Attapulgite Doped with Fe and Cu Nanooxides as Peroxidase Nanozymes for Antibacterial Coatings

The search for low-cost, highly efficient, and stable nanozymes mimicking peroxidase (POD) enzymes remains a great challenge in the development of valuable antibacterial applications. Herein, a natural attapulgite (ATP)-supported Fe and Cu oxide with mixed valences (Fe-Cu/ATP) is reported as an effi...

Full description

Saved in:
Bibliographic Details
Published inACS applied nano materials Vol. 5; no. 11; pp. 16720 - 16730
Main Authors Feng, Feng, Zhang, Xiao, Mu, Bin, Wang, Peixia, Chen, Zhensheng, Zhang, Jiahe, Zhang, Hanfang, Zhuang, Jialin, Zhao, Lu, An, Qi, Zhang, Yihe
Format Journal Article
LanguageEnglish
Published American Chemical Society 25.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The search for low-cost, highly efficient, and stable nanozymes mimicking peroxidase (POD) enzymes remains a great challenge in the development of valuable antibacterial applications. Herein, a natural attapulgite (ATP)-supported Fe and Cu oxide with mixed valences (Fe-Cu/ATP) is reported as an efficient nanozyme by a feasible impregnation method. The obtained Fe-Cu/ATP nanozyme with a large specific area and high dispersity can effectively catalyze the hydrogen peroxide (H2O2) decomposition, exhibiting enhanced POD-like activity compared with Fe/ATP, Cu/ATP, and pristine ATP. In addition, the Fe-Cu/ATP showed high stability and reusability. Through further combination with the density functional theory calculation, the electron density of the ATP surface is increased by simultaneously introducing Fe and Cu dopants. Thus, Fe-Cu/ATP possesses excellent antibacterial properties including a short-time effect depending on the POD-like activity with H2O2 and a long-term effect generated by the metal without H2O2. Finally, a coating desktop and an antibacterial fabric were delicately designed and fabricated by loading Fe-Cu/ATP onto polyethylene and a fabric surface, showing the enormous potential of Fe-Cu/ATP as building and medical functional coatings. This study provides a rational way to design natural mineral nanozymes for promising antibacterial applications.
AbstractList The search for low-cost, highly efficient, and stable nanozymes mimicking peroxidase (POD) enzymes remains a great challenge in the development of valuable antibacterial applications. Herein, a natural attapulgite (ATP)-supported Fe and Cu oxide with mixed valences (Fe-Cu/ATP) is reported as an efficient nanozyme by a feasible impregnation method. The obtained Fe-Cu/ATP nanozyme with a large specific area and high dispersity can effectively catalyze the hydrogen peroxide (H2O2) decomposition, exhibiting enhanced POD-like activity compared with Fe/ATP, Cu/ATP, and pristine ATP. In addition, the Fe-Cu/ATP showed high stability and reusability. Through further combination with the density functional theory calculation, the electron density of the ATP surface is increased by simultaneously introducing Fe and Cu dopants. Thus, Fe-Cu/ATP possesses excellent antibacterial properties including a short-time effect depending on the POD-like activity with H2O2 and a long-term effect generated by the metal without H2O2. Finally, a coating desktop and an antibacterial fabric were delicately designed and fabricated by loading Fe-Cu/ATP onto polyethylene and a fabric surface, showing the enormous potential of Fe-Cu/ATP as building and medical functional coatings. This study provides a rational way to design natural mineral nanozymes for promising antibacterial applications.
Author Zhang, Xiao
Zhao, Lu
Chen, Zhensheng
An, Qi
Feng, Feng
Zhang, Hanfang
Mu, Bin
Zhuang, Jialin
Zhang, Jiahe
Zhang, Yihe
Wang, Peixia
AuthorAffiliation Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics
Institute of Molecular Medicine, College of Future Technology
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
AuthorAffiliation_xml – name: Institute of Molecular Medicine, College of Future Technology
– name: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
– name: Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics
Author_xml – sequence: 1
  givenname: Feng
  surname: Feng
  fullname: Feng, Feng
  organization: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
– sequence: 2
  givenname: Xiao
  surname: Zhang
  fullname: Zhang, Xiao
  organization: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
– sequence: 3
  givenname: Bin
  surname: Mu
  fullname: Mu, Bin
  organization: Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics
– sequence: 4
  givenname: Peixia
  surname: Wang
  fullname: Wang, Peixia
  organization: Institute of Molecular Medicine, College of Future Technology
– sequence: 5
  givenname: Zhensheng
  surname: Chen
  fullname: Chen, Zhensheng
  organization: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
– sequence: 6
  givenname: Jiahe
  surname: Zhang
  fullname: Zhang, Jiahe
  organization: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
– sequence: 7
  givenname: Hanfang
  surname: Zhang
  fullname: Zhang, Hanfang
  organization: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
– sequence: 8
  givenname: Jialin
  surname: Zhuang
  fullname: Zhuang, Jialin
  organization: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
– sequence: 9
  givenname: Lu
  orcidid: 0000-0002-6835-8397
  surname: Zhao
  fullname: Zhao, Lu
  email: lzhao@cugb.edu.cn
  organization: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
– sequence: 10
  givenname: Qi
  orcidid: 0000-0003-3050-2979
  surname: An
  fullname: An, Qi
  email: an@cugb.edu.cn
  organization: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
– sequence: 11
  givenname: Yihe
  orcidid: 0000-0002-1407-4129
  surname: Zhang
  fullname: Zhang, Yihe
  email: zyh@cugb.edu.cn
  organization: Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology
BookMark eNp1kEFPAjEQhRuDiYhcPfdssjgt7ZYeySpqQtSDXt0M3S6WQEvaEsVf7yIevHiamTfzJjPfOen54C0hlwxGDDi7RpPQb0bcwFhxdkL6XCpRgFbQ-5OfkWFKKwBgmpVjgD55m-aM29166bKlN2FrG_rh8judWYq-odWOPqIP4dM1NlFM9NnGQ4HJ_jS-9ptOb0OkU5_dAk220eGaVgGz88t0QU5bXCc7_I0D8jq7fanui_nT3UM1nRfIlciFQNSNZFYbU3KpeYtWaWWVkCg0TCamNLpcCDCllLJVGhgY22qhume5xMl4QEbHvSaGlKJt6210G4z7mkF9AFQfAdW_gDrD1dHQ6fUq7KLvzvtv-BuWzmnn
CitedBy_id crossref_primary_10_1016_j_jiec_2023_09_039
crossref_primary_10_1016_j_jpba_2023_115922
crossref_primary_10_1016_j_cej_2024_152686
crossref_primary_10_1016_j_jhazmat_2024_133871
crossref_primary_10_3390_bios13030314
crossref_primary_10_1007_s12274_024_6685_3
crossref_primary_10_1016_j_foodchem_2024_138732
crossref_primary_10_1016_j_snb_2024_136075
crossref_primary_10_1016_j_foodchem_2024_138667
crossref_primary_10_1016_j_lwt_2024_116273
crossref_primary_10_1039_D3NR05592B
Cites_doi 10.1016/j.saa.2012.07.085
10.1016/j.ijbiomac.2021.12.063
10.1016/j.est.2021.103921
10.1016/j.bios.2019.111716
10.1021/acsnano.2c02966
10.1155/2021/6351852
10.1021/jacs.1c08581
10.1038/s41596-018-0001-1
10.1002/smll.202002343
10.1016/j.apcatb.2021.120417
10.1016/j.jhazmat.2020.124140
10.1016/j.jece.2021.106094
10.1038/s41467-022-33098-y
10.1016/j.snb.2017.06.175
10.1016/j.cej.2016.11.108
10.1016/j.ccr.2020.213606
10.1002/smll.202000553
10.1021/acsanm.1c00540
10.1016/j.clay.2015.01.032
10.1002/anie.202108937
10.1016/j.cis.2017.05.012
10.1021/acsanm.0c00396
10.1016/j.cej.2016.06.106
10.1021/am3010434
10.1016/j.tibtech.2012.06.004
10.1016/j.msec.2020.111007
10.1038/nnano.2007.260
10.1021/acs.nanolett.9b03782
10.1016/j.compositesb.2018.11.109
10.1016/j.snb.2021.129671
10.1002/adma.202109568
10.1021/acsanm.1c04348
10.3389/fimmu.2021.613979
10.1016/j.chemgeo.2017.01.024
10.1038/s41929-021-00609-x
10.1016/j.cej.2021.131899
10.1086/432803
10.1021/acsnano.8b04693
10.1038/s41467-018-03903-8
10.1016/j.jhazmat.2022.129321
10.1016/j.cej.2019.05.177
10.1021/nn300291r
10.1039/C9SC03119G
10.1016/j.nantod.2021.101261
10.1016/j.talanta.2020.121990
10.1002/adma.202000038
10.1021/jacs.5b07451
10.1007/s00216-021-03620-0
10.1016/j.jhazmat.2016.12.030
10.1021/acsanm.2c00644
10.1007/s10450-018-9959-9
10.1021/la0601399
10.1016/j.fuel.2003.10.009
10.1021/acsami.8b03259
10.1021/acsnano.8b08045
10.1016/j.apcatb.2014.11.005
10.1016/j.jhazmat.2022.128404
10.1021/cs200660v
10.3390/ma14143872
10.1016/j.clay.2022.106720
10.1039/C9SC04710G
10.1016/j.cej.2021.128535
10.1049/iet-nbt.2016.0006
10.1021/acs.chemmater.7b04803
10.1016/j.conbuildmat.2021.126027
10.1016/j.jclepro.2022.131655
10.1021/acs.nanolett.9b02242
10.1038/s41586-018-0332-7
10.1016/j.cej.2017.02.043
10.1016/j.cmi.2015.05.012
10.1016/j.watres.2022.118607
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsanm.2c03721
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2574-0970
EndPage 16730
ExternalDocumentID 10_1021_acsanm_2c03721
e98998961
GroupedDBID ABFRP
ABQRX
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
W1F
AAYXX
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a274t-4aa9d51e9cc62592fae797e745a49088c6c96b40c6555f79010cef94737225a83
IEDL.DBID ACS
ISSN 2574-0970
IngestDate Fri Aug 23 01:56:58 EDT 2024
Tue Nov 29 03:10:39 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords antibacterial coating
nanozyme
peroxidase-like activity
attapulgite
synergistic effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a274t-4aa9d51e9cc62592fae797e745a49088c6c96b40c6555f79010cef94737225a83
ORCID 0000-0002-1407-4129
0000-0003-3050-2979
0000-0002-6835-8397
PageCount 11
ParticipantIDs crossref_primary_10_1021_acsanm_2c03721
acs_journals_10_1021_acsanm_2c03721
PublicationCentury 2000
PublicationDate 20221125
2022-11-25
PublicationDateYYYYMMDD 2022-11-25
PublicationDate_xml – month: 11
  year: 2022
  text: 20221125
  day: 25
PublicationDecade 2020
PublicationTitle ACS applied nano materials
PublicationTitleAlternate ACS Appl. Nano Mater
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
Sarkar P. K. (ref5/cit5) 2010; 69
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1016/j.saa.2012.07.085
– ident: ref65/cit65
  doi: 10.1016/j.ijbiomac.2021.12.063
– ident: ref66/cit66
  doi: 10.1016/j.est.2021.103921
– ident: ref58/cit58
  doi: 10.1016/j.bios.2019.111716
– ident: ref12/cit12
  doi: 10.1021/acsnano.2c02966
– volume: 69
  start-page: 901
  year: 2010
  ident: ref5/cit5
  publication-title: J. Sci. Ind. Res.
  contributor:
    fullname: Sarkar P. K.
– ident: ref26/cit26
  doi: 10.1155/2021/6351852
– ident: ref9/cit9
  doi: 10.1021/jacs.1c08581
– ident: ref57/cit57
  doi: 10.1038/s41596-018-0001-1
– ident: ref16/cit16
  doi: 10.1002/smll.202002343
– ident: ref44/cit44
  doi: 10.1016/j.apcatb.2021.120417
– ident: ref70/cit70
– ident: ref24/cit24
  doi: 10.1016/j.jhazmat.2020.124140
– ident: ref45/cit45
  doi: 10.1016/j.jece.2021.106094
– ident: ref53/cit53
  doi: 10.1038/s41467-022-33098-y
– ident: ref56/cit56
  doi: 10.1016/j.snb.2017.06.175
– ident: ref50/cit50
  doi: 10.1016/j.cej.2016.11.108
– ident: ref29/cit29
  doi: 10.1016/j.ccr.2020.213606
– ident: ref63/cit63
  doi: 10.1002/smll.202000553
– ident: ref72/cit72
  doi: 10.1021/acsanm.1c00540
– ident: ref31/cit31
  doi: 10.1016/j.clay.2015.01.032
– ident: ref62/cit62
  doi: 10.1002/anie.202108937
– ident: ref6/cit6
  doi: 10.1016/j.cis.2017.05.012
– ident: ref14/cit14
  doi: 10.1021/acsanm.0c00396
– ident: ref34/cit34
  doi: 10.1016/j.cej.2016.06.106
– ident: ref42/cit42
  doi: 10.1021/am3010434
– ident: ref7/cit7
  doi: 10.1016/j.tibtech.2012.06.004
– ident: ref64/cit64
  doi: 10.1016/j.msec.2020.111007
– ident: ref54/cit54
  doi: 10.1038/nnano.2007.260
– ident: ref17/cit17
  doi: 10.1021/acs.nanolett.9b03782
– ident: ref68/cit68
  doi: 10.1016/j.compositesb.2018.11.109
– ident: ref46/cit46
  doi: 10.1016/j.snb.2021.129671
– ident: ref8/cit8
  doi: 10.1002/adma.202109568
– ident: ref15/cit15
  doi: 10.1021/acsanm.1c04348
– ident: ref48/cit48
  doi: 10.3389/fimmu.2021.613979
– ident: ref49/cit49
  doi: 10.1016/j.chemgeo.2017.01.024
– ident: ref22/cit22
  doi: 10.1038/s41929-021-00609-x
– ident: ref38/cit38
  doi: 10.1016/j.cej.2021.131899
– ident: ref2/cit2
  doi: 10.1086/432803
– ident: ref11/cit11
  doi: 10.1021/acsnano.8b04693
– ident: ref19/cit19
  doi: 10.1038/s41467-018-03903-8
– ident: ref20/cit20
  doi: 10.1016/j.jhazmat.2022.129321
– ident: ref37/cit37
  doi: 10.1016/j.cej.2019.05.177
– ident: ref55/cit55
  doi: 10.1021/nn300291r
– ident: ref61/cit61
  doi: 10.1039/C9SC03119G
– ident: ref13/cit13
  doi: 10.1016/j.nantod.2021.101261
– ident: ref21/cit21
  doi: 10.1016/j.talanta.2020.121990
– ident: ref28/cit28
  doi: 10.1002/adma.202000038
– ident: ref40/cit40
  doi: 10.1021/jacs.5b07451
– ident: ref47/cit47
  doi: 10.1007/s00216-021-03620-0
– ident: ref23/cit23
  doi: 10.1016/j.jhazmat.2016.12.030
– ident: ref52/cit52
  doi: 10.1021/acsanm.2c00644
– ident: ref35/cit35
  doi: 10.1007/s10450-018-9959-9
– ident: ref36/cit36
  doi: 10.1021/la0601399
– ident: ref43/cit43
  doi: 10.1016/j.fuel.2003.10.009
– ident: ref39/cit39
  doi: 10.1021/acsami.8b03259
– ident: ref73/cit73
  doi: 10.1021/acsnano.8b08045
– ident: ref33/cit33
  doi: 10.1016/j.apcatb.2014.11.005
– ident: ref18/cit18
  doi: 10.1016/j.jhazmat.2022.128404
– ident: ref60/cit60
  doi: 10.1021/cs200660v
– ident: ref69/cit69
  doi: 10.3390/ma14143872
– ident: ref25/cit25
  doi: 10.1016/j.clay.2022.106720
– ident: ref1/cit1
  doi: 10.1039/C9SC04710G
– ident: ref59/cit59
  doi: 10.1016/j.cej.2021.128535
– ident: ref27/cit27
  doi: 10.1049/iet-nbt.2016.0006
– ident: ref30/cit30
  doi: 10.1021/acs.chemmater.7b04803
– ident: ref67/cit67
  doi: 10.1016/j.conbuildmat.2021.126027
– ident: ref71/cit71
  doi: 10.1016/j.jclepro.2022.131655
– ident: ref10/cit10
  doi: 10.1021/acs.nanolett.9b02242
– ident: ref4/cit4
  doi: 10.1038/s41586-018-0332-7
– ident: ref41/cit41
  doi: 10.1016/j.cej.2017.02.043
– ident: ref3/cit3
  doi: 10.1016/j.cmi.2015.05.012
– ident: ref51/cit51
  doi: 10.1016/j.watres.2022.118607
SSID ssj0001916300
Score 2.3388686
Snippet The search for low-cost, highly efficient, and stable nanozymes mimicking peroxidase (POD) enzymes remains a great challenge in the development of valuable...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 16720
Title Attapulgite Doped with Fe and Cu Nanooxides as Peroxidase Nanozymes for Antibacterial Coatings
URI http://dx.doi.org/10.1021/acsanm.2c03721
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6iCL54F-8EFHzqbNKmWR7HdIigCCr4ZDm5VERtx9qB7td70m5sOEQfm5a0nJzmfOf2hZBTRPGgMhUHkBiNDopMfJIQAq0iq9vCKsl8c_LNbXL1GF8_iadpvONnBp-zczAl5B8tbsJI-o7xJY5G0btZne79NJqCKCeq-01QBeMgVDKcMDTOTeHtkCln7NCMQemtNexGZc1D6OtI3lrDSrfMaJ6l8c9vXSerY1RJO40abJAFl2-S5bq605Rb5LlTVdAfvr8gvqQXRd9Z6uOvtOco5JZ2hxQ32aL4fLWupFDSOzfwF2jg6hujrw8cR3RLO3n1qht-Z3xdtwBfNF1uk8fe5UP3KhgfrBAAOqFVEAMoK5hTxnj3h2fgpJJOxgLquieTGJXoODSJECKTvoLDOFxQf6QNF9COdshiXuRul9Ao1plrS2AmS2IEg4i2MsZAQwjaWsv3yAkKJR3_GGVa57w5SxtJpWNJ7ZGzyWKk_YZl45cn9_813wFZ4b5NgbGAi0OyWA2G7gjBQ6WPa735Bi6CvnE
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwEA-iiH7xLb4NKPips2mbZvk4pmO-xsAJfrJcHhVR22E7UP96L93mRBH0Y9NyOS7X3O9yjxByiCgeZCojD2Kt0EERsQsSgqdkaFSdGymYK06-6sTtm-j8lt9OkeNxLQwyUSClogriT7oLsGMcg-y5Fmg_FK5wfIYLNHUOCzWvJ4cqCHbCquwENTHyfCn8caPGHyScOdLFF3P0xa60Fkn3k6MqneSxNihVTb9_a9b4D5aXyMIIY9LGUCmWyZTNVshsleupi1Vy1yhL6A-e7hFt0pO8bw11p7G0ZSlkhjYHFLfcPH99MLagUNCufXEPaO6qF-9vzziOWJc2svJBDbs943TNHFwKdbFGblqnvWbbG12z4AG6pKUXAUjDmZVaO2coSMEKKayIOFRZUDrWMlaRr2POeSpcPoe2uLzugpuAQz1cJ9NZntkNQsNIpbYugOk0jhAaIvZKGQMFPihjTLBJDlAoyeg3KZIqAh6wZCipZCSpTXI0XpOkP-y58cuXW3-it0_m2r2ry-TyrHOxTeYDV8DAmBfwHTJdvgzsLsKKUu1VqvQBDGvG3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iKL54i7cBBZ-6Nm3SbB6X1cUbQQWfLJOjImq72C6ov95Jtx4ogj42DdMwmel8kzlCyDaieFCZ4gEkRqODIhMfJIRAq9jqtrBKMl-cfHqWHFzxo2tx3dRx-1oYXESJlMo6iO-1um-zpsMA28VxyB9bkQlj6YvHx4Rk3Gtjp3vxebCCgCeuS09QGnkQKhm-N2v8QcKbJFN-MUlfbEtvmlx-rKpOKblvDSrdMq_fGjb-c9kzZKrBmrQzFI5ZMuLyOTJe53yacp7cdKoK-oOHW0SddK_oO0v9qSztOQq5pd0BxV9vUTzfWVdSKOm5e_IPaPbqF68vjziOmJd28upOD7s-4-e6BfhU6nKBXPX2L7sHQXPdQgDomlYBB1BWMKeM8U5RlIGTSjrJBdTZUCYxKtE8NIkQIpM-r8M43GZ_0U0koB0vktG8yN0SoTHXmWtLYCZLOEJExGAZY6AhBG2tjZbJFjIlbdSlTOtIeMTSIafShlPLZOd9X9L-sPfGLzNX_kRvk0yc7_XSk8Oz41UyGfk6BsaCSKyR0epp4NYRXVR6o5amN5fYyVY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attapulgite+Doped+with+Fe+and+Cu+Nanooxides+as+Peroxidase+Nanozymes+for+Antibacterial+Coatings&rft.jtitle=ACS+applied+nano+materials&rft.au=Feng%2C+Feng&rft.au=Zhang%2C+Xiao&rft.au=Mu%2C+Bin&rft.au=Wang%2C+Peixia&rft.date=2022-11-25&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=5&rft.issue=11&rft.spage=16720&rft.epage=16730&rft_id=info:doi/10.1021%2Facsanm.2c03721&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsanm_2c03721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon