New Insight into the Electrocatalysis of Ni-Rich Trimetallic NCM-Based Hydroxides for Water Oxidation
Earth-abundant multimetal hydroxides, especially of Ni–Co–Mn-based NCM materials, are very attractive candidates as energy storage materials because of their unique characteristics of synergy with multimetal components, higher electrochemical activity, and lower activation energy compared with a sin...
Saved in:
Published in | ACS applied energy materials Vol. 4; no. 7; pp. 6520 - 6530 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
26.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Earth-abundant multimetal hydroxides, especially of Ni–Co–Mn-based NCM materials, are very attractive candidates as energy storage materials because of their unique characteristics of synergy with multimetal components, higher electrochemical activity, and lower activation energy compared with a single metal element. The typical hydroxide materials are used as precursors for developing lithium-containing bulk NCM oxide compositions upon calcination with lithium salts at higher temperatures and used as viable cathodes in lithium-ion batteries (LIBs). Nevertheless, the lithium-deficient typical NCM oxide composite (LiNi0.5Co0.2Mn0.3O2 or NCM-523) with a disordered structure was found to have superior electrocatalytic activity than its intact original structure for the water splitting reaction. Herein, we have elaborately investigated the electrocatalytic activity of the typical NCM hydroxide materials without lithium for the two significant compositions, viz., NCM-523 and NCM-811, prepared by a simple co-precipitation method for the oxygen evolution reaction (OER) in an alkaline electrolyte for the first time. Interestingly, the NCM-811 composite exhibits improved catalytic activity with the lowest onset potential (∼1.5 V) and Tafel slope (∼91.7 mV dec–1) for better OER kinetics, whereas the NCM-523 composite exhibits a slightly higher onset potential (∼1.55 V) and Tafel slope (∼175.6 mV dec–1). The ideal composition showed a stable catalytic performance of 25 h continuous water electrolysis. This work can pave ways for the progress of plentiful multi-transition-metal-based hydroxides with virtually tunable compositions for cutting-edge affordable electrocatalytic materials. |
---|---|
AbstractList | Earth-abundant multimetal hydroxides, especially of Ni–Co–Mn-based NCM materials, are very attractive candidates as energy storage materials because of their unique characteristics of synergy with multimetal components, higher electrochemical activity, and lower activation energy compared with a single metal element. The typical hydroxide materials are used as precursors for developing lithium-containing bulk NCM oxide compositions upon calcination with lithium salts at higher temperatures and used as viable cathodes in lithium-ion batteries (LIBs). Nevertheless, the lithium-deficient typical NCM oxide composite (LiNi0.5Co0.2Mn0.3O2 or NCM-523) with a disordered structure was found to have superior electrocatalytic activity than its intact original structure for the water splitting reaction. Herein, we have elaborately investigated the electrocatalytic activity of the typical NCM hydroxide materials without lithium for the two significant compositions, viz., NCM-523 and NCM-811, prepared by a simple co-precipitation method for the oxygen evolution reaction (OER) in an alkaline electrolyte for the first time. Interestingly, the NCM-811 composite exhibits improved catalytic activity with the lowest onset potential (∼1.5 V) and Tafel slope (∼91.7 mV dec–1) for better OER kinetics, whereas the NCM-523 composite exhibits a slightly higher onset potential (∼1.55 V) and Tafel slope (∼175.6 mV dec–1). The ideal composition showed a stable catalytic performance of 25 h continuous water electrolysis. This work can pave ways for the progress of plentiful multi-transition-metal-based hydroxides with virtually tunable compositions for cutting-edge affordable electrocatalytic materials. |
Author | Qin, Jiaqian Vasudevan, Subramanyan Sriprachuabwong, Chakrit Venkatkarthick, Radhakrishnan Niu, Jingjing Tuantranont, Adisorn Srikhaow, Assadawoot |
AuthorAffiliation | Graphene and Printed Electronics for Dual-Use Applications Research Division (GPERD), Nation Security and Dual-Use Technology Center (NSD) Center of Excellence in Responsive Wearable Materials National Science and Technology Development Agency (NSTDA) |
AuthorAffiliation_xml | – name: National Science and Technology Development Agency (NSTDA) – name: Center of Excellence in Responsive Wearable Materials – name: Graphene and Printed Electronics for Dual-Use Applications Research Division (GPERD), Nation Security and Dual-Use Technology Center (NSD) |
Author_xml | – sequence: 1 givenname: Radhakrishnan surname: Venkatkarthick fullname: Venkatkarthick, Radhakrishnan email: radhakrishnan.v@chula.ac.th organization: Center of Excellence in Responsive Wearable Materials – sequence: 2 givenname: Jingjing surname: Niu fullname: Niu, Jingjing organization: Center of Excellence in Responsive Wearable Materials – sequence: 3 givenname: Assadawoot surname: Srikhaow fullname: Srikhaow, Assadawoot organization: National Science and Technology Development Agency (NSTDA) – sequence: 4 givenname: Chakrit surname: Sriprachuabwong fullname: Sriprachuabwong, Chakrit organization: National Science and Technology Development Agency (NSTDA) – sequence: 5 givenname: Subramanyan surname: Vasudevan fullname: Vasudevan, Subramanyan – sequence: 6 givenname: Adisorn surname: Tuantranont fullname: Tuantranont, Adisorn organization: National Science and Technology Development Agency (NSTDA) – sequence: 7 givenname: Jiaqian orcidid: 0000-0002-9166-3533 surname: Qin fullname: Qin, Jiaqian email: jiaqian.q@chula.ac.th organization: Center of Excellence in Responsive Wearable Materials |
BookMark | eNp1kM1LAzEQxYMoWLVXzzkLW_O5NUct1Ra0Bal4XKbJrE3ZbiSJaP97V9uDCD3N8Hi_Yd47I8dtaJGQS84GnAl-DTYBbgbcMqa1PCI9oYeqYKYUx3_2U9JPac0Y44aXwpgewRl-0mmb_NsqU9_mQPMK6bhBm2OwkKHZJp9oqOnMF8_erugi-g12euMtnY2eijtI6Ohk62L48g4TrUOkr5Ax0nknQPahvSAnNTQJ-_t5Tl7ux4vRpHicP0xHt48FiKHKRSmWDsBJWS41U1qWaglaKlUbKG8QLQfDFZeqLrlFZ41y2nBAKbQTwJiS50Tt7toYUopYV9bn3w9yBN9UnFU_bVW7tqp9Wx02-Ie9dyEhbg8DVzug06t1-Ihtl-qQ-Rt4n35j |
CitedBy_id | crossref_primary_10_1039_D3QM00633F crossref_primary_10_1039_D3SE00233K crossref_primary_10_1039_D4SE00434E crossref_primary_10_1002_smll_202205508 crossref_primary_10_1007_s11771_024_5836_8 crossref_primary_10_1016_j_est_2024_113085 crossref_primary_10_1007_s11581_024_05396_6 crossref_primary_10_1149_2754_2734_acb500 |
Cites_doi | 10.1039/C6CS00875E 10.1002/cssc.201901364 10.1038/s41598-019-52412-1 10.1016/j.electacta.2016.04.084 10.1364/OME.8.002815 10.1016/j.ensm.2018.07.018 10.1021/acs.chemmater.0c02398 10.1016/j.jpowsour.2018.11.080 10.1039/C8NR09497G 10.1002/aenm.201803358 10.1016/j.jiec.2019.07.013 10.1021/acs.chemmater.5b03148 10.1021/acsaem.9b01965 10.1016/j.jelechem.2013.02.015 10.1021/nl5018139 10.1016/j.energy.2014.02.077 10.1039/C5CY00805K 10.1021/jacs.8b13798 10.1021/acscatal.7b04226 10.1016/j.cplett.2015.10.003 10.1016/j.clay.2018.07.036 10.1021/j100238a048 10.1007/s11581-020-03496-7 10.1016/j.rser.2019.06.049 10.1016/j.cclet.2020.02.018 10.1039/C9TA02583A 10.1021/acsaem.0c00080 10.1126/science.aaz1487 10.1021/acs.chemmater.0c02385 10.1039/C5TA05441A 10.1039/C6EE03505A 10.1039/C9TA13637A 10.1021/acscatal.7b03198 10.1039/c3cc43350a 10.1016/j.apcatb.2019.118532 10.1039/C8SE00525G 10.1002/cctc.201901951 10.1016/j.jelechem.2006.11.008 10.1177/0144598720953512 10.1021/acs.jpclett.6b02249 10.1038/nmat2418 10.1016/j.materresbull.2015.03.065 10.1021/jacs.8b04546 10.1016/j.electacta.2012.05.035 10.1016/0013-4686(84)85004-5 10.1007/s11705-020-1920-2 10.1002/smll.201804201 10.1039/C7TA03932H 10.1002/advs.201903070 10.1021/acsami.9b22438 10.1038/s41929-020-00550-5 10.1016/j.pulmoe.2020.04.013 10.1016/j.matchemphys.2017.07.012 10.1002/adfm.201905992 |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsaem.1c00553 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2574-0962 |
EndPage | 6530 |
ExternalDocumentID | 10_1021_acsaem_1c00553 b651600091 |
GroupedDBID | ABFRP ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a274t-62bdaad336b5045364ba5344f9a68eec1a914134f61cedc94d591ae325d2a0043 |
IEDL.DBID | ACS |
ISSN | 2574-0962 |
IngestDate | Thu Apr 24 22:56:24 EDT 2025 Tue Jul 01 04:28:33 EDT 2025 Wed Jul 28 04:36:07 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | electrocatalyst oxygen evolution reaction NCM water splitting metal hydroxide |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a274t-62bdaad336b5045364ba5344f9a68eec1a914134f61cedc94d591ae325d2a0043 |
ORCID | 0000-0002-9166-3533 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1021_acsaem_1c00553 crossref_primary_10_1021_acsaem_1c00553 acs_journals_10_1021_acsaem_1c00553 |
ProviderPackageCode | ABFRP ACS AFEFF VF5 VG9 ABUCX GGK W1F CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210726 2021-07-26 |
PublicationDateYYYYMMDD | 2021-07-26 |
PublicationDate_xml | – month: 07 year: 2021 text: 20210726 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied energy materials |
PublicationTitleAlternate | ACS Appl. Energy Mater |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref35/cit35 doi: 10.1039/C6CS00875E – ident: ref50/cit50 doi: 10.1002/cssc.201901364 – ident: ref10/cit10 doi: 10.1038/s41598-019-52412-1 – ident: ref22/cit22 doi: 10.1016/j.electacta.2016.04.084 – ident: ref45/cit45 doi: 10.1364/OME.8.002815 – ident: ref21/cit21 doi: 10.1016/j.ensm.2018.07.018 – ident: ref34/cit34 doi: 10.1021/acs.chemmater.0c02398 – ident: ref28/cit28 doi: 10.1016/j.jpowsour.2018.11.080 – ident: ref44/cit44 doi: 10.1039/C8NR09497G – ident: ref24/cit24 doi: 10.1002/aenm.201803358 – ident: ref8/cit8 doi: 10.1016/j.jiec.2019.07.013 – ident: ref14/cit14 doi: 10.1021/acs.chemmater.5b03148 – ident: ref48/cit48 doi: 10.1021/acsaem.9b01965 – ident: ref12/cit12 doi: 10.1016/j.jelechem.2013.02.015 – ident: ref32/cit32 doi: 10.1021/nl5018139 – ident: ref11/cit11 doi: 10.1016/j.energy.2014.02.077 – ident: ref6/cit6 doi: 10.1039/C5CY00805K – ident: ref33/cit33 doi: 10.1021/jacs.8b13798 – ident: ref40/cit40 doi: 10.1021/acscatal.7b04226 – ident: ref23/cit23 doi: 10.1016/j.cplett.2015.10.003 – ident: ref43/cit43 doi: 10.1016/j.clay.2018.07.036 – ident: ref51/cit51 doi: 10.1021/j100238a048 – ident: ref27/cit27 doi: 10.1007/s11581-020-03496-7 – ident: ref1/cit1 doi: 10.1016/j.rser.2019.06.049 – ident: ref18/cit18 doi: 10.1016/j.cclet.2020.02.018 – ident: ref26/cit26 doi: 10.1039/C9TA02583A – ident: ref47/cit47 doi: 10.1021/acsaem.0c00080 – ident: ref5/cit5 doi: 10.1126/science.aaz1487 – ident: ref37/cit37 doi: 10.1021/acs.chemmater.0c02385 – ident: ref29/cit29 doi: 10.1039/C5TA05441A – ident: ref7/cit7 doi: 10.1039/C6EE03505A – ident: ref39/cit39 doi: 10.1039/C9TA13637A – ident: ref9/cit9 doi: 10.1021/acscatal.7b03198 – ident: ref46/cit46 doi: 10.1039/c3cc43350a – ident: ref41/cit41 doi: 10.1016/j.apcatb.2019.118532 – ident: ref19/cit19 doi: 10.1039/C8SE00525G – ident: ref54/cit54 doi: 10.1002/cctc.201901951 – ident: ref53/cit53 doi: 10.1016/j.jelechem.2006.11.008 – ident: ref2/cit2 doi: 10.1177/0144598720953512 – ident: ref16/cit16 doi: 10.1021/acs.jpclett.6b02249 – ident: ref31/cit31 doi: 10.1038/nmat2418 – ident: ref42/cit42 doi: 10.1016/j.materresbull.2015.03.065 – ident: ref13/cit13 doi: 10.1021/jacs.8b04546 – ident: ref30/cit30 doi: 10.1016/j.electacta.2012.05.035 – ident: ref52/cit52 doi: 10.1016/0013-4686(84)85004-5 – ident: ref15/cit15 doi: 10.1007/s11705-020-1920-2 – ident: ref20/cit20 doi: 10.1002/smll.201804201 – ident: ref25/cit25 doi: 10.1039/C7TA03932H – ident: ref17/cit17 doi: 10.1002/advs.201903070 – ident: ref36/cit36 doi: 10.1021/acsami.9b22438 – ident: ref3/cit3 doi: 10.1038/s41929-020-00550-5 – ident: ref4/cit4 doi: 10.1016/j.pulmoe.2020.04.013 – ident: ref49/cit49 doi: 10.1016/j.matchemphys.2017.07.012 – ident: ref38/cit38 doi: 10.1002/adfm.201905992 |
SSID | ssj0001916299 |
Score | 2.2144053 |
Snippet | Earth-abundant multimetal hydroxides, especially of Ni–Co–Mn-based NCM materials, are very attractive candidates as energy storage materials because of their... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 6520 |
Title | New Insight into the Electrocatalysis of Ni-Rich Trimetallic NCM-Based Hydroxides for Water Oxidation |
URI | http://dx.doi.org/10.1021/acsaem.1c00553 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODAGzFeigQSp4w2TdP1CNOmgbRxYBO7VXlVqhgdWrsD_HqctmMT0wTXyGoi26m_2MlnhG5UrGOvyRXhtCkI86VDhAhDEgjPQEh3lWb2oXCvz7tD9jTyR4t8x-8KPnXvhMqEeW-4ytJFeZtoi3LYwRYEtV4W2RRAObRoFgkuyAjgcjpnaFz5hI1DKluKQ0sBpbNXshtlBQ-hvUfy1pjlsqG-Vlka_1zrPtqtUCW-L93gAG2Y9BDtLHENHiEDvzP8mGb2MI6TNJ9ggH64XXbBKZI4lpsET2LcT4h9bo8HlvkfxseJwv1WjzxAwNO4-6lhxYk2GQa8i18Bq07xMwwUJj5Gw0570OqSqscCEXAezcFEUguhPY9LH9Cdx5kUvsdYHAreNEa5InQhzrGYu8poFTLth64wHvU1FbaMeIJq6SQ1pwjLQGnH0b5jwMAB9aWUWmoW8iAwKgx0HV2DfqJqj2RRUf6mblQqLaqUVkdkbpdIVTTltlvGeK387Y_8R0nQsUby7F_zn6Ntaq-tOAGh_ALV8unMXALuyOVV4XLfWqXTZg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIADb8SbSCBxymjTNF2PYwKNxwYSQ3Cr8qo0MTpEywF-PU7XsQmEBNcoSi3bqb_E8WeAI52aNKgLTQWrS8pD5VEp45hGMrAY0n1tuCsUbndE655fPoaPU3AyqoVBIXJcKS-T-GN2Af8Ex6R9rvnasUYF0zCLSIQ5l24078aXKgh2WNkzEj2RU4TnbETU-GMJF450PhGOJuLK-RLcfklUPid5qr0VqqY_vpE1_kPkZVisMCZpDJ1iBaZstgoLE8yDa2Dx50YustwdzUkvKwYEgSA5G_bEKa90HFMJGaSk06Ou-J50XR8AHO_3NOk02_QUw58hrXeDgveMzQmiX_KAyPWV3OBAafB1uD8_6zZbtOq4QCWeTgs0mDJSmiAQKkSsFwiuZBhwnsZS1K3Vvox9jHo8Fb62RsfchLEvbcBCw6RLKm7ATDbI7CYQFWnjeSb0LJo7YqFSyijDYxFFVseR2YJD1E9S7Zg8KZPhzE-GSksqpW0BHZkn0RVpueud0f91_vHX_JchXccvM7f_9P0DmGt129fJ9UXnagfmmXvQ4kWUiV2YKV7f7B4ikkLtl174CWZZ28c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9-gOiD3-L8DCj4lNmmabo-6tzY1E3BDfdW8lUYzm6s3YP-9V66qkMZ6OsR0iN36f2Sy_0OoXMV69ircEU4rQjCfOkQIcKQBMIzENJdpZktFG61eaPLbnt-r6jjtrUwoEQKM6V5Et_u6pGOC4YB9xLkwryWXWWZo7xFtGxzdtatr6pP3xcrAHho3jcSvJERgOj0k6zx1xQ2JKl0JiTNxJb6Bup8aZU_KXkpTzJZVu8_CBv_qfYmWi-wJr6aOscWWjDJNlqbYSDcQQZ-criZpPaIjvtJNsQACHFt2hsnv9qxjCV4GON2n9gifNyx_QBAPugr3K62yDWEQY0bbxqU72uTYkDB-BkQ7Bg_gCA3_C7q1mudaoMUnReIgFNqBoaTWgjteVz6gPk8zqTwPcbiUPCKMcoVoQvRj8XcVUarkGk_dIXxqK-psMnFPbSUDBOzj7AMlHYc7TsGzB5QX0qppWYhDwKjwkCX0BmsT1TsnDTKk-LUjaaLFhWLVkLk00SRKsjLbQ-NwdzxF1_jR1PajjkjD_70_VO08nhTj-6b7btDtErtuxYnIJQfoaVsPDHHAEwyeZI74gefWd5K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Insight+into+the+Electrocatalysis+of+Ni-Rich+Trimetallic+NCM-Based+Hydroxides+for+Water+Oxidation&rft.jtitle=ACS+applied+energy+materials&rft.au=Venkatkarthick%2C+Radhakrishnan&rft.au=Niu%2C+Jingjing&rft.au=Srikhaow%2C+Assadawoot&rft.au=Sriprachuabwong%2C+Chakrit&rft.date=2021-07-26&rft.issn=2574-0962&rft.eissn=2574-0962&rft.volume=4&rft.issue=7&rft.spage=6520&rft.epage=6530&rft_id=info:doi/10.1021%2Facsaem.1c00553&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaem_1c00553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0962&client=summon |