Nanoporous Cathode Material for High-Energy-Density Sodium-Ion Batteries

A promising cathode material has been developed for sodium-ion batteries (SIBs): NASICON-type Na3V2(PO4)3 (NVP). However, replacing V with a low-cost, environmentally friendly metal ion is an immediate priority for Na3V2(PO4)3 (NVP) industrialization. In this paper, we synthesize a nanoporous vanadi...

Full description

Saved in:
Bibliographic Details
Published inACS applied nano materials Vol. 7; no. 1; pp. 243 - 252
Main Authors Ding, Haiyang, Li, Hao, Tao, Qingdong, Ren, Jianhui, He, Jiafeng
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A promising cathode material has been developed for sodium-ion batteries (SIBs): NASICON-type Na3V2(PO4)3 (NVP). However, replacing V with a low-cost, environmentally friendly metal ion is an immediate priority for Na3V2(PO4)3 (NVP) industrialization. In this paper, we synthesize a nanoporous vanadium-based polyanion cathode material by a mechanochemical method. Na3.5V1.5Mn0.5(PO4)3/C (NVMP/C-0.5) shows excellent electrochemical performance and has almost no Jahn–Teller effect. NVMP/C-0.5 has an initial discharge capacity of 136.2 mAh g–1 at 0.1C, and a plateau voltage of 3.5 V. In addition to exhibiting excellent rate performance (96.4 mAh g–1 at 20C), the NVMP/C-0.5 exhibits long cycle capability (64.7% of the capacity is retained after 8000 cycles at 20C). Ex situ X-ray photoelectron spectroscopy (XPS) tests demonstrate that V3+/V4+, V4+/V5+, and Mn2+/Mn3+ redox pairs are all involved in redox reactions. Ex situ X-ray diffraction (XRD) tests reveal that NVMP/C-0.5 has high structural reversibility and a small volume change in the charge–discharge reaction. With its high energy density, NVMP/C-0.5/hard carbon full cells have the potential for use in sodium-ion batteries.
AbstractList A promising cathode material has been developed for sodium-ion batteries (SIBs): NASICON-type Na3V2(PO4)3 (NVP). However, replacing V with a low-cost, environmentally friendly metal ion is an immediate priority for Na3V2(PO4)3 (NVP) industrialization. In this paper, we synthesize a nanoporous vanadium-based polyanion cathode material by a mechanochemical method. Na3.5V1.5Mn0.5(PO4)3/C (NVMP/C-0.5) shows excellent electrochemical performance and has almost no Jahn–Teller effect. NVMP/C-0.5 has an initial discharge capacity of 136.2 mAh g–1 at 0.1C, and a plateau voltage of 3.5 V. In addition to exhibiting excellent rate performance (96.4 mAh g–1 at 20C), the NVMP/C-0.5 exhibits long cycle capability (64.7% of the capacity is retained after 8000 cycles at 20C). Ex situ X-ray photoelectron spectroscopy (XPS) tests demonstrate that V3+/V4+, V4+/V5+, and Mn2+/Mn3+ redox pairs are all involved in redox reactions. Ex situ X-ray diffraction (XRD) tests reveal that NVMP/C-0.5 has high structural reversibility and a small volume change in the charge–discharge reaction. With its high energy density, NVMP/C-0.5/hard carbon full cells have the potential for use in sodium-ion batteries.
Author Tao, Qingdong
Ding, Haiyang
Ren, Jianhui
He, Jiafeng
Li, Hao
AuthorAffiliation School of Materials Science and Engineering
AuthorAffiliation_xml – name: School of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Haiyang
  orcidid: 0000-0002-5746-9825
  surname: Ding
  fullname: Ding, Haiyang
  email: 740236634@qq.com
– sequence: 2
  givenname: Hao
  surname: Li
  fullname: Li, Hao
– sequence: 3
  givenname: Qingdong
  surname: Tao
  fullname: Tao, Qingdong
– sequence: 4
  givenname: Jianhui
  surname: Ren
  fullname: Ren, Jianhui
– sequence: 5
  givenname: Jiafeng
  surname: He
  fullname: He, Jiafeng
BookMark eNp1kDFPwzAQRi1UJErpypwZyeGcOHEyQii0UoEBmKOr47SuEruy3aH_nlTtgJA63afTeyfdd0tGxhpFyD2DmEHCHlF6NH2cSuCpSK_IOMkEp1AKGP3JN2Tq_RYAWMnyFGBM5h9o7M46u_dRhWFjGxW9Y1BOYxe11kVzvd7QmVFufaAvyngdDtGXbfS-pwtromcMR1j5O3LdYufV9Dwn5Od19l3N6fLzbVE9LSkmgge6kimiTKBtJKDgWYm8yFW7QtEgZDkvCsXbrMnLYmBUkRdlxuSqZAhCinywJ4Sf7kpnvXeqraUOGLQ1waHuagb1sZD6VEh9LmTQ4n_azuke3eGy8HAShn29tXtnhq8uwb-n73T8
CitedBy_id crossref_primary_10_3390_nano14231915
crossref_primary_10_1021_acsami_4c15767
Cites_doi 10.1016/j.jpowsour.2022.232036
10.1016/j.jpowsour.2022.231257
10.1016/j.mtener.2022.101006
10.1016/j.electacta.2020.137379
10.1021/acsami.0c11975
10.1007/s11426-019-9610-3
10.1016/j.cej.2021.133739
10.1002/ese3.1128
10.1016/j.cjche.2021.06.008
10.1016/j.jallcom.2020.156118
10.1016/j.jpowsour.2020.228906
10.1016/j.cej.2021.133962
10.1016/j.jallcom.2019.02.202
10.1016/j.carbon.2022.05.033
10.1021/acs.iecr.0c04187
10.1002/anie.202008318
10.1039/C5CP05323D
10.1002/smll.202003973
10.1016/j.jpowsour.2019.04.080
10.1016/j.cej.2021.130052
10.1021/acsami.8b12055
10.1002/aenm.202100729
10.1016/j.cej.2020.126311
10.3389/fchem.2020.00635
10.1016/j.ensm.2020.09.007
10.1016/j.nanoen.2021.106462
10.1016/j.apsusc.2022.154285
10.1002/celc.201800379
10.1021/acsenergylett.1c02107
10.1016/j.electacta.2020.137376
10.1016/j.jechem.2020.07.008
10.1016/j.ensm.2020.11.010
10.1016/j.cej.2021.133926
10.1021/acsami.0c05490
10.1016/j.jechem.2022.04.017
10.1002/aenm.201200558
10.1016/j.ensm.2019.05.041
10.1016/j.jallcom.2022.166630
10.1002/er.8619
10.1063/1.3580252
10.1039/D1CC04449D
10.1016/j.cej.2020.126974
10.1016/j.jallcom.2021.162952
10.1016/j.jpowsour.2022.231901
10.1016/j.nanoen.2020.104548
10.1016/j.cej.2020.126291
10.1002/smll.202304002
10.1016/j.cej.2022.137740
10.1002/adfm.202208051
10.1002/adfm.201908680
10.1021/acsami.9b12214
10.1016/j.jechem.2022.06.016
10.1021/acsaem.0c02188
10.1021/acsami.1c17117
10.1002/adsu.201700171
10.1016/j.cej.2020.127451
10.1016/j.jpowsour.2020.228924
10.1016/j.jallcom.2022.164719
10.1016/j.ceramint.2021.04.222
10.1002/admi.202100188
10.1002/smtd.201800218
10.1016/j.jechem.2023.02.016
10.1002/aenm.202200654
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsanm.3c04373
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2574-0970
EndPage 252
ExternalDocumentID 10_1021_acsanm_3c04373
b25729329
GroupedDBID ABFRP
ABQRX
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a274t-bc3aac20fdc0a7459a486efba7da056488e4f5d69820fe868951cb91a07c76bc3
IEDL.DBID ACS
ISSN 2574-0970
IngestDate Thu Apr 24 22:53:38 EDT 2025
Tue Jul 01 02:47:58 EDT 2025
Tue Jan 16 03:36:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NVMP/C-0.5//hard carbon full cell
high energy density
ex situ XPS
NVMP/C-0.5
ex situ XRD
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a274t-bc3aac20fdc0a7459a486efba7da056488e4f5d69820fe868951cb91a07c76bc3
ORCID 0000-0002-5746-9825
PageCount 10
ParticipantIDs crossref_citationtrail_10_1021_acsanm_3c04373
crossref_primary_10_1021_acsanm_3c04373
acs_journals_10_1021_acsanm_3c04373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-12
PublicationDateYYYYMMDD 2024-01-12
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-12
  day: 12
PublicationDecade 2020
PublicationTitle ACS applied nano materials
PublicationTitleAlternate ACS Appl. Nano Mater
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1016/j.jpowsour.2022.232036
– ident: ref50/cit50
  doi: 10.1016/j.jpowsour.2022.231257
– ident: ref25/cit25
  doi: 10.1016/j.mtener.2022.101006
– ident: ref6/cit6
  doi: 10.1016/j.electacta.2020.137379
– ident: ref59/cit59
  doi: 10.1021/acsami.0c11975
– ident: ref4/cit4
  doi: 10.1007/s11426-019-9610-3
– ident: ref12/cit12
  doi: 10.1016/j.cej.2021.133739
– ident: ref8/cit8
  doi: 10.1002/ese3.1128
– ident: ref18/cit18
  doi: 10.1016/j.cjche.2021.06.008
– ident: ref42/cit42
  doi: 10.1016/j.jallcom.2020.156118
– ident: ref2/cit2
  doi: 10.1016/j.jpowsour.2020.228906
– ident: ref7/cit7
  doi: 10.1016/j.cej.2021.133962
– ident: ref27/cit27
  doi: 10.1016/j.jallcom.2019.02.202
– ident: ref29/cit29
  doi: 10.1016/j.carbon.2022.05.033
– ident: ref62/cit62
  doi: 10.1021/acs.iecr.0c04187
– ident: ref26/cit26
  doi: 10.1002/anie.202008318
– ident: ref24/cit24
  doi: 10.1039/C5CP05323D
– ident: ref36/cit36
  doi: 10.1002/smll.202003973
– ident: ref35/cit35
  doi: 10.1016/j.jpowsour.2019.04.080
– ident: ref53/cit53
  doi: 10.1016/j.cej.2021.130052
– ident: ref41/cit41
  doi: 10.1021/acsami.8b12055
– ident: ref49/cit49
  doi: 10.1002/aenm.202100729
– ident: ref1/cit1
  doi: 10.1016/j.cej.2020.126311
– ident: ref54/cit54
  doi: 10.3389/fchem.2020.00635
– ident: ref17/cit17
  doi: 10.1016/j.ensm.2020.09.007
– ident: ref31/cit31
  doi: 10.1016/j.nanoen.2021.106462
– ident: ref22/cit22
  doi: 10.1016/j.apsusc.2022.154285
– ident: ref30/cit30
  doi: 10.1002/celc.201800379
– ident: ref56/cit56
  doi: 10.1021/acsenergylett.1c02107
– ident: ref11/cit11
  doi: 10.1016/j.electacta.2020.137376
– ident: ref20/cit20
  doi: 10.1016/j.jechem.2020.07.008
– ident: ref32/cit32
  doi: 10.1016/j.ensm.2020.11.010
– ident: ref16/cit16
  doi: 10.1016/j.cej.2021.133926
– ident: ref43/cit43
  doi: 10.1021/acsami.0c05490
– ident: ref47/cit47
  doi: 10.1016/j.jechem.2022.04.017
– ident: ref61/cit61
  doi: 10.1002/aenm.201200558
– ident: ref58/cit58
  doi: 10.1016/j.ensm.2019.05.041
– ident: ref19/cit19
  doi: 10.1016/j.jallcom.2022.166630
– ident: ref23/cit23
  doi: 10.1002/er.8619
– ident: ref57/cit57
  doi: 10.1063/1.3580252
– ident: ref28/cit28
  doi: 10.1039/D1CC04449D
– ident: ref10/cit10
  doi: 10.1016/j.cej.2020.126974
– ident: ref14/cit14
  doi: 10.1016/j.jallcom.2021.162952
– ident: ref21/cit21
  doi: 10.1016/j.jpowsour.2022.231901
– ident: ref33/cit33
  doi: 10.1016/j.nanoen.2020.104548
– ident: ref9/cit9
  doi: 10.1016/j.cej.2020.126291
– ident: ref34/cit34
  doi: 10.1002/smll.202304002
– ident: ref3/cit3
  doi: 10.1016/j.cej.2022.137740
– ident: ref38/cit38
  doi: 10.1002/adfm.202208051
– ident: ref60/cit60
  doi: 10.1002/adfm.201908680
– ident: ref51/cit51
  doi: 10.1021/acsami.9b12214
– ident: ref15/cit15
  doi: 10.1016/j.jechem.2022.06.016
– ident: ref44/cit44
  doi: 10.1021/acsaem.0c02188
– ident: ref52/cit52
  doi: 10.1021/acsami.1c17117
– ident: ref55/cit55
  doi: 10.1002/adsu.201700171
– ident: ref63/cit63
  doi: 10.1016/j.cej.2020.127451
– ident: ref5/cit5
  doi: 10.1016/j.jpowsour.2020.228924
– ident: ref46/cit46
  doi: 10.1016/j.jallcom.2022.164719
– ident: ref45/cit45
  doi: 10.1016/j.ceramint.2021.04.222
– ident: ref39/cit39
  doi: 10.1002/admi.202100188
– ident: ref40/cit40
  doi: 10.1002/smtd.201800218
– ident: ref48/cit48
  doi: 10.1016/j.jechem.2023.02.016
– ident: ref37/cit37
  doi: 10.1002/aenm.202200654
SSID ssj0001916300
Score 2.2845926
Snippet A promising cathode material has been developed for sodium-ion batteries (SIBs): NASICON-type Na3V2(PO4)3 (NVP). However, replacing V with a low-cost,...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 243
Title Nanoporous Cathode Material for High-Energy-Density Sodium-Ion Batteries
URI http://dx.doi.org/10.1021/acsanm.3c04373
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60InjxLdYXCwqetmY3j02OpbZUQS-10FvYRxZEm4hJD_rrnd1EWyxF75vZZJjJfDM78y1CVxpygNAYRoz1wkB6nMiASgLBFhC_pBZV2G6Lx2g4Du4n4WRe7_h9gs_ojVClyKcdXzkWnnW0waKY2zSr2xvNqymAcnw3bwImGBAv4d43Q-OSCBuHVLkQhxYCymCnZjcqHQ-h7SN56cwq2VGfyyyNf77rLtpuUCXu1mawh9ayfB9tuu5OVR6gIfxDCwDakOVjO_JX6Aw_iMoZHwbUim23B-m7MUBya1vaqw88KvTzbEruihzXJJyQUx-i8aD_1BuS5goFIiDdrIhUvrAkjEYrT_AgTEQQR5mRgmsB0Ae8NwtMqKMEgIDJ4igGwKVkQoXHFY_g6SPUyos8O0Y4EQlPYhNSCZJBRsJiQZmmQmrtg7A2uoTPTxsXKFN3us1oWuskbXTSRuRb7alqWMjtZRivK9df_6x_q_k3Vqw8-df-p2iLASyxRRTKzlCrep9l5wArKnnhLOoLQ1zGrA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8QwEB58IHrxLb4NqHjK2mT7PHgQH-z6uqjgreZVWNRWbBfRP-Nf8ac5yXZVFMGL4LWk03RmwnyTzHwB2NCYAwRZxmlmV6EvvYhKn0mKwRYRv2QWVdhqi7OwdekfXQVXA_DS74XBSZQoqXSH-B_sAmwbn4n8rtFUjoynrqI8Nk-PmKOVO-19NOgm54cHF3stWl8jQAWmXBWVqiksEWGmlSciP0iEH4cmkyLSAsM_erDxs0CHCQbDzMRhjKBDyYQJL1JRiG-j3EEYRuTDbXa3u3f-sYmD4Krp2lzQ833qJZHXJ4b8NmUb_lT5Kfx9imOHE_D6rgFXvnLT6FayoZ6_kEP-YxVNwniNocluz-mnYMDk0zDiallVOQMtjBgFphVFtyS2wbHQhpyKyi01ghid2NoWeuCaHum-LeCvnsh5oTvdO9ouctKjHO2YchYu_-Q35mAoL3IzDyQRSZTEWcAkSkYZCY8F45oJqXUThS3AOqo7rRd8mbqzfM7Sng3S2gYLQPvWTlXNuW6v_rj9cfzW-_j7HtvIDyMXf_X9NRhtXZyepCfts-MlGOMIyOz2EePLMFQ9dM0KAqpKrjqnJnD91y7yBpa6Ksg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LSxxBEC5WJeLFR1SiRm0wwVOv07PzPOSw7IPdqEvACN7GfoIYZ8SZJZi_41_JD0t17-wqiuBFyHXoqenpqqK-6q76GuCLwhwgNManxnphILyYioAJisEWEb9gFlXYaotRNDgPvl-EFw14mPbC4CRKlFS6Q3zr1bfK1AwD7Aif8_ym2ZKOkKeupDzW978xTyu_Dbuo1K--3-_97AxofZUA5Zh2VVTIFrdkhEZJj8dBmPIgibQRPFYcIQBasQ5MqKIUA6LRSZQg8JAiZdyLZRzh2yh3DhbsGaHN8Nqds8eNHARYLdfqgtYfUC-NvSk55Isp2xAoyych8Eks66_A39kquBKW6-a4Ek355xlB5H--TKuwXGNp0p4Y_xo0dP4RPriaVlmuwwAjR4HpRTEuiW10LJQmp7xyLkcQqxNb40J7rvmRdm0hf3VPzgp1Nb6hwyInE-rRK11uwPm7_MYmzOdFrj8BSXkap4kJmUDJKCP1E858xbhQqoXCtuAAlzurHb_M3Jm-z7KJDrJaB1tApxrPZM29bq8A-fXq-MPZ-NsJ68grI7ff9P19WPzR7Wcnw9HxDiz5iMvsLhLzP8N8dTfWu4irKrHn7JrA5XtbyD-TMy1L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+Cathode+Material+for+High-Energy-Density+Sodium-Ion+Batteries&rft.jtitle=ACS+applied+nano+materials&rft.au=Ding%2C+Haiyang&rft.au=Li%2C+Hao&rft.au=Tao%2C+Qingdong&rft.au=Ren%2C+Jianhui&rft.date=2024-01-12&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=7&rft.issue=1&rft.spage=243&rft.epage=252&rft_id=info:doi/10.1021%2Facsanm.3c04373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsanm_3c04373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon