mkdTgOWQqlkkQJB6wMvJTKFxaQrnh1Sx4IcWHEp_q1Y3KiodQpdH8tqZlrKjvpZVGv9c6zbabFglvq5hsINWTLaLNha0BvdQ8eh0LAqDXc1frg2uYoFWuJA5XhiJgcXC97jKDMC9ukuOamQFsMg0BmTBaf6GgadWmbWfOLf47qUcv0wn3k2e4VqzE67g-2jY7z13B17TccETcDstPRUBHZEhsTw0zAoGZx9RNKHW9zUJbARkw1fEKN9aqYWMo0gzKiKgREo6GaDwALWyPDOHCEviS-MTI6115aws0ZLFXGpJFFEBj9voHKyVNjumSKvHcBKktQnTxoRtdDn7S-l7Lb_xy8ijf813jNZdv3iXRBaEJ6hVfkzNKbCKUp5VgPoGpEXJCA
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58HNSDb7E-FxQ8pSbb3U16FFGqVilYwVvYJ4o2FZMe9Nc7m6RaFEGPCcswTCY7387OfANwmIhECGPReZkRAVNSBorGMrAs4SxyXIvENwpf34jOHbu85_dTcDzuhUElcpSUl5f4X-wC0TG-k3bQpBq9rt2ehlkeY7T0WOj09iupgmCHljMj0RNZgPCcjokaf4jw4UjnE-FoIq6cL0HvU6OynOSpOSpUU79_I2v8h8rLsFhjTHJSOcUKTNlsFRYmmAfXIO95VovcEt8BODSWlJlBJ30CnUysJIhp8fmhrBMgZ9XMHF2TDBCZGYJ-hnv7M0HUWtbZvpGhI93H4uFxNAguhhmpGDzxQL4Od-dn_dNOUM9fCCSeVYtAxwhOVIs60bLcSY47IdWszVwYGhq5GKFHqKnVoXPKSJXEseFMxgiQtPKkQK0NmMmGmd0EomiobEitcs43t_K2UTwRyiiqqY5E0oADtFZa_z95Wl6N0yitTJjWJmzA0fhjpS8VGccvK7f-JG8f5jr9627avbi52oZ5P0nel5dFrR2YKV5HdhfxRqH2Sh_7AH_d0W0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBuzivAQWfOtssSbvHoQ7vCG6wt5IrE7UbtnvQX-9J2ulQBH1sCCGcnuR8OZfvIHSU8IRzbUB5qeYBlUIEksQiMDRhNLJM8cQVCt_e8YseveqzflXH7WphYBM5rJT7IL471SNtK4aB6ATGhXlpEAWa12rNojkWRz422z59-HKsAOAhvm8kaCMNAKKTCVnjjyWcSVL5lEmasi2dZdT93JVPKXlqjAvZUO_fCBv_ue0VtFRhTdwulWMVzZhsDS1OMRCuo_zesVvkBrtKwKE22HsIrXCOdDw1EwO2he-BzxfA52XvHFWRDWCRaQz6Bnf8Mwb06vNt3_DQ4pvHYvA4fgkuhxkumTzhYb6Bep3z7ulFUPVhCAS8WYtAxQBSZJNY3jTMCgY3IlG0RW0YahLZGCBIqIhRobVSC5nEsWZUxACUlHTkQM1NVMuGmdlCWJJQmpAYaa0rcmUtLVnCpZZEERXxpI4OQVppdY7y1IfISZSWIkwrEdbR8eSHpaOSlOOXmdt_Wu8Azd-fddKby7vrHbTgGsq7LLOouYtqxevY7AHsKOS-V7MPSY3T5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+Cathode+Interfacial+Engineering+for+Enhanced+Electrochemical+and+Thermal+Stability+of+Lithium-Ion+Batteries&rft.jtitle=ACS+applied+energy+materials&rft.au=Kum%2C+Lenin+W.&rft.au=Vallo%2C+Nick&rft.au=Singh%2C+Deependra+Kumar&rft.au=Kumar%2C+Jitendra&rft.date=2023-03-13&rft.pub=American+Chemical+Society&rft.issn=2574-0962&rft.eissn=2574-0962&rft.volume=6&rft.issue=5&rft.spage=2999&rft.epage=3009&rft_id=info:doi/10.1021%2Facsaem.2c04099&rft.externalDocID=a342844863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0962&client=summon