Precise Cathode Interfacial Engineering for Enhanced Electrochemical and Thermal Stability of Lithium-Ion Batteries
Lithium-ion batteries (LIBs) have continued achieving higher energy densities by utilizing various high-capacity, high-voltage cathode materials. However, they still show severe challenges regarding their reliability and electrolyte–cathode stability during operation especially at high-voltage charg...
Saved in:
Published in | ACS applied energy materials Vol. 6; no. 5; pp. 2999 - 3009 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
13.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium-ion batteries (LIBs) have continued achieving higher energy densities by utilizing various high-capacity, high-voltage cathode materials. However, they still show severe challenges regarding their reliability and electrolyte–cathode stability during operation especially at high-voltage charging that is needed to achieve higher energy density. Therefore, ensuring the stability of cathodes with electrolytes becomes much more critical for the safe and extended cycling of high-energy LIBs. Herein, we present a comprehensive investigation on maximizing cathode–electrolyte interfacial stability by employing a thin-film coating of various superionic single Li+ ceramic conductors on the commonly used lithium cobalt oxide (LCO) cathode. In the present investigation, the lithium aluminum germanium phosphate (Li1.5Al0.5Ge1.5(PO4)3; LAGP) ceramic electrolyte is found to be the best LCO surface stabilizer among commonly known ceramic conductors. The investigation of different synthesis parameters, such as the coating thickness, sintering temperature and time, annealing atmosphere, and so on, has been accomplished. The optimized performance has been obtained with an LAGP coating of a thickness of 0.6 wt % (LAGP amount) annealed at 830 °C for 1 h in a pure oxygen atmosphere. When cycled in a voltage window of 3–4.3 V, 0.6 wt % LAGP on the LCO cell shows a discharge capacity of 180.87 and 163.91 mAh/g at 0.2 and 4C, respectively; in comparison, a pure LCO-based LIB shows 149.82 and 78.90 mAh/g at 0.2 and 4C. Furthermore, LAGP-coated LCO-based LIBs when compared to the pristine LCO-based LIBs show (i) remarkably better thermal stability, (ii) lower voltage polarizations during cycling, and (iii) an enabled higher voltage charge of up to 4.8 V. |
---|---|
AbstractList | Lithium-ion batteries (LIBs) have continued achieving higher energy densities by utilizing various high-capacity, high-voltage cathode materials. However, they still show severe challenges regarding their reliability and electrolyte–cathode stability during operation especially at high-voltage charging that is needed to achieve higher energy density. Therefore, ensuring the stability of cathodes with electrolytes becomes much more critical for the safe and extended cycling of high-energy LIBs. Herein, we present a comprehensive investigation on maximizing cathode–electrolyte interfacial stability by employing a thin-film coating of various superionic single Li+ ceramic conductors on the commonly used lithium cobalt oxide (LCO) cathode. In the present investigation, the lithium aluminum germanium phosphate (Li1.5Al0.5Ge1.5(PO4)3; LAGP) ceramic electrolyte is found to be the best LCO surface stabilizer among commonly known ceramic conductors. The investigation of different synthesis parameters, such as the coating thickness, sintering temperature and time, annealing atmosphere, and so on, has been accomplished. The optimized performance has been obtained with an LAGP coating of a thickness of 0.6 wt % (LAGP amount) annealed at 830 °C for 1 h in a pure oxygen atmosphere. When cycled in a voltage window of 3–4.3 V, 0.6 wt % LAGP on the LCO cell shows a discharge capacity of 180.87 and 163.91 mAh/g at 0.2 and 4C, respectively; in comparison, a pure LCO-based LIB shows 149.82 and 78.90 mAh/g at 0.2 and 4C. Furthermore, LAGP-coated LCO-based LIBs when compared to the pristine LCO-based LIBs show (i) remarkably better thermal stability, (ii) lower voltage polarizations during cycling, and (iii) an enabled higher voltage charge of up to 4.8 V. |
Author | Kumar, Jitendra Singh, Deependra Kumar Kum, Lenin W. Vallo, Nick |
AuthorAffiliation | Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering |
AuthorAffiliation_xml | – name: Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering |
Author_xml | – sequence: 1 givenname: Lenin W. orcidid: 0000-0003-4401-3228 surname: Kum fullname: Kum, Lenin W. email: leninwungk1@udayton.edu organization: Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering – sequence: 2 givenname: Nick surname: Vallo fullname: Vallo, Nick organization: Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering – sequence: 3 givenname: Deependra Kumar surname: Singh fullname: Singh, Deependra Kumar organization: Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering – sequence: 4 givenname: Jitendra orcidid: 0000-0002-2039-4436 surname: Kumar fullname: Kumar, Jitendra email: jitendra.kumar@udri.udayton.edu organization: Solid-State Batteries and Integrated Systems Laboratories, Power and Energy Division, Department of Electrical and Computer Engineering |
BookMark | eNp1kM1LAzEQxYNUsNZePecsbE2yH2mOWqoWCgrW85JNJt2U3USS9ND_3kh78OJp3gzvPYbfLZo47wChe0oWlDD6KFWUMC6YIhUR4gpNWc2rgoiGTf7oGzSP8UAIoYI2TIgpih8BlI2AVzL1XgPeuATBSGXlgNdubx1AsG6PjQ9576VToPF6AJWCVz2MVmWjdBrveghj1p9Jdnaw6YS9wVubensci413-FmmXG0h3qFrI4cI88ucoa-X9W71VmzfXzerp20hGa9SofiyarqSmaaE2shaa2CqEpUhRDNqeEk5UQwUMabTsltyrutKcloL1QnOaDlDi3OvCj7GAKb9DnaU4dRS0v5Sa8_U2gu1HHg4B_K9PfhjcPm9_8w_xp5y3w |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_150534 crossref_primary_10_3390_polym16040464 crossref_primary_10_1021_acsomega_4c00318 |
Cites_doi | 10.1016/j.rser.2021.111301 10.1016/j.etran.2021.100105 10.1149/1.3122903 10.1016/j.jechem.2020.12.017 10.3390/coatings11070744 10.1021/acsami.1c20787 10.3390/electrochem1020011 10.1016/j.egyr.2021.08.182 10.1002/adfm.202010095 10.1002/slct.201703084 10.1016/j.ensm.2020.10.026 10.1007/s11581-011-0611-x 10.1016/j.elecom.2007.02.008 10.1109/TVT.2011.2132812 10.1016/j.electacta.2021.138138 10.1038/s41565-021-00855-x 10.1557/mrs.2015.259 10.1016/S0167-2738(02)00067-X 10.1038/nmat1672 10.1016/j.mattod.2021.04.003 10.37934/arfmts.88.2.123132 10.1021/acsaem.0c03047 10.1002/ente.202100422 10.1021/cm403846a 10.1002/aenm.201802057 10.1021/acsaem.9b02291 10.1021/acs.chemmater.6b03870 10.1007/s11581-019-03422-6 10.1016/j.ensm.2020.11.008 10.1149/1945-7111/ac7359 10.1039/D1TA06683H 10.1016/j.ceramint.2020.10.225 10.1021/acsami.6b11630 10.1021/acsami.6b12085 10.1016/j.jelechem.2022.116250 10.1002/adfm.202009694 10.1016/j.applthermaleng.2020.116158 10.1021/acsami.6b16233 10.3390/en14051248 10.1149/2.0091707jes 10.1039/b904116h 10.1002/aenm.202002689 10.1021/acsami.1c19443 10.1016/j.mattod.2020.12.017 10.1016/j.mattod.2014.10.040 10.1016/j.ceramint.2021.03.162 10.1002/cssc.201900725 10.1016/j.electacta.2021.138227 10.1016/j.electacta.2007.10.040 10.1016/j.ensm.2020.03.031 10.1016/j.commatsci.2021.110324 10.1016/j.egyr.2021.05.027 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsaem.2c04099 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2574-0962 |
EndPage | 3009 |
ExternalDocumentID | 10_1021_acsaem_2c04099 a342844863 |
GroupedDBID | ABFRP ABQRX ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 W1F AAYXX BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a274t-c7846b32f63e5fa5dde2c494f00d21f73170c2ec0ffbdab877d54a7159cb97213 |
IEDL.DBID | ACS |
ISSN | 2574-0962 |
IngestDate | Fri Aug 23 01:57:05 EDT 2024 Wed Mar 15 05:33:33 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | artificial cathode−electrolyte interphase Li metal anode high-voltage charge annealing temperature single Li+ ceramic conductor thermal stability lithium-ion cathode−electrolyte stability voltage polarization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a274t-c7846b32f63e5fa5dde2c494f00d21f73170c2ec0ffbdab877d54a7159cb97213 |
ORCID | 0000-0003-4401-3228 0000-0002-2039-4436 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1021_acsaem_2c04099 acs_journals_10_1021_acsaem_2c04099 |
PublicationCentury | 2000 |
PublicationDate | 20230313 2023-03-13 |
PublicationDateYYYYMMDD | 2023-03-13 |
PublicationDate_xml | – month: 03 year: 2023 text: 20230313 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied energy materials |
PublicationTitleAlternate | ACS Appl. Energy Mater |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Wangjun F. (ref42/cit42) 2022; 917 Micah Z. (ref2/cit2) 2021; 14 Raphael Z. (ref9/cit9) 2016; 8 Pei M. (ref18/cit18) 2021; 9 Janani N. (ref45/cit45) 2011; 17 Thabang S. (ref23/cit23) 2021; 11 Xingang L. (ref36/cit36) 2017; 9 George E. B. (ref5/cit5) 2017; 164 Chul-Ho J. (ref21/cit21) 2021; 31 Narumi O. (ref46/cit46) 2007; 9 Ju-Myung K. (ref26/cit26) 2021; 46 Lenin Wung K. (ref43/cit43) 2022; 14 Taberna P. (ref4/cit4) 2006; 5 Jayasree S. S. (ref27/cit27) 2018; 3 Jianyuan L. (ref51/cit51) 2021; 16 Shunli W. (ref14/cit14) 2021; 7 Yu H. (ref16/cit16) 2021; 4 Xin W. (ref35/cit35) 2021; 47 Shuoqing Z. (ref13/cit13) 2021; 34 Nitta N. (ref30/cit30) 2015; 18 Tao J. (ref40/cit40) 2022; 5 Haijun R. (ref56/cit56) 2021; 186 Lena S. (ref55/cit55) 2021; 14 Hyo B. L. (ref32/cit32) 2022; 14 Hu G.-R. (ref34/cit34) 2008; 53 Yasunori B. (ref57/cit57) 2002; 148 Shu-qi Y. (ref41/cit41) 2021; 47 Zhou A. (ref31/cit31) 2016; 8 Ravi M. (ref3/cit3) 2010; 25 Brian L. (ref8/cit8) 2009; 2 Kyusung P. (ref47/cit47) 2016; 28 Zaijun C. (ref20/cit20) 2021; 378 Wang C. W. (ref33/cit33) 2020; 3 Ju-Myung K. (ref39/cit39) 2021; 46 Yuan L. (ref19/cit19) 2019 Hailin Z. (ref15/cit15) 2021; 7 Muhammad R. (ref54/cit54) 2021; 88 Zu-Guo S. (ref11/cit11) 2021; 148 Satyavani T. V. S. L. (ref10/cit10) 2016; 19 Kun Joong K. (ref48/cit48) 2021; 11 Baohe Y. (ref53/cit53) 2022; 169 He H. (ref7/cit7) 2011; 60 Kaiqiang Q. (ref17/cit17) 2021; 31 Biwei X. (ref28/cit28) 2018; 8 Zeyuan L. (ref44/cit44) 2020; 29 Qitao S. (ref12/cit12) 2021; 34 Yu L. (ref22/cit22) 2021; 60 Lin C. (ref52/cit52) 2021; 7 Tian X. (ref29/cit29) 2020; 26 Shim J. H. (ref25/cit25) 2014; 26 Crabtree G. (ref1/cit1) 2015; 40 Xinchao H. (ref37/cit37) 2021; 380 Das T. (ref24/cit24) 2021; 191 Yujia L. (ref38/cit38) 2021; 9 Mitsuru Y. (ref6/cit6) 2020; 1 Rachel D. (ref50/cit50) 2019; 12 Kumar B. (ref49/cit49) 2009; 156 |
References_xml | – volume: 148 start-page: 111301 year: 2021 ident: ref11/cit11 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2021.111301 contributor: fullname: Zu-Guo S. – volume: 7 start-page: 100105 year: 2021 ident: ref15/cit15 publication-title: eTransportation doi: 10.1016/j.etran.2021.100105 contributor: fullname: Hailin Z. – volume: 156 start-page: A506 year: 2009 ident: ref49/cit49 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3122903 contributor: fullname: Kumar B. – volume: 60 start-page: 32 year: 2021 ident: ref22/cit22 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.12.017 contributor: fullname: Yu L. – volume: 11 start-page: 744 year: 2021 ident: ref23/cit23 publication-title: Coatings doi: 10.3390/coatings11070744 contributor: fullname: Thabang S. – volume: 25 start-page: 139 year: 2010 ident: ref3/cit3 publication-title: ECS Trans. contributor: fullname: Ravi M. – volume: 14 start-page: 4100 year: 2022 ident: ref43/cit43 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c20787 contributor: fullname: Lenin Wung K. – volume: 1 start-page: 124 year: 2020 ident: ref6/cit6 publication-title: Electrochem doi: 10.3390/electrochem1020011 contributor: fullname: Mitsuru Y. – volume: 7 start-page: 5562 year: 2021 ident: ref14/cit14 publication-title: Energy Reports doi: 10.1016/j.egyr.2021.08.182 contributor: fullname: Shunli W. – volume: 31 start-page: 2010095 year: 2021 ident: ref21/cit21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010095 contributor: fullname: Chul-Ho J. – volume: 3 start-page: 2763 year: 2018 ident: ref27/cit27 publication-title: ChemistrySelect doi: 10.1002/slct.201703084 contributor: fullname: Jayasree S. S. – volume: 34 start-page: 735 year: 2021 ident: ref12/cit12 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2020.10.026 contributor: fullname: Qitao S. – volume: 17 start-page: 575 year: 2011 ident: ref45/cit45 publication-title: Ionics doi: 10.1007/s11581-011-0611-x contributor: fullname: Janani N. – volume: 9 start-page: 1486 year: 2007 ident: ref46/cit46 publication-title: Electrochem. Communications doi: 10.1016/j.elecom.2007.02.008 contributor: fullname: Narumi O. – volume: 60 start-page: 1461 year: 2011 ident: ref7/cit7 publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2011.2132812 contributor: fullname: He H. – volume: 378 start-page: 138138 year: 2021 ident: ref20/cit20 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2021.138138 contributor: fullname: Zaijun C. – volume: 16 start-page: 599 year: 2021 ident: ref51/cit51 publication-title: Nature Nanotechnology doi: 10.1038/s41565-021-00855-x contributor: fullname: Jianyuan L. – volume: 40 start-page: 1067 year: 2015 ident: ref1/cit1 publication-title: MRS Bulletin doi: 10.1557/mrs.2015.259 contributor: fullname: Crabtree G. – volume: 148 start-page: 311 year: 2002 ident: ref57/cit57 publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00067-X contributor: fullname: Yasunori B. – volume: 5 start-page: 567 year: 2006 ident: ref4/cit4 publication-title: Nature Mater doi: 10.1038/nmat1672 contributor: fullname: Taberna P. – volume: 46 start-page: 6 year: 2021 ident: ref39/cit39 publication-title: Materials Today doi: 10.1016/j.mattod.2021.04.003 contributor: fullname: Ju-Myung K. – volume: 88 start-page: 123 year: 2021 ident: ref54/cit54 publication-title: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences doi: 10.37934/arfmts.88.2.123132 contributor: fullname: Muhammad R. – volume: 4 start-page: 2489 year: 2021 ident: ref16/cit16 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c03047 contributor: fullname: Yu H. – volume: 19 start-page: 178 year: 2016 ident: ref10/cit10 publication-title: International Journal contributor: fullname: Satyavani T. V. S. L. – volume: 9 start-page: 2100422 year: 2021 ident: ref38/cit38 publication-title: Energy Technol doi: 10.1002/ente.202100422 contributor: fullname: Yujia L. – volume: 26 start-page: 2537 year: 2014 ident: ref25/cit25 publication-title: Chem. Mater. doi: 10.1021/cm403846a contributor: fullname: Shim J. H. – volume: 8 start-page: 1802057 year: 2018 ident: ref28/cit28 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802057 contributor: fullname: Biwei X. – volume: 3 start-page: 2593 year: 2020 ident: ref33/cit33 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b02291 contributor: fullname: Wang C. W. – volume: 28 start-page: 8051 year: 2016 ident: ref47/cit47 publication-title: Chemistry of Materials doi: 10.1021/acs.chemmater.6b03870 contributor: fullname: Kyusung P. – volume: 26 start-page: 2715 year: 2020 ident: ref29/cit29 publication-title: Ionics doi: 10.1007/s11581-019-03422-6 contributor: fullname: Tian X. – volume: 34 start-page: 716 year: 2021 ident: ref13/cit13 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2020.11.008 contributor: fullname: Shuoqing Z. – volume: 169 start-page: 060513 year: 2022 ident: ref53/cit53 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac7359 contributor: fullname: Baohe Y. – volume: 14 start-page: 1635 year: 2021 ident: ref2/cit2 publication-title: Environment Science contributor: fullname: Micah Z. – volume: 9 start-page: 25237 year: 2021 ident: ref18/cit18 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA06683H contributor: fullname: Pei M. – volume: 47 start-page: 6434 year: 2021 ident: ref35/cit35 publication-title: Ceramics International doi: 10.1016/j.ceramint.2020.10.225 contributor: fullname: Xin W. – volume: 8 start-page: 34123 year: 2016 ident: ref31/cit31 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11630 contributor: fullname: Zhou A. – volume: 8 start-page: 32637 year: 2016 ident: ref9/cit9 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12085 contributor: fullname: Raphael Z. – volume: 917 start-page: 116250 year: 2022 ident: ref42/cit42 publication-title: J. Electroanalytical Chem. doi: 10.1016/j.jelechem.2022.116250 contributor: fullname: Wangjun F. – volume: 31 start-page: 2009694 year: 2021 ident: ref17/cit17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009694 contributor: fullname: Kaiqiang Q. – volume: 186 start-page: 116158 year: 2021 ident: ref56/cit56 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2020.116158 contributor: fullname: Haijun R. – start-page: 1901019 year: 2019 ident: ref19/cit19 publication-title: Small contributor: fullname: Yuan L. – volume: 9 start-page: 11696 year: 2017 ident: ref36/cit36 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b16233 contributor: fullname: Xingang L. – volume: 14 start-page: 1248 year: 2021 ident: ref55/cit55 publication-title: Energies doi: 10.3390/en14051248 contributor: fullname: Lena S. – volume: 164 start-page: A5019 year: 2017 ident: ref5/cit5 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0091707jes contributor: fullname: George E. B. – volume: 2 start-page: 638 year: 2009 ident: ref8/cit8 publication-title: Energy Environ. Sci. doi: 10.1039/b904116h contributor: fullname: Brian L. – volume: 11 start-page: 2002689 year: 2021 ident: ref48/cit48 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002689 contributor: fullname: Kun Joong K. – volume: 14 start-page: 2731 year: 2022 ident: ref32/cit32 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c19443 contributor: fullname: Hyo B. L. – volume: 46 start-page: 155 year: 2021 ident: ref26/cit26 publication-title: Materials Today doi: 10.1016/j.mattod.2020.12.017 contributor: fullname: Ju-Myung K. – volume: 18 start-page: 252 year: 2015 ident: ref30/cit30 publication-title: Mater Today doi: 10.1016/j.mattod.2014.10.040 contributor: fullname: Nitta N. – volume: 47 start-page: 18397 year: 2021 ident: ref41/cit41 publication-title: Ceramics International doi: 10.1016/j.ceramint.2021.03.162 contributor: fullname: Shu-qi Y. – volume: 12 start-page: 3713 year: 2019 ident: ref50/cit50 publication-title: ChemSusChem doi: 10.1002/cssc.201900725 contributor: fullname: Rachel D. – volume: 380 start-page: 138227 year: 2021 ident: ref37/cit37 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2021.138227 contributor: fullname: Xinchao H. – volume: 5 start-page: 305 year: 2022 ident: ref40/cit40 publication-title: ACS Applied Energy Materials contributor: fullname: Tao J. – volume: 53 start-page: 2567 year: 2008 ident: ref34/cit34 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2007.10.040 contributor: fullname: Hu G.-R. – volume: 29 start-page: 71 year: 2020 ident: ref44/cit44 publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2020.03.031 contributor: fullname: Zeyuan L. – volume: 191 start-page: 110324 year: 2021 ident: ref24/cit24 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110324 contributor: fullname: Das T. – volume: 7 start-page: 3050 year: 2021 ident: ref52/cit52 publication-title: Energy Reports doi: 10.1016/j.egyr.2021.05.027 contributor: fullname: Lin C. |
SSID | ssj0001916299 |
Score | 2.2867153 |
Snippet | Lithium-ion batteries (LIBs) have continued achieving higher energy densities by utilizing various high-capacity, high-voltage cathode materials. However, they... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 2999 |
Title | Precise Cathode Interfacial Engineering for Enhanced Electrochemical and Thermal Stability of Lithium-Ion Batteries |
URI | http://dx.doi.org/10.1021/acsaem.2c04099 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46X_TBuzhvBBR86mzTJG0fZWxMURF0sLeSKxNdK7Z70F_vSdux4RB9LIQQTr_kfDk55zsIXcQ85lwbAC_V3KNSCE-SSHiGxowGlikeu0Lh-wc-GNLbERvN4x0_X_BJcCVUIcykQxTALUlW0RqJYGc4EtR9mkdTgOWQqlkkQJB6wMvJTKFxaQrnh1Sx4IcWHEp_q1Y3KiodQpdH8tqZlrKjvpZVGv9c6zbabFglvq5hsINWTLaLNha0BvdQ8eh0LAqDXc1frg2uYoFWuJA5XhiJgcXC97jKDMC9ukuOamQFsMg0BmTBaf6GgadWmbWfOLf47qUcv0wn3k2e4VqzE67g-2jY7z13B17TccETcDstPRUBHZEhsTw0zAoGZx9RNKHW9zUJbARkw1fEKN9aqYWMo0gzKiKgREo6GaDwALWyPDOHCEviS-MTI6115aws0ZLFXGpJFFEBj9voHKyVNjumSKvHcBKktQnTxoRtdDn7S-l7Lb_xy8ijf813jNZdv3iXRBaEJ6hVfkzNKbCKUp5VgPoGpEXJCA |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58HNSDb7E-FxQ8pSbb3U16FFGqVilYwVvYJ4o2FZMe9Nc7m6RaFEGPCcswTCY7387OfANwmIhECGPReZkRAVNSBorGMrAs4SxyXIvENwpf34jOHbu85_dTcDzuhUElcpSUl5f4X-wC0TG-k3bQpBq9rt2ehlkeY7T0WOj09iupgmCHljMj0RNZgPCcjokaf4jw4UjnE-FoIq6cL0HvU6OynOSpOSpUU79_I2v8h8rLsFhjTHJSOcUKTNlsFRYmmAfXIO95VovcEt8BODSWlJlBJ30CnUysJIhp8fmhrBMgZ9XMHF2TDBCZGYJ-hnv7M0HUWtbZvpGhI93H4uFxNAguhhmpGDzxQL4Od-dn_dNOUM9fCCSeVYtAxwhOVIs60bLcSY47IdWszVwYGhq5GKFHqKnVoXPKSJXEseFMxgiQtPKkQK0NmMmGmd0EomiobEitcs43t_K2UTwRyiiqqY5E0oADtFZa_z95Wl6N0yitTJjWJmzA0fhjpS8VGccvK7f-JG8f5jr9627avbi52oZ5P0nel5dFrR2YKV5HdhfxRqH2Sh_7AH_d0W0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBuzivAQWfOtssSbvHoQ7vCG6wt5IrE7UbtnvQX-9J2ulQBH1sCCGcnuR8OZfvIHSU8IRzbUB5qeYBlUIEksQiMDRhNLJM8cQVCt_e8YseveqzflXH7WphYBM5rJT7IL471SNtK4aB6ATGhXlpEAWa12rNojkWRz422z59-HKsAOAhvm8kaCMNAKKTCVnjjyWcSVL5lEmasi2dZdT93JVPKXlqjAvZUO_fCBv_ue0VtFRhTdwulWMVzZhsDS1OMRCuo_zesVvkBrtKwKE22HsIrXCOdDw1EwO2he-BzxfA52XvHFWRDWCRaQz6Bnf8Mwb06vNt3_DQ4pvHYvA4fgkuhxkumTzhYb6Bep3z7ulFUPVhCAS8WYtAxQBSZJNY3jTMCgY3IlG0RW0YahLZGCBIqIhRobVSC5nEsWZUxACUlHTkQM1NVMuGmdlCWJJQmpAYaa0rcmUtLVnCpZZEERXxpI4OQVppdY7y1IfISZSWIkwrEdbR8eSHpaOSlOOXmdt_Wu8Azd-fddKby7vrHbTgGsq7LLOouYtqxevY7AHsKOS-V7MPSY3T5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+Cathode+Interfacial+Engineering+for+Enhanced+Electrochemical+and+Thermal+Stability+of+Lithium-Ion+Batteries&rft.jtitle=ACS+applied+energy+materials&rft.au=Kum%2C+Lenin+W.&rft.au=Vallo%2C+Nick&rft.au=Singh%2C+Deependra+Kumar&rft.au=Kumar%2C+Jitendra&rft.date=2023-03-13&rft.pub=American+Chemical+Society&rft.issn=2574-0962&rft.eissn=2574-0962&rft.volume=6&rft.issue=5&rft.spage=2999&rft.epage=3009&rft_id=info:doi/10.1021%2Facsaem.2c04099&rft.externalDocID=a342844863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0962&client=summon |