Phonon State Tomography of Electron Correlation Dynamics in Optically Excited Solids
We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron–phonon wavefunction into cont...
Saved in:
Published in | Nano letters Vol. 24; no. 49; pp. 15693 - 15699 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron–phonon wavefunction into contributions from purely electronic states corresponding to statistically typical configurations of the optically accessible phononic response, enabling a “tomographic” reconstruction of the electronic dynamics generated by the phonons. Thus, PST may be used to diagnose electronic behavior in experiments that access only the phonon response, such as thermal diffuse X-ray and electron scattering. We study the dynamics of a metal whose infrared phonons are excited by an optical pulse at initial time and use it to simulate the sample-averaged momentum-resolved phonon occupancy and accurately reconstruct the electronic correlations. We also use PST to analyze the influence of different pulse shapes on the light-induced enhancement and suppression of electronic correlations. |
---|---|
AbstractList | We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron-phonon wavefunction into contributions from purely electronic states corresponding to statistically typical configurations of the optically accessible phononic response, enabling a "tomographic" reconstruction of the electronic dynamics generated by the phonons. Thus, PST may be used to diagnose electronic behavior in experiments that access only the phonon response, such as thermal diffuse X-ray and electron scattering. We study the dynamics of a metal whose infrared phonons are excited by an optical pulse at initial time and use it to simulate the sample-averaged momentum-resolved phonon occupancy and accurately reconstruct the electronic correlations. We also use PST to analyze the influence of different pulse shapes on the light-induced enhancement and suppression of electronic correlations. We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron-phonon wavefunction into contributions from purely electronic states corresponding to statistically typical configurations of the optically accessible phononic response, enabling a "tomographic" reconstruction of the electronic dynamics generated by the phonons. Thus, PST may be used to diagnose electronic behavior in experiments that access only the phonon response, such as thermal diffuse X-ray and electron scattering. We study the dynamics of a metal whose infrared phonons are excited by an optical pulse at initial time and use it to simulate the sample-averaged momentum-resolved phonon occupancy and accurately reconstruct the electronic correlations. We also use PST to analyze the influence of different pulse shapes on the light-induced enhancement and suppression of electronic correlations.We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron-phonon wavefunction into contributions from purely electronic states corresponding to statistically typical configurations of the optically accessible phononic response, enabling a "tomographic" reconstruction of the electronic dynamics generated by the phonons. Thus, PST may be used to diagnose electronic behavior in experiments that access only the phonon response, such as thermal diffuse X-ray and electron scattering. We study the dynamics of a metal whose infrared phonons are excited by an optical pulse at initial time and use it to simulate the sample-averaged momentum-resolved phonon occupancy and accurately reconstruct the electronic correlations. We also use PST to analyze the influence of different pulse shapes on the light-induced enhancement and suppression of electronic correlations. |
Author | Mitrano, Matteo Sous, John Paeckel, Sebastian Moroder, Mattia Schollwöck, Ulrich |
AuthorAffiliation | Ludwig-Maximilians-Universität München University of California San Diego Yale University Department of Physics, Arnold Sommerfeld Center for Theoretical Physics (ASC), Munich Center for Quantum Science and Technology (MCQST) Department of Chemistry and Biochemistry Department of Applied Physics and the Energy Sciences Institute Department of Physics |
AuthorAffiliation_xml | – sequence: 0 name: Ludwig-Maximilians-Universität München – sequence: 0 name: Department of Physics, Arnold Sommerfeld Center for Theoretical Physics (ASC), Munich Center for Quantum Science and Technology (MCQST) – sequence: 0 name: University of California San Diego – sequence: 0 name: Yale University – sequence: 0 name: Department of Physics – sequence: 0 name: Department of Chemistry and Biochemistry – sequence: 0 name: Department of Applied Physics and the Energy Sciences Institute |
Author_xml | – sequence: 1 givenname: Mattia orcidid: 0000-0002-1046-9991 surname: Moroder fullname: Moroder, Mattia organization: Ludwig-Maximilians-Universität München – sequence: 2 givenname: Matteo orcidid: 0000-0002-0102-0391 surname: Mitrano fullname: Mitrano, Matteo organization: Department of Physics – sequence: 3 givenname: Ulrich orcidid: 0000-0002-2538-1802 surname: Schollwöck fullname: Schollwöck, Ulrich organization: Ludwig-Maximilians-Universität München – sequence: 4 givenname: Sebastian orcidid: 0000-0001-8107-069X surname: Paeckel fullname: Paeckel, Sebastian organization: Ludwig-Maximilians-Universität München – sequence: 5 givenname: John orcidid: 0000-0002-9994-5789 surname: Sous fullname: Sous, John email: john.sous@yale.edu organization: Yale University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39588984$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kElPwzAQhS1URBf4BwjlyKXFjp3FR1TKIlUqUss5mjoTmsqJi-1K5N_jqsuR0zzNvPcsf0PSa02LhNwzOmE0Zk-g3KSF1mj0fiIUFZyJKzJgCafjVMq4d9G56JOhc1tKqeQJvSF9LpM8D_sBWX1uTCiOlh48RivTmG8Lu00XmSqaaVTehuPUWIsafB30S9dCUysX1W202PlagdZdNPtVtccyWhpdl-6WXFegHd6d5oh8vc5W0_fxfPH2MX2ejyHOuB8zKTOQiMhpUuWYpRQBBKpS5ZVIU0VTCZJW4S5Kts4hyDjN1jzjIhEAJR-Rx2PvzpqfPTpfNLVTqDW0aPau4IzHuUh5LoNVHK3KGucsVsXO1g3YrmC0OPAsAs_izLM48Qyxh9ML-3WD5SV0BhgM9Gg4xLdmb9vw4f87_wBA3IhI |
Cites_doi | 10.1103/PhysRevB.85.165146 10.1038/s41586-022-05610-3 10.1038/nature16522 10.1038/nphys2788 10.1103/PhysRevResearch.6.023180 10.1126/science.1197294 10.1038/s41567-020-01148-1 10.1038/nphys4024 10.1103/PhysRevB.102.094315 10.1103/RevModPhys.93.041002 10.1103/PhysRevLett.124.153602 10.1524/zkri.2005.220.12.1009 10.1038/nmat5017 10.1103/PhysRevB.101.180507 10.1103/PhysRevB.89.184516 10.1038/s41563-023-01791-y 10.1103/PhysRevA.105.033303 10.1103/PhysRevB.94.214504 10.1038/s41467-024-46632-x 10.1103/PhysRevB.101.184519 10.1038/nmat3963 10.1038/nphys2055 10.1103/PhysRevB.96.045125 10.1103/PhysRevX.10.031028 10.1016/j.aop.2010.09.012 10.1038/s41567-023-02235-9 10.1021/acs.nanolett.7b05391 10.1103/PhysRevB.94.165116 10.1103/PhysRevX.3.041033 10.1038/s41586-021-04051-8 10.1038/nature13875 10.1038/nature06119 10.1103/PhysRevB.96.054506 10.1103/PhysRevB.93.144506 10.1103/PhysRevLett.120.246402 10.1038/s41586-023-05853-8 10.1016/j.aop.2019.167998 10.1126/science.1239834 10.1038/s41567-022-01512-3 10.1103/PhysRevB.82.235205 10.1016/j.cpc.2021.108106 10.1016/j.aop.2021.168651 10.1038/nphys3609 10.1103/PhysRevB.89.220301 10.1103/PhysRevB.96.014512 10.1021/acs.nanolett.0c05125 10.1103/PhysRevB.106.L081108 10.1103/PhysRevB.48.10345 10.1038/nphys3925 10.1103/PhysRevLett.107.070601 10.1103/PhysRevX.11.041028 10.1103/PhysRevLett.127.150504 10.1038/s41567-019-0565-x 10.1103/PhysRevB.92.224517 10.1103/PhysRevB.95.205111 10.1038/s41467-021-26030-3 10.1038/s41567-021-01366-1 10.1103/PhysRevB.91.094308 10.1103/PhysRevX.11.021067 10.1088/0034-4885/79/6/064503 10.1126/sciadv.aap7427 10.1103/PhysRevLett.69.2863 10.1039/C8CC01745J 10.1038/s41586-022-05437-y 10.1038/s41567-018-0134-8 10.21468/SciPostPhys.10.3.058 10.1103/PhysRevX.11.011055 10.1103/PhysRevX.10.011053 10.1103/RevModPhys.77.259 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acs.nanolett.4c04314 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 15699 |
ExternalDocumentID | 10_1021_acs_nanolett_4c04314 39588984 a673020927 |
Genre | Journal Article |
GroupedDBID | --- -~X .K2 123 4.4 55A 5VS 6P2 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACBEA ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 VF5 VG9 W1F NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a273t-1997a9eee305f8e760eaa4ecdc8f466c069a90fee34d1b8a0fe267b373454aad3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Tue Nov 26 19:32:54 EST 2024 Fri Dec 06 06:40:06 EST 2024 Thu Dec 12 02:22:05 EST 2024 Thu Dec 12 03:10:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | tensor networks pump−probe spectroscopy tomography electron−phonon interaction |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a273t-1997a9eee305f8e760eaa4ecdc8f466c069a90fee34d1b8a0fe267b373454aad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2538-1802 0000-0002-0102-0391 0000-0002-9994-5789 0000-0001-8107-069X 0000-0002-1046-9991 |
OpenAccessLink | http://arxiv.org/pdf/2403.04209 |
PMID | 39588984 |
PQID | 3132846389 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3132846389 crossref_primary_10_1021_acs_nanolett_4c04314 pubmed_primary_39588984 acs_journals_10_1021_acs_nanolett_4c04314 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-26 |
PublicationDateYYYYMMDD | 2024-11-26 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – sequence: 0 name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref56/cit56 doi: 10.1103/PhysRevB.85.165146 – ident: ref15/cit15 doi: 10.1038/s41586-022-05610-3 – ident: ref4/cit4 doi: 10.1038/nature16522 – ident: ref38/cit38 doi: 10.1038/nphys2788 – ident: ref62/cit62 doi: 10.1103/PhysRevResearch.6.023180 – ident: ref3/cit3 doi: 10.1126/science.1197294 – ident: ref9/cit9 doi: 10.1038/s41567-020-01148-1 – ident: ref29/cit29 doi: 10.1038/nphys4024 – ident: ref69/cit69 doi: 10.1103/PhysRevB.102.094315 – ident: ref2/cit2 doi: 10.1103/RevModPhys.93.041002 – ident: ref8/cit8 doi: 10.1103/PhysRevLett.124.153602 – ident: ref51/cit51 doi: 10.1524/zkri.2005.220.12.1009 – ident: ref1/cit1 doi: 10.1038/nmat5017 – ident: ref34/cit34 doi: 10.1103/PhysRevB.101.180507 – ident: ref43/cit43 doi: 10.1103/PhysRevB.89.184516 – ident: ref45/cit45 doi: 10.1038/s41563-023-01791-y – ident: ref60/cit60 doi: 10.1103/PhysRevA.105.033303 – ident: ref27/cit27 doi: 10.1103/PhysRevB.94.214504 – ident: ref36/cit36 doi: 10.1038/s41467-024-46632-x – ident: ref7/cit7 doi: 10.1103/PhysRevB.101.184519 – ident: ref42/cit42 doi: 10.1038/nmat3963 – ident: ref17/cit17 doi: 10.1038/nphys2055 – ident: ref31/cit31 doi: 10.1103/PhysRevB.96.045125 – ident: ref44/cit44 doi: 10.1103/PhysRevX.10.031028 – ident: ref55/cit55 doi: 10.1016/j.aop.2010.09.012 – ident: ref48/cit48 doi: 10.1038/s41567-023-02235-9 – ident: ref33/cit33 doi: 10.1021/acs.nanolett.7b05391 – ident: ref67/cit67 doi: 10.1103/PhysRevB.94.165116 – ident: ref24/cit24 doi: 10.1103/PhysRevX.3.041033 – ident: ref14/cit14 doi: 10.1038/s41586-021-04051-8 – ident: ref49/cit49 doi: 10.1038/nature13875 – ident: ref16/cit16 doi: 10.1038/nature06119 – ident: ref30/cit30 doi: 10.1103/PhysRevB.96.054506 – ident: ref26/cit26 doi: 10.1103/PhysRevB.93.144506 – ident: ref32/cit32 doi: 10.1103/PhysRevLett.120.246402 – ident: ref46/cit46 doi: 10.1038/s41586-023-05853-8 – ident: ref68/cit68 doi: 10.1016/j.aop.2019.167998 – ident: ref12/cit12 doi: 10.1126/science.1239834 – ident: ref22/cit22 doi: 10.1038/s41567-022-01512-3 – ident: ref37/cit37 doi: 10.1103/PhysRevB.82.235205 – ident: ref41/cit41 doi: 10.1016/j.cpc.2021.108106 – ident: ref59/cit59 doi: 10.1016/j.aop.2021.168651 – ident: ref13/cit13 doi: 10.1038/nphys3609 – ident: ref18/cit18 doi: 10.1103/PhysRevB.89.220301 – ident: ref28/cit28 doi: 10.1103/PhysRevB.96.014512 – ident: ref11/cit11 doi: 10.1021/acs.nanolett.0c05125 – ident: ref61/cit61 doi: 10.1103/PhysRevB.106.L081108 – ident: ref53/cit53 doi: 10.1103/PhysRevB.48.10345 – ident: ref19/cit19 doi: 10.1038/nphys3925 – ident: ref66/cit66 doi: 10.1103/PhysRevLett.107.070601 – ident: ref35/cit35 doi: 10.1103/PhysRevX.11.041028 – ident: ref58/cit58 doi: 10.1103/PhysRevLett.127.150504 – ident: ref57/cit57 doi: 10.1038/s41567-019-0565-x – ident: ref25/cit25 doi: 10.1103/PhysRevB.92.224517 – ident: ref65/cit65 doi: 10.1103/PhysRevB.95.205111 – ident: ref23/cit23 doi: 10.1038/s41467-021-26030-3 – ident: ref20/cit20 doi: 10.1038/s41567-021-01366-1 – ident: ref50/cit50 doi: 10.1103/PhysRevB.91.094308 – ident: ref21/cit21 doi: 10.1103/PhysRevX.11.021067 – ident: ref64/cit64 doi: 10.1088/0034-4885/79/6/064503 – ident: ref39/cit39 doi: 10.1126/sciadv.aap7427 – ident: ref52/cit52 doi: 10.1103/PhysRevLett.69.2863 – ident: ref6/cit6 doi: 10.1039/C8CC01745J – ident: ref63/cit63 doi: 10.1038/s41586-022-05437-y – ident: ref5/cit5 doi: 10.1038/s41567-018-0134-8 – ident: ref40/cit40 doi: 10.21468/SciPostPhys.10.3.058 – ident: ref10/cit10 doi: 10.1103/PhysRevX.11.011055 – ident: ref47/cit47 doi: 10.1103/PhysRevX.10.011053 – ident: ref54/cit54 doi: 10.1103/RevModPhys.77.259 |
SSID | ssj0009350 |
Score | 2.5131161 |
Snippet | We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 15693 |
Title | Phonon State Tomography of Electron Correlation Dynamics in Optically Excited Solids |
URI | http://dx.doi.org/10.1021/acs.nanolett.4c04314 https://www.ncbi.nlm.nih.gov/pubmed/39588984 https://www.proquest.com/docview/3132846389 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46X_TB-2XeiOCLD51dmibNo8yNIeiEbbC3kqYpDmc7bAfqr_ekF-eFob6VtoTkXJrv9OR8B6Fz5VAOwIBatqLEotzhVgAxtsVlFJIgsDVRpjj59o51h_Rm5I7mgeL3DD5pXkqVNmIZJ7CMrEGVIYOhy2iFcIjADRRq9ecku07ekRWcGEIi4dGqVG7BKGZDUunXDWkBysx3m84G6lU1O8Uhk8fGLAsa6u0nheMfF7KJ1kvgia8KS9lCSzreRmuf6Ah30OD-IYmTGOcAFA-Sp5LOGicRbpftcnDLtPMoDtDh66KdfYrHMe5N87_ik1fcflEGx-J-MhmH6S4adtqDVtcquy5YEqBMlp88kUJrDV-CyNOc2VpKqlWovIgypmwmpLAjeE7DZuBJuCSMBw53qEulDJ09VIO56gOEhaKcKyUioSX1bA1YUUjXBDGacenKOroAofil16R-nhAnTd_crCTll5KqI6tSkz8tiDh-ef-s0qUPHmPSIDLWySz1DVkloC5AanW0Xyj5Y0RHuJ4HlnP4j5kdoVWwbmoKFAk7RrXseaZPAKlkwWlunu84WeXN |
link.rule.ids | 314,780,784,2765,27076,27924,27925,56738,56788 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ7oelAPvh_rsyZePLCyUCg9mnXN-jZxNd5IKSVuVDDCJuqvd1rAVRNjvJFCJtN2hn7tdL4B2JUuZQgMqGVL6liUucyKcI9tMZHEThTZypE6Ofn8wu_d0JM7724MvDoXBpXIUVJugvgjdoH2vm5LRZphb4oWlZoTho7DhKerVmpE1Lkece26pjAr-jLujHhA64y5X6TodUnm39elX8CmWXSOZuH2U11z1-ShNSyilnz_weT47_7MwUwFQ8lBaTfzMKbSBZj-Qk64CP2r-yzNUmLgKOlnTxW5NckS0q2K55COLu5RXqcjh2Vx-5wMUnL5bM7IH99I91VqVEuus8dBnC_BzVG33-lZVQ0GSyCwKcw9FMGVUvhfSALFfFsJQZWMZZBQ35e2zwW3E3xP43YUCHx0fBa5zKUeFSJ2l6GBuqpVIFxSxqTkCVeCBrZC5MiFp7c0ymfCE03Yw0EJKx_KQxMed9qhbqxHKqxGqglWPVvhc0nL8cf3O_WUhug_OigiUpUN81BTVyIGQ9zWhJVyrj8lutwLAjSgtX9otg2Tvf75WXh2fHG6DlNo91SnLjr-BjSKl6HaRAxTRFvGYj8AQvjuOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48QPTB-1jPCL740LXbpk3zKOsunqvgCuJLSdMUF7VdbBfUX-8k7a4HiOhbScswSWYyX5rJNwB70qUMgQG1bEkdizKXWRHusS0mktiJIls5Ul9Ovuj4xzf09Na7_VTqC5XIUVJuDvG1V_fjpGIYaBzo9lSkGfaoqFOpeWHoOEx6uODqbK7D5vUH365rirOiP-PuiAd0eGvuByk6Nsn8a2z6AXCawNOeg7uRyibf5KE-KKK6fPvG5vivPs3DbAVHyWFpPwswptJFmPlEUrgE3av7LM1SYmAp6WZPFck1yRLSqorokKYu8lGm1ZGjssh9Tnopueybf-WPr6T1IjW6JdfZYy_Ol-Gm3eo2j62qFoMlEOAUJh9FcKUUrg9JoJhvKyGokrEMEur70va54HaC72nciAKBj47PIpe51KNCxO4KTKCuag0Il5QxKXnClaCBrRBBcuHprY3ymfBEDfZxUMLKl_LQHJM7jVA3DkcqrEaqBtZwxsJ-Sc_xy_e7w2kN0Y_04YhIVTbIQ01hiVgM8VsNVsv5Hkl0uRcEaETrf9BsB6aujtrh-UnnbAOm0fypvsHo-JswUTwP1BZCmSLaNkb7DvP28L0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phonon+State+Tomography+of+Electron+Correlation+Dynamics+in+Optically+Excited+Solids&rft.jtitle=Nano+letters&rft.au=Moroder%2C+Mattia&rft.au=Mitrano%2C+Matteo&rft.au=Schollw%C3%B6ck%2C+Ulrich&rft.au=Paeckel%2C+Sebastian&rft.date=2024-11-26&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021%2Facs.nanolett.4c04314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_4c04314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |