Nanoporous Cathode Material for High-Energy-Density Sodium-Ion Batteries
A promising cathode material has been developed for sodium-ion batteries (SIBs): NASICON-type Na3V2(PO4)3 (NVP). However, replacing V with a low-cost, environmentally friendly metal ion is an immediate priority for Na3V2(PO4)3 (NVP) industrialization. In this paper, we synthesize a nanoporous vanadi...
Saved in:
Published in | ACS applied nano materials Vol. 7; no. 1; pp. 243 - 252 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
12.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A promising cathode material has been developed for sodium-ion batteries (SIBs): NASICON-type Na3V2(PO4)3 (NVP). However, replacing V with a low-cost, environmentally friendly metal ion is an immediate priority for Na3V2(PO4)3 (NVP) industrialization. In this paper, we synthesize a nanoporous vanadium-based polyanion cathode material by a mechanochemical method. Na3.5V1.5Mn0.5(PO4)3/C (NVMP/C-0.5) shows excellent electrochemical performance and has almost no Jahn–Teller effect. NVMP/C-0.5 has an initial discharge capacity of 136.2 mAh g–1 at 0.1C, and a plateau voltage of 3.5 V. In addition to exhibiting excellent rate performance (96.4 mAh g–1 at 20C), the NVMP/C-0.5 exhibits long cycle capability (64.7% of the capacity is retained after 8000 cycles at 20C). Ex situ X-ray photoelectron spectroscopy (XPS) tests demonstrate that V3+/V4+, V4+/V5+, and Mn2+/Mn3+ redox pairs are all involved in redox reactions. Ex situ X-ray diffraction (XRD) tests reveal that NVMP/C-0.5 has high structural reversibility and a small volume change in the charge–discharge reaction. With its high energy density, NVMP/C-0.5/hard carbon full cells have the potential for use in sodium-ion batteries. |
---|---|
AbstractList | A promising cathode material has been developed for sodium-ion batteries (SIBs): NASICON-type Na3V2(PO4)3 (NVP). However, replacing V with a low-cost, environmentally friendly metal ion is an immediate priority for Na3V2(PO4)3 (NVP) industrialization. In this paper, we synthesize a nanoporous vanadium-based polyanion cathode material by a mechanochemical method. Na3.5V1.5Mn0.5(PO4)3/C (NVMP/C-0.5) shows excellent electrochemical performance and has almost no Jahn–Teller effect. NVMP/C-0.5 has an initial discharge capacity of 136.2 mAh g–1 at 0.1C, and a plateau voltage of 3.5 V. In addition to exhibiting excellent rate performance (96.4 mAh g–1 at 20C), the NVMP/C-0.5 exhibits long cycle capability (64.7% of the capacity is retained after 8000 cycles at 20C). Ex situ X-ray photoelectron spectroscopy (XPS) tests demonstrate that V3+/V4+, V4+/V5+, and Mn2+/Mn3+ redox pairs are all involved in redox reactions. Ex situ X-ray diffraction (XRD) tests reveal that NVMP/C-0.5 has high structural reversibility and a small volume change in the charge–discharge reaction. With its high energy density, NVMP/C-0.5/hard carbon full cells have the potential for use in sodium-ion batteries. |
Author | Tao, Qingdong Ding, Haiyang Ren, Jianhui He, Jiafeng Li, Hao |
AuthorAffiliation | School of Materials Science and Engineering |
AuthorAffiliation_xml | – name: School of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Haiyang orcidid: 0000-0002-5746-9825 surname: Ding fullname: Ding, Haiyang email: 740236634@qq.com – sequence: 2 givenname: Hao surname: Li fullname: Li, Hao – sequence: 3 givenname: Qingdong surname: Tao fullname: Tao, Qingdong – sequence: 4 givenname: Jianhui surname: Ren fullname: Ren, Jianhui – sequence: 5 givenname: Jiafeng surname: He fullname: He, Jiafeng |
BookMark | eNp1kDFPwzAQRi1UJErpypwZyeGcOHEyQii0UoEBmKOr47SuEruy3aH_nlTtgJA63afTeyfdd0tGxhpFyD2DmEHCHlF6NH2cSuCpSK_IOMkEp1AKGP3JN2Tq_RYAWMnyFGBM5h9o7M46u_dRhWFjGxW9Y1BOYxe11kVzvd7QmVFufaAvyngdDtGXbfS-pwtromcMR1j5O3LdYufV9Dwn5Od19l3N6fLzbVE9LSkmgge6kimiTKBtJKDgWYm8yFW7QtEgZDkvCsXbrMnLYmBUkRdlxuSqZAhCinywJ4Sf7kpnvXeqraUOGLQ1waHuagb1sZD6VEh9LmTQ4n_azuke3eGy8HAShn29tXtnhq8uwb-n73T8 |
CitedBy_id | crossref_primary_10_3390_nano14231915 crossref_primary_10_1021_acsami_4c15767 |
Cites_doi | 10.1016/j.jpowsour.2022.232036 10.1016/j.jpowsour.2022.231257 10.1016/j.mtener.2022.101006 10.1016/j.electacta.2020.137379 10.1021/acsami.0c11975 10.1007/s11426-019-9610-3 10.1016/j.cej.2021.133739 10.1002/ese3.1128 10.1016/j.cjche.2021.06.008 10.1016/j.jallcom.2020.156118 10.1016/j.jpowsour.2020.228906 10.1016/j.cej.2021.133962 10.1016/j.jallcom.2019.02.202 10.1016/j.carbon.2022.05.033 10.1021/acs.iecr.0c04187 10.1002/anie.202008318 10.1039/C5CP05323D 10.1002/smll.202003973 10.1016/j.jpowsour.2019.04.080 10.1016/j.cej.2021.130052 10.1021/acsami.8b12055 10.1002/aenm.202100729 10.1016/j.cej.2020.126311 10.3389/fchem.2020.00635 10.1016/j.ensm.2020.09.007 10.1016/j.nanoen.2021.106462 10.1016/j.apsusc.2022.154285 10.1002/celc.201800379 10.1021/acsenergylett.1c02107 10.1016/j.electacta.2020.137376 10.1016/j.jechem.2020.07.008 10.1016/j.ensm.2020.11.010 10.1016/j.cej.2021.133926 10.1021/acsami.0c05490 10.1016/j.jechem.2022.04.017 10.1002/aenm.201200558 10.1016/j.ensm.2019.05.041 10.1016/j.jallcom.2022.166630 10.1002/er.8619 10.1063/1.3580252 10.1039/D1CC04449D 10.1016/j.cej.2020.126974 10.1016/j.jallcom.2021.162952 10.1016/j.jpowsour.2022.231901 10.1016/j.nanoen.2020.104548 10.1016/j.cej.2020.126291 10.1002/smll.202304002 10.1016/j.cej.2022.137740 10.1002/adfm.202208051 10.1002/adfm.201908680 10.1021/acsami.9b12214 10.1016/j.jechem.2022.06.016 10.1021/acsaem.0c02188 10.1021/acsami.1c17117 10.1002/adsu.201700171 10.1016/j.cej.2020.127451 10.1016/j.jpowsour.2020.228924 10.1016/j.jallcom.2022.164719 10.1016/j.ceramint.2021.04.222 10.1002/admi.202100188 10.1002/smtd.201800218 10.1016/j.jechem.2023.02.016 10.1002/aenm.202200654 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsanm.3c04373 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2574-0970 |
EndPage | 252 |
ExternalDocumentID | 10_1021_acsanm_3c04373 b25729329 |
GroupedDBID | ABFRP ABQRX ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a274t-bc3aac20fdc0a7459a486efba7da056488e4f5d69820fe868951cb91a07c76bc3 |
IEDL.DBID | ACS |
ISSN | 2574-0970 |
IngestDate | Thu Apr 24 22:53:38 EDT 2025 Tue Jul 01 02:47:58 EDT 2025 Tue Jan 16 03:36:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | NVMP/C-0.5//hard carbon full cell high energy density ex situ XPS NVMP/C-0.5 ex situ XRD |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a274t-bc3aac20fdc0a7459a486efba7da056488e4f5d69820fe868951cb91a07c76bc3 |
