Surface-Active Thermally Responsive Hydrogels by Emulsion Sedimentation for Smart Window Applications
Thermally responsive polymers are a subject of increasing interest in research and development as a basis for a potential smart window technology. Here, we present a concept of preparing thermally responsive hydrogels with a thin active surface layer exhibiting rapid and reversible switching of ligh...
Saved in:
Published in | ACS applied polymer materials Vol. 5; no. 8; pp. 5937 - 5950 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
11.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2637-6105 2637-6105 |
DOI | 10.1021/acsapm.3c00600 |
Cover
Loading…
Abstract | Thermally responsive polymers are a subject of increasing interest in research and development as a basis for a potential smart window technology. Here, we present a concept of preparing thermally responsive hydrogels with a thin active surface layer exhibiting rapid and reversible switching of light scattering in the visible and near-infrared spectral ranges. The process relies on the forced emulsion formation and sedimentation from the aqueous prepolymer solution by using a crosslinker that is engineered to serve as an antisolvent for the prepolymer and at the same time exhibit a suitable solubility profile in the sedimented hydrogel layer with respect to the supernatant aqueous phase. While the method can be employed for different polymer and crosslinker systems, as an example, here, we employ this concept for preparing thermally responsive hydrogels based on ethoxylated trimethylolpropane tri(3-mercaptopropionate) (ETTMP) and glycerol-derived crosslinkers with a dimaleate functionality, enabling crosslinking by the thiol-Michael click reaction. The material exhibits a luminous transmittance of over 95% and solar energy modulation of 59.91%. Moreover, we show that the pH and additives in the aqueous operating solution of the hydrogel enable the choice of the transition temperature in a wide range. The unique thin layer on the surface of the hydrogel, scalability to large surface areas, and robust and fast response at the practically relevant temperature range give this material a strong potential for smart window technology applications. |
---|---|
AbstractList | Thermally responsive polymers are a subject of increasing interest in research and development as a basis for a potential smart window technology. Here, we present a concept of preparing thermally responsive hydrogels with a thin active surface layer exhibiting rapid and reversible switching of light scattering in the visible and near-infrared spectral ranges. The process relies on the forced emulsion formation and sedimentation from the aqueous prepolymer solution by using a crosslinker that is engineered to serve as an antisolvent for the prepolymer and at the same time exhibit a suitable solubility profile in the sedimented hydrogel layer with respect to the supernatant aqueous phase. While the method can be employed for different polymer and crosslinker systems, as an example, here, we employ this concept for preparing thermally responsive hydrogels based on ethoxylated trimethylolpropane tri(3-mercaptopropionate) (ETTMP) and glycerol-derived crosslinkers with a dimaleate functionality, enabling crosslinking by the thiol-Michael click reaction. The material exhibits a luminous transmittance of over 95% and solar energy modulation of 59.91%. Moreover, we show that the pH and additives in the aqueous operating solution of the hydrogel enable the choice of the transition temperature in a wide range. The unique thin layer on the surface of the hydrogel, scalability to large surface areas, and robust and fast response at the practically relevant temperature range give this material a strong potential for smart window technology applications. |
Author | Kangur, Triin Šutka, Andris Locs, Janis Timusk, Martin Kasikov, Aarne Kurnitski, Jarek |
AuthorAffiliation | Institute of Physics Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry Tallinn University of Technology Riga Technical University Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry Department of Civil Engineering and Architecture |
AuthorAffiliation_xml | – name: Department of Civil Engineering and Architecture – name: Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry – name: Tallinn University of Technology – name: Riga Technical University – name: Institute of Physics – name: Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0003-4986-6262 surname: Timusk fullname: Timusk, Martin email: martin.timusk@ut.ee organization: Institute of Physics – sequence: 2 givenname: Janis orcidid: 0000-0003-3162-7431 surname: Locs fullname: Locs, Janis organization: Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry – sequence: 3 givenname: Triin surname: Kangur fullname: Kangur, Triin organization: Institute of Physics – sequence: 4 givenname: Aarne surname: Kasikov fullname: Kasikov, Aarne organization: Institute of Physics – sequence: 5 givenname: Jarek orcidid: 0000-0003-3254-0637 surname: Kurnitski fullname: Kurnitski, Jarek organization: Tallinn University of Technology – sequence: 6 givenname: Andris orcidid: 0000-0002-5739-0164 surname: Šutka fullname: Šutka, Andris organization: Riga Technical University |
BookMark | eNp1kM9LwzAUx4NMcM5dPecsdL6kadPrGPMHDAQ38VjSNNGMtClJp_S_N7M7iLB3eT8_j_e-12jSulYhdEtgQYCSeyGD6JpFKgFygAs0pXnKk5xANvkTX6F5CHuASFBGMzpFanvwWkiVLGVvvhTefSrfCGsH_KpC59pwLD4NtXcfygZcDXjdHGwwrsVbVZtGtb3oj5l2Hm8b4Xv8btrafeNl11kjf5vhBl1qYYOan_wMvT2sd6unZPPy-LxabhJBOesTUuTAK1CcRJ8zSFOmKS8yxUg0yiqd6krXeS2LlLKCQwGaxzHCqZQyE-kMLca90rsQvNJl5008aigJlEedylGn8qRTBNg_QJrxod4LY89jdyMW6-XeHXwbvzo3_AP5Rn6O |
CitedBy_id | crossref_primary_10_1515_epoly_2023_0138 crossref_primary_10_1016_j_cnsns_2024_108432 crossref_primary_10_1039_D4EE02797C crossref_primary_10_1016_j_colsurfa_2024_134775 crossref_primary_10_1016_j_scp_2024_101643 |
Cites_doi | 10.1016/j.solmat.2021.111348 10.1021/acsami.0c17902 10.1021/ma201988n 10.1007/s11998-021-00558-x 10.1021/acsami.0c09811 10.1039/c3ta14612j 10.3390/molecules25235510 10.1039/C7TC01489A 10.1016/j.biomaterials.2010.08.106 10.1021/ie502828b 10.1002/app.49788 10.1038/srep06427 10.3390/su13179604 10.1016/j.cej.2022.136471 10.1039/C4TA05035E 10.1016/j.chempr.2017.12.030 10.1002/jbm.a.31466 10.1039/C4TA02287D 10.1016/j.joule.2020.09.001 10.1002/marc.202100212 10.3390/polym11081339 10.1002/jbm.b.34565 10.1002/adfm.201705365 10.1021/cm402180t 10.1016/0079-6700(92)90023-R 10.1002/pola.22706 10.1126/sciadv.abn7359 10.1016/j.carbpol.2018.05.039 10.1002/anie.201506663 10.1002/pola.1992.080301115 10.1039/f19817702053 10.1016/j.solmat.2017.01.036 10.1017/CBO9780511524158 10.1016/j.solmat.2019.110336 10.1002/marc.202000290 10.1039/C5RA22448A 10.1016/j.joule.2018.06.018 10.1021/acsami.8b15574 10.1007/BF02757850 10.1021/jp0270046 10.1016/j.solmat.2018.06.037 10.1039/C6RA12454B 10.1002/anie.200901607 10.3390/nano9070970 10.1002/adfm.202000754 10.1016/j.cej.2021.133353 10.1021/acsaem.1c01854 10.1016/j.pmatsci.2020.100702 10.1002/aenm.201902066 10.1002/adfm.201800113 10.1016/j.solmat.2011.08.021 10.1016/j.optmat.2019.109367 10.1039/c1sm00010a 10.1021/ma021301r 10.1039/D1TA03917B 10.1021/acs.iecr.9b00407 10.1039/b901979k 10.1002/adfm.201910225 10.1002/ange.200502004 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsapm.3c00600 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2637-6105 |
EndPage | 5950 |
ExternalDocumentID | 10_1021_acsapm_3c00600 c717463786 |
GroupedDBID | ABFRP ABQRX ABUCX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a274t-18607b0e71607640334f2785e4111124bf3fbfd6dc832487080f7403172ccc5a3 |
IEDL.DBID | ACS |
ISSN | 2637-6105 |
IngestDate | Tue Jul 01 01:19:09 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Tue Aug 15 03:11:50 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | smart window click chemistry thiol-Michael addition emulsion sedimentation hydrogel thermally responsive polymer |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a274t-18607b0e71607640334f2785e4111124bf3fbfd6dc832487080f7403172ccc5a3 |
ORCID | 0000-0003-3254-0637 0000-0003-4986-6262 0000-0003-3162-7431 0000-0002-5739-0164 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1021_acsapm_3c00600 crossref_citationtrail_10_1021_acsapm_3c00600 acs_journals_10_1021_acsapm_3c00600 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-11 |
PublicationDateYYYYMMDD | 2023-08-11 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied polymer materials |
PublicationTitleAlternate | ACS Appl. Polym. Mater |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 Grandy W. T. (ref50/cit50) 2000 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref36/cit36 doi: 10.1016/j.solmat.2021.111348 – ident: ref7/cit7 doi: 10.1021/acsami.0c17902 – ident: ref32/cit32 doi: 10.1021/ma201988n – ident: ref6/cit6 doi: 10.1007/s11998-021-00558-x – ident: ref29/cit29 doi: 10.1021/acsami.0c09811 – ident: ref55/cit55 doi: 10.1039/c3ta14612j – ident: ref8/cit8 doi: 10.3390/molecules25235510 – ident: ref38/cit38 doi: 10.1039/C7TC01489A – ident: ref44/cit44 doi: 10.1016/j.biomaterials.2010.08.106 – ident: ref58/cit58 doi: 10.1021/ie502828b – ident: ref15/cit15 doi: 10.1002/app.49788 – ident: ref2/cit2 doi: 10.1038/srep06427 – ident: ref3/cit3 doi: 10.3390/su13179604 – ident: ref19/cit19 doi: 10.1016/j.cej.2022.136471 – ident: ref23/cit23 doi: 10.1039/C4TA05035E – ident: ref5/cit5 doi: 10.1016/j.chempr.2017.12.030 – ident: ref46/cit46 doi: 10.1002/jbm.a.31466 – ident: ref17/cit17 doi: 10.1039/C4TA02287D – ident: ref18/cit18 doi: 10.1016/j.joule.2020.09.001 – ident: ref52/cit52 doi: 10.1002/marc.202100212 – ident: ref49/cit49 doi: 10.3390/polym11081339 – ident: ref45/cit45 doi: 10.1002/jbm.b.34565 – ident: ref57/cit57 doi: 10.1002/adfm.201705365 – ident: ref48/cit48 doi: 10.1021/cm402180t – ident: ref13/cit13 doi: 10.1016/0079-6700(92)90023-R – ident: ref28/cit28 doi: 10.1002/pola.22706 – ident: ref20/cit20 doi: 10.1126/sciadv.abn7359 – ident: ref53/cit53 doi: 10.1016/j.carbpol.2018.05.039 – ident: ref14/cit14 doi: 10.1002/anie.201506663 – ident: ref33/cit33 doi: 10.1002/pola.1992.080301115 – ident: ref42/cit42 doi: 10.1039/f19817702053 – ident: ref9/cit9 doi: 10.1016/j.solmat.2017.01.036 – volume-title: Scattering of Waves from Large Spheres year: 2000 ident: ref50/cit50 doi: 10.1017/CBO9780511524158 – ident: ref54/cit54 doi: 10.1016/j.solmat.2019.110336 – ident: ref12/cit12 doi: 10.1002/marc.202000290 – ident: ref10/cit10 doi: 10.1039/C5RA22448A – ident: ref41/cit41 doi: 10.1016/j.joule.2018.06.018 – ident: ref22/cit22 doi: 10.1021/acsami.8b15574 – ident: ref40/cit40 doi: 10.1007/BF02757850 – ident: ref43/cit43 doi: 10.1021/jp0270046 – ident: ref31/cit31 doi: 10.1016/j.solmat.2018.06.037 – ident: ref34/cit34 doi: 10.1039/C6RA12454B – ident: ref30/cit30 doi: 10.1002/anie.200901607 – ident: ref56/cit56 doi: 10.3390/nano9070970 – ident: ref16/cit16 doi: 10.1002/adfm.202000754 – ident: ref24/cit24 doi: 10.1016/j.cej.2021.133353 – ident: ref37/cit37 doi: 10.1021/acsaem.1c01854 – ident: ref51/cit51 doi: 10.1016/j.pmatsci.2020.100702 – ident: ref1/cit1 doi: 10.1002/aenm.201902066 – ident: ref11/cit11 doi: 10.1002/adfm.201800113 – ident: ref4/cit4 doi: 10.1016/j.solmat.2011.08.021 – ident: ref21/cit21 doi: 10.1016/j.optmat.2019.109367 – ident: ref59/cit59 doi: 10.1039/c1sm00010a – ident: ref27/cit27 doi: 10.1021/ma021301r – ident: ref25/cit25 doi: 10.1039/D1TA03917B – ident: ref35/cit35 doi: 10.1021/acs.iecr.9b00407 – ident: ref47/cit47 doi: 10.1039/b901979k – ident: ref39/cit39 doi: 10.1002/adfm.201910225 – ident: ref26/cit26 doi: 10.1002/ange.200502004 |
SSID | ssj0002124252 |
Score | 2.2632868 |
Snippet | Thermally responsive polymers are a subject of increasing interest in research and development as a basis for a potential smart window technology. Here, we... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 5937 |
Title | Surface-Active Thermally Responsive Hydrogels by Emulsion Sedimentation for Smart Window Applications |
URI | http://dx.doi.org/10.1021/acsapm.3c00600 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDhjSgvWQKJySVOnDgdo6pVxcBAqOgWObbDQNJWTSJUfj3nJC0VVQVrdLIj-3z33Z39HUL3njLbLLrEAWxMmM8U6Xo2RK3SF0yqrqaiuiD77A1H7Gnsjn_yHb8r-DZ9FDIXs6zjSEMdAsH5ru353LDkB71wlU0BAwzKZ0oGtle9e7PcJUPjxhDGD8l8zQ-tOZTBYc1ulFc8hOYeyUenLOKO_NpkafzzX4_QQYMqcVCrwTHa0ZMTtNdbNnM7RTos54mQmgSVfcOgHWCR03SBX5pLsvBxuFDz6Ts4SxwvcD8rU5NJwyG4t6x5oTTBgHFxmIG-4TeI5qefOFirgJ-h0aD_2huSpsMCERCNFoT6nsVjS3NDM-cxy3FYYnPf1cxYUpvFiZPEifKUhIMPoQ3Ay4SDGKAeKaUrnHPUmkwn-gJhGM_1zYM9ammWcEsoqhSgMS04d2LttNEdrE7UnJA8qorfNo3qJYuaJWsjstyVSDYk5aZXRrpV_mElP6vpObZIXv5r_iu0b_rJm6QxpdeoVcxLfQOoo4hvK4X7BroE0O4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9jPswXv8X5GVDwqVs_0o89ljGpOofYDfdW0iT1wbYb64rMv95L186hDPQ1HGlIrne_y-V-h9CNxeUx045iADZWiEO40rF0iFqZQwnjHaHR4oHswPJG5GFsjmuoXdXCwCIymCkrkvjf7AJaG8boNGkZTDKIQIy-BUhEl2T5btdfXaqAHQYdlJkD3SrK31SzImr8NYV0Ryxbc0drfuVuFz2vVlQ8J3lv5fOwxT5_kDX-Y8l7aKfEmNhdKsU-qon0ADW6VWu3QyT8fBZRJhS3sHYYdAXscxwv8Ev5ZBYGvQWfTd7AdeJwgXtJHst7NeyDs0vKeqUUA-LFfgLah18htp98YHctH36ERne9YddTyn4LCoXYdK5ojqXaoSpsSTpnEdUwSKTbjimItKs6CSMjCiNucQZmAAIdAJuRDWKAgRhjJjWOUT2dpOIEYZjPdGT5nqYKEtkq5RrngM0EtW0jFEYTXcPuBOX_kgVFKlzXguWWBeWWNZFSHU7ASspy2Tkj3ih_u5KfLsk6Nkie_un7V6jhDZ_6Qf9-8HiGtmWneXmdrGnnqD6f5eIC8Mg8vCx08AuQntlP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-ioL74Lc7PgIJPnU2bfuyxzI35wRC74d5KmqQ-2G5jbZH513vpsjGUgb6GIw3p5e53udzvELpxhfrNrGHYgI0N6lNhNFwLolbuM8pFQxJWPZDtup0-fRw4A13HrWphYBE5zJRXSXx1qsci0QwD5A7G2Tir21yxiECcvqFydoowP2iGi4sVsMWghyp7YLlVCZzpzMkaf02hXBLPl1zSkm9p76LeYlXVk5KPelnEdf71g7Dxn8veQzsaa-Jgphz7aE0OD9BWc97i7RDJsJwkjEsjqKweBp0BO52mU_yqn87CYGcqJqN3cKE4nuJWVqbqfg2H4PQyXbc0xIB8cZiBFuI3iPFHnzhYyosfoX671Wt2DN13wWAQoxYG8V3Ti03pKfI5l5q2TRPL8x1JlX21aJzYSZwIV3AwBxDwAOhMPBADLMQ5d5h9jNaHo6E8QRjmc3xVxkdMSRPPZIIIARhNMs-zY2nX0DXsTqTPTR5VKXGLRLMti_SW1ZAx_0ER19TlqoNGulL-diE_npF2rJA8_dP3r9Dmy307en7oPp2hbdVwXt0qE3KO1otJKS8AlhTxZaWG378V29I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Active+Thermally+Responsive+Hydrogels+by+Emulsion+Sedimentation+for+Smart+Window+Applications&rft.jtitle=ACS+applied+polymer+materials&rft.au=Timusk%2C+Martin&rft.au=Locs%2C+Janis&rft.au=Kangur%2C+Triin&rft.au=Kasikov%2C+Aarne&rft.date=2023-08-11&rft.issn=2637-6105&rft.eissn=2637-6105&rft.volume=5&rft.issue=8&rft.spage=5937&rft.epage=5950&rft_id=info:doi/10.1021%2Facsapm.3c00600&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsapm_3c00600 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6105&client=summon |