Surface-Active Thermally Responsive Hydrogels by Emulsion Sedimentation for Smart Window Applications

Thermally responsive polymers are a subject of increasing interest in research and development as a basis for a potential smart window technology. Here, we present a concept of preparing thermally responsive hydrogels with a thin active surface layer exhibiting rapid and reversible switching of ligh...

Full description

Saved in:
Bibliographic Details
Published inACS applied polymer materials Vol. 5; no. 8; pp. 5937 - 5950
Main Authors Timusk, Martin, Locs, Janis, Kangur, Triin, Kasikov, Aarne, Kurnitski, Jarek, Šutka, Andris
Format Journal Article
LanguageEnglish
Published American Chemical Society 11.08.2023
Subjects
Online AccessGet full text
ISSN2637-6105
2637-6105
DOI10.1021/acsapm.3c00600

Cover

Loading…
Abstract Thermally responsive polymers are a subject of increasing interest in research and development as a basis for a potential smart window technology. Here, we present a concept of preparing thermally responsive hydrogels with a thin active surface layer exhibiting rapid and reversible switching of light scattering in the visible and near-infrared spectral ranges. The process relies on the forced emulsion formation and sedimentation from the aqueous prepolymer solution by using a crosslinker that is engineered to serve as an antisolvent for the prepolymer and at the same time exhibit a suitable solubility profile in the sedimented hydrogel layer with respect to the supernatant aqueous phase. While the method can be employed for different polymer and crosslinker systems, as an example, here, we employ this concept for preparing thermally responsive hydrogels based on ethoxylated trimethylolpropane tri­(3-mercaptopropionate) (ETTMP) and glycerol-derived crosslinkers with a dimaleate functionality, enabling crosslinking by the thiol-Michael click reaction. The material exhibits a luminous transmittance of over 95% and solar energy modulation of 59.91%. Moreover, we show that the pH and additives in the aqueous operating solution of the hydrogel enable the choice of the transition temperature in a wide range. The unique thin layer on the surface of the hydrogel, scalability to large surface areas, and robust and fast response at the practically relevant temperature range give this material a strong potential for smart window technology applications.
AbstractList Thermally responsive polymers are a subject of increasing interest in research and development as a basis for a potential smart window technology. Here, we present a concept of preparing thermally responsive hydrogels with a thin active surface layer exhibiting rapid and reversible switching of light scattering in the visible and near-infrared spectral ranges. The process relies on the forced emulsion formation and sedimentation from the aqueous prepolymer solution by using a crosslinker that is engineered to serve as an antisolvent for the prepolymer and at the same time exhibit a suitable solubility profile in the sedimented hydrogel layer with respect to the supernatant aqueous phase. While the method can be employed for different polymer and crosslinker systems, as an example, here, we employ this concept for preparing thermally responsive hydrogels based on ethoxylated trimethylolpropane tri­(3-mercaptopropionate) (ETTMP) and glycerol-derived crosslinkers with a dimaleate functionality, enabling crosslinking by the thiol-Michael click reaction. The material exhibits a luminous transmittance of over 95% and solar energy modulation of 59.91%. Moreover, we show that the pH and additives in the aqueous operating solution of the hydrogel enable the choice of the transition temperature in a wide range. The unique thin layer on the surface of the hydrogel, scalability to large surface areas, and robust and fast response at the practically relevant temperature range give this material a strong potential for smart window technology applications.
Author Kangur, Triin
Šutka, Andris
Locs, Janis
Timusk, Martin
Kasikov, Aarne
Kurnitski, Jarek
AuthorAffiliation Institute of Physics
Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry
Tallinn University of Technology
Riga Technical University
Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry
Department of Civil Engineering and Architecture
AuthorAffiliation_xml – name: Department of Civil Engineering and Architecture
– name: Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry
– name: Tallinn University of Technology
– name: Riga Technical University
– name: Institute of Physics
– name: Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0003-4986-6262
  surname: Timusk
  fullname: Timusk, Martin
  email: martin.timusk@ut.ee
  organization: Institute of Physics
– sequence: 2
  givenname: Janis
  orcidid: 0000-0003-3162-7431
  surname: Locs
  fullname: Locs, Janis
  organization: Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry
– sequence: 3
  givenname: Triin
  surname: Kangur
  fullname: Kangur, Triin
  organization: Institute of Physics
– sequence: 4
  givenname: Aarne
  surname: Kasikov
  fullname: Kasikov, Aarne
  organization: Institute of Physics
– sequence: 5
  givenname: Jarek
  orcidid: 0000-0003-3254-0637
  surname: Kurnitski
  fullname: Kurnitski, Jarek
  organization: Tallinn University of Technology
– sequence: 6
  givenname: Andris
  orcidid: 0000-0002-5739-0164
  surname: Šutka
  fullname: Šutka, Andris
  organization: Riga Technical University
BookMark eNp1kM9LwzAUx4NMcM5dPecsdL6kadPrGPMHDAQ38VjSNNGMtClJp_S_N7M7iLB3eT8_j_e-12jSulYhdEtgQYCSeyGD6JpFKgFygAs0pXnKk5xANvkTX6F5CHuASFBGMzpFanvwWkiVLGVvvhTefSrfCGsH_KpC59pwLD4NtXcfygZcDXjdHGwwrsVbVZtGtb3oj5l2Hm8b4Xv8btrafeNl11kjf5vhBl1qYYOan_wMvT2sd6unZPPy-LxabhJBOesTUuTAK1CcRJ8zSFOmKS8yxUg0yiqd6krXeS2LlLKCQwGaxzHCqZQyE-kMLca90rsQvNJl5008aigJlEedylGn8qRTBNg_QJrxod4LY89jdyMW6-XeHXwbvzo3_AP5Rn6O
CitedBy_id crossref_primary_10_1515_epoly_2023_0138
crossref_primary_10_1016_j_cnsns_2024_108432
crossref_primary_10_1039_D4EE02797C
crossref_primary_10_1016_j_colsurfa_2024_134775
crossref_primary_10_1016_j_scp_2024_101643
Cites_doi 10.1016/j.solmat.2021.111348
10.1021/acsami.0c17902
10.1021/ma201988n
10.1007/s11998-021-00558-x
10.1021/acsami.0c09811
10.1039/c3ta14612j
10.3390/molecules25235510
10.1039/C7TC01489A
10.1016/j.biomaterials.2010.08.106
10.1021/ie502828b
10.1002/app.49788
10.1038/srep06427
10.3390/su13179604
10.1016/j.cej.2022.136471
10.1039/C4TA05035E
10.1016/j.chempr.2017.12.030
10.1002/jbm.a.31466
10.1039/C4TA02287D
10.1016/j.joule.2020.09.001
10.1002/marc.202100212
10.3390/polym11081339
10.1002/jbm.b.34565
10.1002/adfm.201705365
10.1021/cm402180t
10.1016/0079-6700(92)90023-R
10.1002/pola.22706
10.1126/sciadv.abn7359
10.1016/j.carbpol.2018.05.039
10.1002/anie.201506663
10.1002/pola.1992.080301115
10.1039/f19817702053
10.1016/j.solmat.2017.01.036
10.1017/CBO9780511524158
10.1016/j.solmat.2019.110336
10.1002/marc.202000290
10.1039/C5RA22448A
10.1016/j.joule.2018.06.018
10.1021/acsami.8b15574
10.1007/BF02757850
10.1021/jp0270046
10.1016/j.solmat.2018.06.037
10.1039/C6RA12454B
10.1002/anie.200901607
10.3390/nano9070970
10.1002/adfm.202000754
10.1016/j.cej.2021.133353
10.1021/acsaem.1c01854
10.1016/j.pmatsci.2020.100702
10.1002/aenm.201902066
10.1002/adfm.201800113
10.1016/j.solmat.2011.08.021
10.1016/j.optmat.2019.109367
10.1039/c1sm00010a
10.1021/ma021301r
10.1039/D1TA03917B
10.1021/acs.iecr.9b00407
10.1039/b901979k
10.1002/adfm.201910225
10.1002/ange.200502004
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsapm.3c00600
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2637-6105
EndPage 5950
ExternalDocumentID 10_1021_acsapm_3c00600
c717463786
GroupedDBID ABFRP
ABQRX
ABUCX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a274t-18607b0e71607640334f2785e4111124bf3fbfd6dc832487080f7403172ccc5a3
IEDL.DBID ACS
ISSN 2637-6105
IngestDate Tue Jul 01 01:19:09 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Tue Aug 15 03:11:50 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords smart window
click chemistry
thiol-Michael addition
emulsion sedimentation
hydrogel
thermally responsive polymer
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a274t-18607b0e71607640334f2785e4111124bf3fbfd6dc832487080f7403172ccc5a3
ORCID 0000-0003-3254-0637
0000-0003-4986-6262
0000-0003-3162-7431
0000-0002-5739-0164
PageCount 14
ParticipantIDs crossref_primary_10_1021_acsapm_3c00600
crossref_citationtrail_10_1021_acsapm_3c00600
acs_journals_10_1021_acsapm_3c00600
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-11
PublicationDateYYYYMMDD 2023-08-11
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-11
  day: 11
PublicationDecade 2020
PublicationTitle ACS applied polymer materials
PublicationTitleAlternate ACS Appl. Polym. Mater
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
Grandy W. T. (ref50/cit50) 2000
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1016/j.solmat.2021.111348
– ident: ref7/cit7
  doi: 10.1021/acsami.0c17902
– ident: ref32/cit32
  doi: 10.1021/ma201988n
– ident: ref6/cit6
  doi: 10.1007/s11998-021-00558-x
– ident: ref29/cit29
  doi: 10.1021/acsami.0c09811
– ident: ref55/cit55
  doi: 10.1039/c3ta14612j
– ident: ref8/cit8
  doi: 10.3390/molecules25235510
– ident: ref38/cit38
  doi: 10.1039/C7TC01489A
– ident: ref44/cit44
  doi: 10.1016/j.biomaterials.2010.08.106
– ident: ref58/cit58
  doi: 10.1021/ie502828b
– ident: ref15/cit15
  doi: 10.1002/app.49788
– ident: ref2/cit2
  doi: 10.1038/srep06427
– ident: ref3/cit3
  doi: 10.3390/su13179604
– ident: ref19/cit19
  doi: 10.1016/j.cej.2022.136471
– ident: ref23/cit23
  doi: 10.1039/C4TA05035E
– ident: ref5/cit5
  doi: 10.1016/j.chempr.2017.12.030
– ident: ref46/cit46
  doi: 10.1002/jbm.a.31466
– ident: ref17/cit17
  doi: 10.1039/C4TA02287D
– ident: ref18/cit18
  doi: 10.1016/j.joule.2020.09.001
– ident: ref52/cit52
  doi: 10.1002/marc.202100212
– ident: ref49/cit49
  doi: 10.3390/polym11081339
– ident: ref45/cit45
  doi: 10.1002/jbm.b.34565
– ident: ref57/cit57
  doi: 10.1002/adfm.201705365
– ident: ref48/cit48
  doi: 10.1021/cm402180t
– ident: ref13/cit13
  doi: 10.1016/0079-6700(92)90023-R
– ident: ref28/cit28
  doi: 10.1002/pola.22706
– ident: ref20/cit20
  doi: 10.1126/sciadv.abn7359
– ident: ref53/cit53
  doi: 10.1016/j.carbpol.2018.05.039
– ident: ref14/cit14
  doi: 10.1002/anie.201506663
– ident: ref33/cit33
  doi: 10.1002/pola.1992.080301115
– ident: ref42/cit42
  doi: 10.1039/f19817702053
– ident: ref9/cit9
  doi: 10.1016/j.solmat.2017.01.036
– volume-title: Scattering of Waves from Large Spheres
  year: 2000
  ident: ref50/cit50
  doi: 10.1017/CBO9780511524158
– ident: ref54/cit54
  doi: 10.1016/j.solmat.2019.110336
– ident: ref12/cit12
  doi: 10.1002/marc.202000290
– ident: ref10/cit10
  doi: 10.1039/C5RA22448A
– ident: ref41/cit41
  doi: 10.1016/j.joule.2018.06.018
– ident: ref22/cit22
  doi: 10.1021/acsami.8b15574
– ident: ref40/cit40
  doi: 10.1007/BF02757850
– ident: ref43/cit43
  doi: 10.1021/jp0270046
– ident: ref31/cit31
  doi: 10.1016/j.solmat.2018.06.037
– ident: ref34/cit34
  doi: 10.1039/C6RA12454B
– ident: ref30/cit30
  doi: 10.1002/anie.200901607
– ident: ref56/cit56
  doi: 10.3390/nano9070970
– ident: ref16/cit16
  doi: 10.1002/adfm.202000754
– ident: ref24/cit24
  doi: 10.1016/j.cej.2021.133353
– ident: ref37/cit37
  doi: 10.1021/acsaem.1c01854
– ident: ref51/cit51
  doi: 10.1016/j.pmatsci.2020.100702
– ident: ref1/cit1
  doi: 10.1002/aenm.201902066
– ident: ref11/cit11
  doi: 10.1002/adfm.201800113
– ident: ref4/cit4
  doi: 10.1016/j.solmat.2011.08.021
– ident: ref21/cit21
  doi: 10.1016/j.optmat.2019.109367
– ident: ref59/cit59
  doi: 10.1039/c1sm00010a
– ident: ref27/cit27
  doi: 10.1021/ma021301r
– ident: ref25/cit25
  doi: 10.1039/D1TA03917B
– ident: ref35/cit35
  doi: 10.1021/acs.iecr.9b00407
– ident: ref47/cit47
  doi: 10.1039/b901979k
– ident: ref39/cit39
  doi: 10.1002/adfm.201910225
– ident: ref26/cit26
  doi: 10.1002/ange.200502004
SSID ssj0002124252
Score 2.2632868
Snippet Thermally responsive polymers are a subject of increasing interest in research and development as a basis for a potential smart window technology. Here, we...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 5937
Title Surface-Active Thermally Responsive Hydrogels by Emulsion Sedimentation for Smart Window Applications
URI http://dx.doi.org/10.1021/acsapm.3c00600
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDhjSgvWQKJySVOnDgdo6pVxcBAqOgWObbDQNJWTSJUfj3nJC0VVQVrdLIj-3z33Z39HUL3njLbLLrEAWxMmM8U6Xo2RK3SF0yqrqaiuiD77A1H7Gnsjn_yHb8r-DZ9FDIXs6zjSEMdAsH5ru353LDkB71wlU0BAwzKZ0oGtle9e7PcJUPjxhDGD8l8zQ-tOZTBYc1ulFc8hOYeyUenLOKO_NpkafzzX4_QQYMqcVCrwTHa0ZMTtNdbNnM7RTos54mQmgSVfcOgHWCR03SBX5pLsvBxuFDz6Ts4SxwvcD8rU5NJwyG4t6x5oTTBgHFxmIG-4TeI5qefOFirgJ-h0aD_2huSpsMCERCNFoT6nsVjS3NDM-cxy3FYYnPf1cxYUpvFiZPEifKUhIMPoQ3Ay4SDGKAeKaUrnHPUmkwn-gJhGM_1zYM9ammWcEsoqhSgMS04d2LttNEdrE7UnJA8qorfNo3qJYuaJWsjstyVSDYk5aZXRrpV_mElP6vpObZIXv5r_iu0b_rJm6QxpdeoVcxLfQOoo4hvK4X7BroE0O4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9jPswXv8X5GVDwqVs_0o89ljGpOofYDfdW0iT1wbYb64rMv95L186hDPQ1HGlIrne_y-V-h9CNxeUx045iADZWiEO40rF0iFqZQwnjHaHR4oHswPJG5GFsjmuoXdXCwCIymCkrkvjf7AJaG8boNGkZTDKIQIy-BUhEl2T5btdfXaqAHQYdlJkD3SrK31SzImr8NYV0Ryxbc0drfuVuFz2vVlQ8J3lv5fOwxT5_kDX-Y8l7aKfEmNhdKsU-qon0ADW6VWu3QyT8fBZRJhS3sHYYdAXscxwv8Ev5ZBYGvQWfTd7AdeJwgXtJHst7NeyDs0vKeqUUA-LFfgLah18htp98YHctH36ERne9YddTyn4LCoXYdK5ojqXaoSpsSTpnEdUwSKTbjimItKs6CSMjCiNucQZmAAIdAJuRDWKAgRhjJjWOUT2dpOIEYZjPdGT5nqYKEtkq5RrngM0EtW0jFEYTXcPuBOX_kgVFKlzXguWWBeWWNZFSHU7ASspy2Tkj3ih_u5KfLsk6Nkie_un7V6jhDZ_6Qf9-8HiGtmWneXmdrGnnqD6f5eIC8Mg8vCx08AuQntlP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-ioL74Lc7PgIJPnU2bfuyxzI35wRC74d5KmqQ-2G5jbZH513vpsjGUgb6GIw3p5e53udzvELpxhfrNrGHYgI0N6lNhNFwLolbuM8pFQxJWPZDtup0-fRw4A13HrWphYBE5zJRXSXx1qsci0QwD5A7G2Tir21yxiECcvqFydoowP2iGi4sVsMWghyp7YLlVCZzpzMkaf02hXBLPl1zSkm9p76LeYlXVk5KPelnEdf71g7Dxn8veQzsaa-Jgphz7aE0OD9BWc97i7RDJsJwkjEsjqKweBp0BO52mU_yqn87CYGcqJqN3cKE4nuJWVqbqfg2H4PQyXbc0xIB8cZiBFuI3iPFHnzhYyosfoX671Wt2DN13wWAQoxYG8V3Ti03pKfI5l5q2TRPL8x1JlX21aJzYSZwIV3AwBxDwAOhMPBADLMQ5d5h9jNaHo6E8QRjmc3xVxkdMSRPPZIIIARhNMs-zY2nX0DXsTqTPTR5VKXGLRLMti_SW1ZAx_0ER19TlqoNGulL-diE_npF2rJA8_dP3r9Dmy307en7oPp2hbdVwXt0qE3KO1otJKS8AlhTxZaWG378V29I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Active+Thermally+Responsive+Hydrogels+by+Emulsion+Sedimentation+for+Smart+Window+Applications&rft.jtitle=ACS+applied+polymer+materials&rft.au=Timusk%2C+Martin&rft.au=Locs%2C+Janis&rft.au=Kangur%2C+Triin&rft.au=Kasikov%2C+Aarne&rft.date=2023-08-11&rft.issn=2637-6105&rft.eissn=2637-6105&rft.volume=5&rft.issue=8&rft.spage=5937&rft.epage=5950&rft_id=info:doi/10.1021%2Facsapm.3c00600&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsapm_3c00600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6105&client=summon