ORCID | 0000-0002-5746-9825 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1021_acsanm_3c04373 crossref_primary_10_1021_acsanm_3c04373 acs_journals_10_1021_acsanm_3c04373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-12 |
PublicationDateYYYYMMDD | 2024-01-12 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied nano materials |
PublicationTitleAlternate | ACS Appl. Nano Mater |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1016/j.jpowsour.2022.232036 – ident: ref50/cit50 doi: 10.1016/j.jpowsour.2022.231257 – ident: ref25/cit25 doi: 10.1016/j.mtener.2022.101006 – ident: ref6/cit6 doi: 10.1016/j.electacta.2020.137379 – ident: ref59/cit59 doi: 10.1021/acsami.0c11975 – ident: ref4/cit4 doi: 10.1007/s11426-019-9610-3 – ident: ref12/cit12 doi: 10.1016/j.cej.2021.133739 – ident: ref8/cit8 doi: 10.1002/ese3.1128 – ident: ref18/cit18 doi: 10.1016/j.cjche.2021.06.008 – ident: ref42/cit42 doi: 10.1016/j.jallcom.2020.156118 – ident: ref2/cit2 doi: 10.1016/j.jpowsour.2020.228906 – ident: ref7/cit7 doi: 10.1016/j.cej.2021.133962 – ident: ref27/cit27 doi: 10.1016/j.jallcom.2019.02.202 – ident: ref29/cit29 doi: 10.1016/j.carbon.2022.05.033 – ident: ref62/cit62 doi: 10.1021/acs.iecr.0c04187 – ident: ref26/cit26 doi: 10.1002/anie.202008318 – ident: ref24/cit24 doi: 10.1039/C5CP05323D – ident: ref36/cit36 doi: 10.1002/smll.202003973 – ident: ref35/cit35 doi: 10.1016/j.jpowsour.2019.04.080 – ident: ref53/cit53 doi: 10.1016/j.cej.2021.130052 – ident: ref41/cit41 doi: 10.1021/acsami.8b12055 – ident: ref49/cit49 doi: 10.1002/aenm.202100729 – ident: ref1/cit1 doi: 10.1016/j.cej.2020.126311 – ident: ref54/cit54 doi: 10.3389/fchem.2020.00635 – ident: ref17/cit17 doi: 10.1016/j.ensm.2020.09.007 – ident: ref31/cit31 doi: 10.1016/j.nanoen.2021.106462 – ident: ref22/cit22 doi: 10.1016/j.apsusc.2022.154285 – ident: ref30/cit30 doi: 10.1002/celc.201800379 – ident: ref56/cit56 doi: 10.1021/acsenergylett.1c02107 – ident: ref11/cit11 doi: 10.1016/j.electacta.2020.137376 – ident: ref20/cit20 doi: 10.1016/j.jechem.2020.07.008 – ident: ref32/cit32 doi: 10.1016/j.ensm.2020.11.010 – ident: ref16/cit16 doi: 10.1016/j.cej.2021.133926 – ident: ref43/cit43 doi: 10.1021/acsami.0c05490 – ident: ref47/cit47 doi: 10.1016/j.jechem.2022.04.017 – ident: ref61/cit61 doi: 10.1002/aenm.201200558 – ident: ref58/cit58 doi: 10.1016/j.ensm.2019.05.041 – ident: ref19/cit19 doi: 10.1016/j.jallcom.2022.166630 – ident: ref23/cit23 doi: 10.1002/er.8619 – ident: ref57/cit57 doi: 10.1063/1.3580252 – ident: ref28/cit28 doi: 10.1039/D1CC04449D – ident: ref10/cit10 doi: 10.1016/j.cej.2020.126974 – ident: ref14/cit14 doi: 10.1016/j.jallcom.2021.162952 – ident: ref21/cit21 doi: 10.1016/j.jpowsour.2022.231901 – ident: ref33/cit33 doi: 10.1016/j.nanoen.2020.104548 – ident: ref9/cit9 doi: 10.1016/j.cej.2020.126291 – ident: ref34/cit34 doi: 10.1002/smll.202304002 – ident: ref3/cit3 doi: 10.1016/j.cej.2022.137740 – ident: ref38/cit38 doi: 10.1002/adfm.202208051 – ident: ref60/cit60 doi: 10.1002/adfm.201908680 – ident: ref51/cit51 doi: 10.1021/acsami.9b12214 – ident: ref15/cit15 doi: 10.1016/j.jechem.2022.06.016 – ident: ref44/cit44 doi: 10.1021/acsaem.0c02188 – ident: ref52/cit52 doi: 10.1021/acsami.1c17117 – ident: ref55/cit55 doi: 10.1002/adsu.201700171 – ident: ref63/cit63 doi: 10.1016/j.cej.2020.127451 – ident: ref5/cit5 doi: 10.1016/j.jpowsour.2020.228924 – ident: ref46/cit46 doi: 10.1016/j.jallcom.2022.164719 – ident: ref45/cit45 doi: 10.1016/j.ceramint.2021.04.222 – ident: ref39/cit39 doi: 10.1002/admi.202100188 – ident: ref40/cit40 doi: 10.1002/smtd.201800218 – ident: ref48/cit48 doi: 10.1016/j.jechem.2023.02.016 – ident: ref37/cit37 doi: 10.1002/aenm.202200654 |
SSID | ssj0001916300 |
Score | 2.2845926 |
Snippet | A promising cathode material has been developed for sodium-ion batteries (SIBs): NASICON-type Na3V2(PO4)3 (NVP). However, replacing V with a low-cost,... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 243 |
Title | Nanoporous Cathode Material for High-Energy-Density Sodium-Ion Batteries |
URI | http://dx.doi.org/10.1021/acsanm.3c04373 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60InjxLdYXCwqetmY3j02OpbZUQS-10FvYRxZEm4hJD_rrnd1EWyxF75vZZJjJfDM78y1CVxpygNAYRoz1wkB6nMiASgLBFhC_pBZV2G6Lx2g4Du4n4WRe7_h9gs_ojVClyKcdXzkWnnW0waKY2zSr2xvNqymAcnw3bwImGBAv4d43Q-OSCBuHVLkQhxYCymCnZjcqHQ-h7SN56cwq2VGfyyyNf77rLtpuUCXu1mawh9ayfB9tuu5OVR6gIfxDCwDakOVjO_JX6Aw_iMoZHwbUim23B-m7MUBya1vaqw88KvTzbEruihzXJJyQUx-i8aD_1BuS5goFIiDdrIhUvrAkjEYrT_AgTEQQR5mRgmsB0Ae8NwtMqKMEgIDJ4igGwKVkQoXHFY_g6SPUyos8O0Y4EQlPYhNSCZJBRsJiQZmmQmrtg7A2uoTPTxsXKFN3us1oWuskbXTSRuRb7alqWMjtZRivK9df_6x_q_k3Vqw8-df-p2iLASyxRRTKzlCrep9l5wArKnnhLOoLQ1zGrA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8QwEB58IHrxLb4NqHjK2mT7PHgQH-z6uqjgreZVWNRWbBfRP-Nf8ac5yXZVFMGL4LWk03RmwnyTzHwB2NCYAwRZxmlmV6EvvYhKn0mKwRYRv2QWVdhqi7OwdekfXQVXA_DS74XBSZQoqXSH-B_sAmwbn4n8rtFUjoynrqI8Nk-PmKOVO-19NOgm54cHF3stWl8jQAWmXBWVqiksEWGmlSciP0iEH4cmkyLSAsM_erDxs0CHCQbDzMRhjKBDyYQJL1JRiG-j3EEYRuTDbXa3u3f-sYmD4Krp2lzQ833qJZHXJ4b8NmUb_lT5Kfx9imOHE_D6rgFXvnLT6FayoZ6_kEP-YxVNwniNocluz-mnYMDk0zDiallVOQMtjBgFphVFtyS2wbHQhpyKyi01ghid2NoWeuCaHum-LeCvnsh5oTvdO9ouctKjHO2YchYu_-Q35mAoL3IzDyQRSZTEWcAkSkYZCY8F45oJqXUThS3AOqo7rRd8mbqzfM7Sng3S2gYLQPvWTlXNuW6v_rj9cfzW-_j7HtvIDyMXf_X9NRhtXZyepCfts-MlGOMIyOz2EePLMFQ9dM0KAqpKrjqnJnD91y7yBpa6Ksg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LSxxBEC5WJeLFR1SiRm0wwVOv07PzPOSw7IPdqEvACN7GfoIYZ8SZJZi_41_JD0t17-wqiuBFyHXoqenpqqK-6q76GuCLwhwgNManxnphILyYioAJisEWEb9gFlXYaotRNDgPvl-EFw14mPbC4CRKlFS6Q3zr1bfK1AwD7Aif8_ym2ZKOkKeupDzW978xTyu_Dbuo1K--3-_97AxofZUA5Zh2VVTIFrdkhEZJj8dBmPIgibQRPFYcIQBasQ5MqKIUA6LRSZQg8JAiZdyLZRzh2yh3DhbsGaHN8Nqds8eNHARYLdfqgtYfUC-NvSk55Isp2xAoyych8Eks66_A39kquBKW6-a4Ek355xlB5H--TKuwXGNp0p4Y_xo0dP4RPriaVlmuwwAjR4HpRTEuiW10LJQmp7xyLkcQqxNb40J7rvmRdm0hf3VPzgp1Nb6hwyInE-rRK11uwPm7_MYmzOdFrj8BSXkap4kJmUDJKCP1E858xbhQqoXCtuAAlzurHb_M3Jm-z7KJDrJaB1tApxrPZM29bq8A-fXq-MPZ-NsJ68grI7ff9P19WPzR7Wcnw9HxDiz5iMvsLhLzP8N8dTfWu4irKrHn7JrA5XtbyD-TMy1L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+Cathode+Material+for+High-Energy-Density+Sodium-Ion+Batteries&rft.jtitle=ACS+applied+nano+materials&rft.au=Ding%2C+Haiyang&rft.au=Li%2C+Hao&rft.au=Tao%2C+Qingdong&rft.au=Ren%2C+Jianhui&rft.date=2024-01-12&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=7&rft.issue=1&rft.spage=243&rft.epage=252&rft_id=info:doi/10.1021%2Facsanm.3c04373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsanm_3c04373 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon |