Modulating Photothermal Properties of Carbon Dots through Nitrogen Incorporation Enables Efficient Solar Water Evaporation
As a new family in carbon nanomaterials, carbon dots (CDs) are potential candidates for solar water evaporator, owing to their cost-effectiveness, non-toxicity, high solubility, and tunable optical properties. Despite such potentials, however, CDs mainly absorb solar spectrum in the ultraviolet regi...
Saved in:
Published in | ACS applied nano materials Vol. 6; no. 4; pp. 2517 - 2526 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
24.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a new family in carbon nanomaterials, carbon dots (CDs) are potential candidates for solar water evaporator, owing to their cost-effectiveness, non-toxicity, high solubility, and tunable optical properties. Despite such potentials, however, CDs mainly absorb solar spectrum in the ultraviolet region while their absorption in the visible region is limited, the characteristics that hinder their functionality in generating steam from solar energy. Herein, the optical and photothermal properties of CDs, derived from urea and citric acid, can be modulated by controlling their surface stoichiometry through varying the molar ratio of the precursors. Our approach is simple, fast, and highly scalable by utilizing a microwave irradiation technique. We found that increasing the nitrogen content results in broadening of the absorption spectra into the visible region due to more functional groups introduced on the CD surface that reduce the band gap, as confirmed both by X-ray photoelectron spectroscopy and theoretical calculation. Employing the CDs as photothermal materials in the volumetric solar evaporator, we demonstrate a remarkable evaporation efficiency of up to 70% along with a volumetric evaporation rate of 1.11 kg m–2 h–1 under 1 sun illumination, superior to direct bulk water heating. Furthermore, the CDs show excellent durability and stability, as demonstrated by their stable evaporation rate for 10 days, with no significant decrease in the optical and photothermal properties. This finding provides a pathway to design and functionalize CDs with controllable optical and photothermal properties for an efficient solar evaporation system. |
---|---|
AbstractList | As a new family in carbon nanomaterials, carbon dots (CDs) are potential candidates for solar water evaporator, owing to their cost-effectiveness, non-toxicity, high solubility, and tunable optical properties. Despite such potentials, however, CDs mainly absorb solar spectrum in the ultraviolet region while their absorption in the visible region is limited, the characteristics that hinder their functionality in generating steam from solar energy. Herein, the optical and photothermal properties of CDs, derived from urea and citric acid, can be modulated by controlling their surface stoichiometry through varying the molar ratio of the precursors. Our approach is simple, fast, and highly scalable by utilizing a microwave irradiation technique. We found that increasing the nitrogen content results in broadening of the absorption spectra into the visible region due to more functional groups introduced on the CD surface that reduce the band gap, as confirmed both by X-ray photoelectron spectroscopy and theoretical calculation. Employing the CDs as photothermal materials in the volumetric solar evaporator, we demonstrate a remarkable evaporation efficiency of up to 70% along with a volumetric evaporation rate of 1.11 kg m–2 h–1 under 1 sun illumination, superior to direct bulk water heating. Furthermore, the CDs show excellent durability and stability, as demonstrated by their stable evaporation rate for 10 days, with no significant decrease in the optical and photothermal properties. This finding provides a pathway to design and functionalize CDs with controllable optical and photothermal properties for an efficient solar evaporation system. |
Author | Anthopoulos, Thomas D. Irham, Muhammad A. Iskandar, Ferry Rahmawati, Ita Permatasari, Fitri A. Indriyati Nugraha, Mohamad I. |
AuthorAffiliation | Research Center for Chemistry, National Research and Innovation Agency (BRIN) Research Center for Advanced Materials, National Research and Innovation Agency (BRIN) Institut Teknologi Bandung National Research and Innovation AgencyInstitut Teknologi Bandung Research Center for Nanoscience and Nanotechnology (RCNN) Kawasan Sains dan Teknologi B.J. Habibie, Serpong Department of Physics, Faculty of Mathematics and Natural Science Collaboration Research Center for Advanced Energy Materials Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) |
AuthorAffiliation_xml | – name: Research Center for Advanced Materials, National Research and Innovation Agency (BRIN) – name: Institut Teknologi Bandung – name: Department of Physics, Faculty of Mathematics and Natural Science – name: Collaboration Research Center for Advanced Energy Materials – name: Research Center for Chemistry, National Research and Innovation Agency (BRIN) – name: National Research and Innovation AgencyInstitut Teknologi Bandung – name: Kawasan Sains dan Teknologi B.J. Habibie, Serpong – name: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – name: Research Center for Nanoscience and Nanotechnology (RCNN) |
Author_xml | – sequence: 1 givenname: Ita orcidid: 0000-0001-6408-9954 surname: Rahmawati fullname: Rahmawati, Ita organization: Department of Physics, Faculty of Mathematics and Natural Science – sequence: 2 orcidid: 0000-0001-9534-1809 surname: Indriyati fullname: Indriyati organization: National Research and Innovation AgencyInstitut Teknologi Bandung – sequence: 3 givenname: Fitri A. orcidid: 0000-0002-3228-8307 surname: Permatasari fullname: Permatasari, Fitri A. organization: Kawasan Sains dan Teknologi B.J. Habibie, Serpong – sequence: 4 givenname: Muhammad A. orcidid: 0000-0001-6557-6885 surname: Irham fullname: Irham, Muhammad A. organization: National Research and Innovation AgencyInstitut Teknologi Bandung – sequence: 5 givenname: Mohamad I. orcidid: 0000-0001-9352-1902 surname: Nugraha fullname: Nugraha, Mohamad I. organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 6 givenname: Thomas D. orcidid: 0000-0002-0978-8813 surname: Anthopoulos fullname: Anthopoulos, Thomas D. organization: Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 7 givenname: Ferry orcidid: 0000-0002-0464-0035 surname: Iskandar fullname: Iskandar, Ferry email: ferry@fi.itb.ac.id organization: Institut Teknologi Bandung |
BookMark | eNp1kM1LAzEQxYMoWGuvnnMWtk6S7X4cpa5aqFpQ8bjMZrPdlG1SklTQv97VVhChpzcM7_eYeWfk2FijCLlgMGbA2RVKj2Y95hLiLBdHZMAnaRxBnsLxn_mUjLxfAQDLWSIABuTzwdbbDoM2S7pobbChVW6NHV04u1EuaOWpbegUXWUNvbHB09A6u1229FEHZ5fK0JmR1m2s61N6T2Gw6nqqaBottTKBPtsOHX3DoBwt3vHXeU5OGuy8Gu11SF5vi5fpfTR_uptNr-cR8jQO0aTJgXM5AZVkCmIpaiHqFLCqK8YEZFldV0mOjKs8lSiSmMcIaa8VJBUKFEMS73Kls9471ZRSh58LgkPdlQzK7wrLXYXlvsIeG__DNk6v0X0cBi53QL8vV3brTP_VIfMXtBWHyQ |
CitedBy_id | crossref_primary_10_1039_D4MH00591K crossref_primary_10_1002_adsu_202400618 crossref_primary_10_1016_j_diamond_2024_111551 crossref_primary_10_1016_j_desal_2024_118192 crossref_primary_10_1002_marc_202300298 crossref_primary_10_1021_acsapm_3c02024 crossref_primary_10_1016_j_cej_2024_155302 crossref_primary_10_1016_j_mtbio_2024_101383 crossref_primary_10_1016_j_mtcomm_2025_111708 crossref_primary_10_1021_acsapm_4c00996 crossref_primary_10_1016_j_solmat_2024_113178 crossref_primary_10_1002_ece2_83 crossref_primary_10_1016_j_cej_2024_156705 crossref_primary_10_1021_acsanm_4c02526 crossref_primary_10_1016_j_mtcomm_2025_111711 crossref_primary_10_1007_s42823_024_00830_1 |
Cites_doi | 10.1016/j.desal.2017.11.020 10.1021/acsami.8b14877 10.1016/j.apenergy.2017.08.144 10.1038/s41377-018-0090-1 10.1016/j.carbon.2020.02.053 10.1021/acs.jpclett.9b01848 10.1039/D1TC04951H 10.1039/D1NR00023C 10.1039/C8EE01146J 10.1063/1.5143819 10.1016/j.enconman.2018.12.007 10.1039/C5RA14310A 10.1016/j.apenergy.2018.03.097 10.1038/s41566-019-0557-5 10.1016/j.solener.2017.08.015 10.1038/s41598-017-06356-z 10.1021/acsnano.5b05406 10.1016/j.snb.2018.02.050 10.1021/acsanm.0c00930 10.1016/j.solener.2016.09.021 10.1039/C7TC05878K 10.1016/j.enconman.2016.10.049 10.1038/s41467-017-01463-x 10.1016/j.ijms.2019.05.004 10.1016/j.apsadv.2021.100112 10.1016/j.desal.2017.09.025 10.1021/acsami.1c15926 10.1016/j.carbon.2018.03.084 10.1016/j.enconman.2020.113675 10.1039/C8TC04821E 10.1016/j.scib.2021.02.014 10.1016/j.joule.2018.12.023 10.1016/j.snb.2015.05.006 10.1039/D2NR00211F 10.1039/D2CP03401H 10.1021/acsabm.9b00112 10.1016/j.desal.2021.115264 10.1038/srep21042 10.1016/j.apmt.2021.101050 10.1039/C9CP03730F 10.1039/C6RA26979F 10.1002/er.4028 10.1021/acsami.6b07453 10.1016/j.egyr.2021.07.001 10.1016/j.gee.2020.07.020 10.1039/d0nj01804j 10.1039/D0CP04707D 10.1186/s11671-016-1231-1 10.1021/acsanm.8b00497 10.1021/acsami.6b02071 10.1016/j.renene.2021.11.054 10.1016/j.carbon.2022.07.063 10.1002/anie.201301114 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsanm.2c04893 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2574-0970 |
EndPage | 2526 |
ExternalDocumentID | 10_1021_acsanm_2c04893 c871753386 |
GroupedDBID | ABFRP ABQRX ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a274t-5f9022c50e68e04c3d33d70abdb113088ddb69a12e97ca36424a07364b06ba3a3 |
IEDL.DBID | ACS |
ISSN | 2574-0970 |
IngestDate | Thu Apr 24 23:06:08 EDT 2025 Tue Jul 01 02:47:36 EDT 2025 Tue Feb 28 04:02:26 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | nitrogen-doped carbon dots photothermal conversion solar water evaporation microwave solar steam generation |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a274t-5f9022c50e68e04c3d33d70abdb113088ddb69a12e97ca36424a07364b06ba3a3 |
ORCID | 0000-0002-0464-0035 0000-0001-9534-1809 0000-0001-9352-1902 0000-0002-0978-8813 0000-0001-6557-6885 0000-0002-3228-8307 0000-0001-6408-9954 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1021_acsanm_2c04893 crossref_primary_10_1021_acsanm_2c04893 acs_journals_10_1021_acsanm_2c04893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-24 |
PublicationDateYYYYMMDD | 2023-02-24 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied nano materials |
PublicationTitleAlternate | ACS Appl. Nano Mater |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref2/cit2 doi: 10.1016/j.desal.2017.11.020 – ident: ref12/cit12 doi: 10.1021/acsami.8b14877 – ident: ref5/cit5 doi: 10.1016/j.apenergy.2017.08.144 – ident: ref14/cit14 doi: 10.1038/s41377-018-0090-1 – ident: ref16/cit16 doi: 10.1016/j.carbon.2020.02.053 – ident: ref37/cit37 doi: 10.1021/acs.jpclett.9b01848 – ident: ref38/cit38 doi: 10.1039/D1TC04951H – ident: ref10/cit10 doi: 10.1039/D1NR00023C – ident: ref4/cit4 doi: 10.1039/C8EE01146J – ident: ref40/cit40 doi: 10.1063/1.5143819 – ident: ref47/cit47 doi: 10.1016/j.enconman.2018.12.007 – ident: ref18/cit18 doi: 10.1039/C5RA14310A – ident: ref6/cit6 doi: 10.1016/j.apenergy.2018.03.097 – ident: ref33/cit33 doi: 10.1038/s41566-019-0557-5 – ident: ref29/cit29 doi: 10.1016/j.solener.2017.08.015 – ident: ref34/cit34 doi: 10.1038/s41598-017-06356-z – ident: ref35/cit35 doi: 10.1021/acsnano.5b05406 – ident: ref36/cit36 doi: 10.1016/j.snb.2018.02.050 – ident: ref32/cit32 doi: 10.1021/acsanm.0c00930 – ident: ref46/cit46 doi: 10.1016/j.solener.2016.09.021 – ident: ref22/cit22 doi: 10.1039/C7TC05878K – ident: ref8/cit8 doi: 10.1016/j.enconman.2016.10.049 – ident: ref25/cit25 doi: 10.1038/s41467-017-01463-x – ident: ref27/cit27 doi: 10.1016/j.ijms.2019.05.004 – ident: ref28/cit28 doi: 10.1016/j.apsadv.2021.100112 – ident: ref49/cit49 doi: 10.1016/j.desal.2017.09.025 – ident: ref13/cit13 doi: 10.1021/acsami.1c15926 – ident: ref15/cit15 doi: 10.1016/j.carbon.2018.03.084 – ident: ref7/cit7 doi: 10.1016/j.enconman.2020.113675 – ident: ref21/cit21 doi: 10.1039/C8TC04821E – ident: ref1/cit1 doi: 10.1016/j.scib.2021.02.014 – ident: ref3/cit3 doi: 10.1016/j.joule.2018.12.023 – ident: ref52/cit52 doi: 10.1016/j.snb.2015.05.006 – ident: ref20/cit20 doi: 10.1039/D2NR00211F – ident: ref26/cit26 doi: 10.1039/D2CP03401H – ident: ref9/cit9 doi: 10.1021/acsabm.9b00112 – ident: ref43/cit43 doi: 10.1016/j.desal.2021.115264 – ident: ref44/cit44 doi: 10.1038/srep21042 – ident: ref23/cit23 doi: 10.1016/j.apmt.2021.101050 – ident: ref30/cit30 doi: 10.1039/C9CP03730F – ident: ref42/cit42 doi: 10.1039/C6RA26979F – ident: ref45/cit45 doi: 10.1002/er.4028 – ident: ref17/cit17 doi: 10.1021/acsami.6b07453 – ident: ref19/cit19 doi: 10.1016/j.egyr.2021.07.001 – ident: ref53/cit53 doi: 10.1016/j.gee.2020.07.020 – ident: ref41/cit41 doi: 10.1039/d0nj01804j – ident: ref39/cit39 doi: 10.1039/D0CP04707D – ident: ref24/cit24 doi: 10.1186/s11671-016-1231-1 – ident: ref11/cit11 doi: 10.1021/acsanm.8b00497 – ident: ref48/cit48 doi: 10.1021/acsami.6b02071 – ident: ref50/cit50 doi: 10.1016/j.renene.2021.11.054 – ident: ref31/cit31 doi: 10.1016/j.carbon.2022.07.063 – ident: ref51/cit51 doi: 10.1002/anie.201301114 |
SSID | ssj0001916300 |
Score | 2.3102002 |
Snippet | As a new family in carbon nanomaterials, carbon dots (CDs) are potential candidates for solar water evaporator, owing to their cost-effectiveness,... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2517 |
Title | Modulating Photothermal Properties of Carbon Dots through Nitrogen Incorporation Enables Efficient Solar Water Evaporation |
URI | http://dx.doi.org/10.1021/acsanm.2c04893 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60InjxLdYXCwqetuax3STHUluqYCnUYm9hX1XRJiVJL_31zm5TWyyi98mD2Um-b3ZnvkHohgEn4DyICCQ_nFApGOGAYwSQ2RNcKEW1rbboss6APg7rw-V-x88TfM-94zLnybjmScfopGyiLY-FgUmzGs3-cjcFWI5v-00gBClxosBZKDSu3cLgkMxXcGgFUNp7c3Wj3OoQmjqSj9q0EDU5W1dp_PNd99FuySpxYx4GB2hDJ4do21Z3yvwIzZ5SZcd0Ja-495YWtutqDBf0zFZ8ZjRVcTrCTZ6JNMH3aZHjcn4P7r4XWQpBhh-M4OWkDBjcsi1XOW5ZBQoALtw3OTJ-AeqaYaDnC8tjNGi3npsdUg5dIBwS1ILURxHAuqw7moXaodJXvq8CB5ZNuIB3YaiUYBF3PR0FkvuQvlAOvwlGhcME97l_gipJmuhThKnQrjBqMIoJOnKlcCMx0kBItMMVl7qKrsFhcfnR5LE9D_fceO7FuPRiFZHFQsWy1C034zM-f7W__bafzBU7frE8-9fzz9GOGTFv29jpBaoU2VRfAhEpxJWNwS_O7Nsn |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oRPTFuzivAQWfMnvJuvVxzMmmcwym6FvJbSpqK233sl_vSdZNUQb6Wk7TkJz0-06S8x2AswA5Aee1kGLwwymTIqAccYwiMnuCC6WYtrctekH7nl0_Vh8X4GKaC4OdyLClzB7if6kLuBf4jMfvFU86Ri5lEZaQiXgm2mo0B1-bKkh2fJt2gp7IqBPWnKlQ468mDBzJ7BscfcOVq3Xoz3pkr5O8Vka5qMjxD7HGf3R5A9YKjkkaE6fYhAUdb8Gyvesps20Y3ybKFu2Kn0j_OcltDtY7vtA3G_OpUVglyZA0eSqSmFwmeUaKaj6k95KnCboc6Rj5y4_CfUjLJmBlpGX1KBDGyMBEzOQBiWxKkKxPLXfg_qp112zTogQD5Riu5rQ6DBHkZdXRQV07TPrK91XNwUkULqJfva6UCELuejqsSe5jMMM4_jQCJpxAcJ_7u1CKk1jvAWFCu8Jow6hAsKErhRuKoUZ6oh2uuNRlOMUBi4ollEX2dNxzo8koRsUoloFO5yuShYq5KabxNtf-fGb_MdHvmGO5_6fvn8BK--62G3U7vZsDWDXF522COzuEUp6O9BFSlFwcW7f8BI9f44g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYBOLCjiirJZA4uWRx0-aIuoi1qtRW9BZ5CyBoUiXpha9n7LqlAlWCazRxLHuc98b2vEHoMgBOwFg1JBD8MEIFDwgDHCOAzB5nXEqqzG2LdnDbp_eDysDmcetcGOhEDi3l5hBfr-qRjK3CgHsNz1kyLHvC0ZIpy2hVn9npiOum3v3eWAHC45vUE_BGSpyw6kzFGn81oSFJ5HOQNIctrS3Um_XKXCl5L48LXhafPwQb_9ntbbRpuSa-mTjHDlpSyS5aM3c-Rb6HPp9SaYp3JS-485oWJhdrCC909AZ9ppVWcRrjOst4muBGWuTYVvXB7bciS8H18J2WwRxZN8JNk4iV46bRpQA4w10dOeNnILQZBtI-tdxH_VazV78lthQDYRC2FqQShwD2ouKooKYcKnzp-7LqwGRyF1CwVpOSByFzPRVWBfMhqKEMfh4B5U7Amc_8A7SSpIk6RJhy5XKtESMDTmNXcDfksQKaohwmmVAldAEDFtmllEfmlNxzo8koRnYUS4hM5ywSVs1cF9X4WGh_NbMfTXQ8Flge_en752i902hFj3fth2O0oWvQmzx3eoJWimysToGpFPzMeOYX7kTmCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+Photothermal+Properties+of+Carbon+Dots+through+Nitrogen+Incorporation+Enables+Efficient+Solar+Water+Evaporation&rft.jtitle=ACS+applied+nano+materials&rft.au=Rahmawati%2C+Ita&rft.au=Indriyati&rft.au=Permatasari%2C+Fitri+A.&rft.au=Irham%2C+Muhammad+A.&rft.date=2023-02-24&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=6&rft.issue=4&rft.spage=2517&rft.epage=2526&rft_id=info:doi/10.1021%2Facsanm.2c04893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsanm_2c04893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon |