Phonon State Tomography of Electron Correlation Dynamics in Optically Excited Solids

We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron–phonon wavefunction into cont...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 24; no. 49; pp. 15693 - 15699
Main Authors Moroder, Mattia, Mitrano, Matteo, Schollwöck, Ulrich, Paeckel, Sebastian, Sous, John
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron–phonon wavefunction into contributions from purely electronic states corresponding to statistically typical configurations of the optically accessible phononic response, enabling a “tomographic” reconstruction of the electronic dynamics generated by the phonons. Thus, PST may be used to diagnose electronic behavior in experiments that access only the phonon response, such as thermal diffuse X-ray and electron scattering. We study the dynamics of a metal whose infrared phonons are excited by an optical pulse at initial time and use it to simulate the sample-averaged momentum-resolved phonon occupancy and accurately reconstruct the electronic correlations. We also use PST to analyze the influence of different pulse shapes on the light-induced enhancement and suppression of electronic correlations.
AbstractList We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron-phonon wavefunction into contributions from purely electronic states corresponding to statistically typical configurations of the optically accessible phononic response, enabling a "tomographic" reconstruction of the electronic dynamics generated by the phonons. Thus, PST may be used to diagnose electronic behavior in experiments that access only the phonon response, such as thermal diffuse X-ray and electron scattering. We study the dynamics of a metal whose infrared phonons are excited by an optical pulse at initial time and use it to simulate the sample-averaged momentum-resolved phonon occupancy and accurately reconstruct the electronic correlations. We also use PST to analyze the influence of different pulse shapes on the light-induced enhancement and suppression of electronic correlations.
We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron-phonon wavefunction into contributions from purely electronic states corresponding to statistically typical configurations of the optically accessible phononic response, enabling a "tomographic" reconstruction of the electronic dynamics generated by the phonons. Thus, PST may be used to diagnose electronic behavior in experiments that access only the phonon response, such as thermal diffuse X-ray and electron scattering. We study the dynamics of a metal whose infrared phonons are excited by an optical pulse at initial time and use it to simulate the sample-averaged momentum-resolved phonon occupancy and accurately reconstruct the electronic correlations. We also use PST to analyze the influence of different pulse shapes on the light-induced enhancement and suppression of electronic correlations.We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron-phonon wavefunction into contributions from purely electronic states corresponding to statistically typical configurations of the optically accessible phononic response, enabling a "tomographic" reconstruction of the electronic dynamics generated by the phonons. Thus, PST may be used to diagnose electronic behavior in experiments that access only the phonon response, such as thermal diffuse X-ray and electron scattering. We study the dynamics of a metal whose infrared phonons are excited by an optical pulse at initial time and use it to simulate the sample-averaged momentum-resolved phonon occupancy and accurately reconstruct the electronic correlations. We also use PST to analyze the influence of different pulse shapes on the light-induced enhancement and suppression of electronic correlations.
Author Mitrano, Matteo
Sous, John
Paeckel, Sebastian
Moroder, Mattia
Schollwöck, Ulrich
AuthorAffiliation Ludwig-Maximilians-Universität München
University of California San Diego
Yale University
Department of Physics, Arnold Sommerfeld Center for Theoretical Physics (ASC), Munich Center for Quantum Science and Technology (MCQST)
Department of Chemistry and Biochemistry
Department of Applied Physics and the Energy Sciences Institute
Department of Physics
AuthorAffiliation_xml – sequence: 0
  name: Ludwig-Maximilians-Universität München
– sequence: 0
  name: Department of Physics, Arnold Sommerfeld Center for Theoretical Physics (ASC), Munich Center for Quantum Science and Technology (MCQST)
– sequence: 0
  name: University of California San Diego
– sequence: 0
  name: Yale University
– sequence: 0
  name: Department of Physics
– sequence: 0
  name: Department of Chemistry and Biochemistry
– sequence: 0
  name: Department of Applied Physics and the Energy Sciences Institute
Author_xml – sequence: 1
  givenname: Mattia
  orcidid: 0000-0002-1046-9991
  surname: Moroder
  fullname: Moroder, Mattia
  organization: Ludwig-Maximilians-Universität München
– sequence: 2
  givenname: Matteo
  orcidid: 0000-0002-0102-0391
  surname: Mitrano
  fullname: Mitrano, Matteo
  organization: Department of Physics
– sequence: 3
  givenname: Ulrich
  orcidid: 0000-0002-2538-1802
  surname: Schollwöck
  fullname: Schollwöck, Ulrich
  organization: Ludwig-Maximilians-Universität München
– sequence: 4
  givenname: Sebastian
  orcidid: 0000-0001-8107-069X
  surname: Paeckel
  fullname: Paeckel, Sebastian
  organization: Ludwig-Maximilians-Universität München
– sequence: 5
  givenname: John
  orcidid: 0000-0002-9994-5789
  surname: Sous
  fullname: Sous, John
  email: john.sous@yale.edu
  organization: Yale University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39588984$$D View this record in MEDLINE/PubMed
BookMark eNp9kElPwzAQhS1URBf4BwjlyKXFjp3FR1TKIlUqUss5mjoTmsqJi-1K5N_jqsuR0zzNvPcsf0PSa02LhNwzOmE0Zk-g3KSF1mj0fiIUFZyJKzJgCafjVMq4d9G56JOhc1tKqeQJvSF9LpM8D_sBWX1uTCiOlh48RivTmG8Lu00XmSqaaVTehuPUWIsafB30S9dCUysX1W202PlagdZdNPtVtccyWhpdl-6WXFegHd6d5oh8vc5W0_fxfPH2MX2ejyHOuB8zKTOQiMhpUuWYpRQBBKpS5ZVIU0VTCZJW4S5Kts4hyDjN1jzjIhEAJR-Rx2PvzpqfPTpfNLVTqDW0aPau4IzHuUh5LoNVHK3KGucsVsXO1g3YrmC0OPAsAs_izLM48Qyxh9ML-3WD5SV0BhgM9Gg4xLdmb9vw4f87_wBA3IhI
Cites_doi 10.1103/PhysRevB.85.165146
10.1038/s41586-022-05610-3
10.1038/nature16522
10.1038/nphys2788
10.1103/PhysRevResearch.6.023180
10.1126/science.1197294
10.1038/s41567-020-01148-1
10.1038/nphys4024
10.1103/PhysRevB.102.094315
10.1103/RevModPhys.93.041002
10.1103/PhysRevLett.124.153602
10.1524/zkri.2005.220.12.1009
10.1038/nmat5017
10.1103/PhysRevB.101.180507
10.1103/PhysRevB.89.184516
10.1038/s41563-023-01791-y
10.1103/PhysRevA.105.033303
10.1103/PhysRevB.94.214504
10.1038/s41467-024-46632-x
10.1103/PhysRevB.101.184519
10.1038/nmat3963
10.1038/nphys2055
10.1103/PhysRevB.96.045125
10.1103/PhysRevX.10.031028
10.1016/j.aop.2010.09.012
10.1038/s41567-023-02235-9
10.1021/acs.nanolett.7b05391
10.1103/PhysRevB.94.165116
10.1103/PhysRevX.3.041033
10.1038/s41586-021-04051-8
10.1038/nature13875
10.1038/nature06119
10.1103/PhysRevB.96.054506
10.1103/PhysRevB.93.144506
10.1103/PhysRevLett.120.246402
10.1038/s41586-023-05853-8
10.1016/j.aop.2019.167998
10.1126/science.1239834
10.1038/s41567-022-01512-3
10.1103/PhysRevB.82.235205
10.1016/j.cpc.2021.108106
10.1016/j.aop.2021.168651
10.1038/nphys3609
10.1103/PhysRevB.89.220301
10.1103/PhysRevB.96.014512
10.1021/acs.nanolett.0c05125
10.1103/PhysRevB.106.L081108
10.1103/PhysRevB.48.10345
10.1038/nphys3925
10.1103/PhysRevLett.107.070601
10.1103/PhysRevX.11.041028
10.1103/PhysRevLett.127.150504
10.1038/s41567-019-0565-x
10.1103/PhysRevB.92.224517
10.1103/PhysRevB.95.205111
10.1038/s41467-021-26030-3
10.1038/s41567-021-01366-1
10.1103/PhysRevB.91.094308
10.1103/PhysRevX.11.021067
10.1088/0034-4885/79/6/064503
10.1126/sciadv.aap7427
10.1103/PhysRevLett.69.2863
10.1039/C8CC01745J
10.1038/s41586-022-05437-y
10.1038/s41567-018-0134-8
10.21468/SciPostPhys.10.3.058
10.1103/PhysRevX.11.011055
10.1103/PhysRevX.10.011053
10.1103/RevModPhys.77.259
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acs.nanolett.4c04314
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 15699
ExternalDocumentID 10_1021_acs_nanolett_4c04314
39588984
a673020927
Genre Journal Article
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
VF5
VG9
W1F
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a273t-1997a9eee305f8e760eaa4ecdc8f466c069a90fee34d1b8a0fe267b373454aad3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Tue Nov 26 19:32:54 EST 2024
Fri Dec 06 06:40:06 EST 2024
Thu Dec 12 02:22:05 EST 2024
Thu Dec 12 03:10:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords tensor networks
pump−probe spectroscopy
tomography
electron−phonon interaction
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a273t-1997a9eee305f8e760eaa4ecdc8f466c069a90fee34d1b8a0fe267b373454aad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2538-1802
0000-0002-0102-0391
0000-0002-9994-5789
0000-0001-8107-069X
0000-0002-1046-9991
OpenAccessLink http://arxiv.org/pdf/2403.04209
PMID 39588984
PQID 3132846389
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_3132846389
crossref_primary_10_1021_acs_nanolett_4c04314
pubmed_primary_39588984
acs_journals_10_1021_acs_nanolett_4c04314
PublicationCentury 2000
PublicationDate 2024-11-26
PublicationDateYYYYMMDD 2024-11-26
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – sequence: 0
  name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref56/cit56
  doi: 10.1103/PhysRevB.85.165146
– ident: ref15/cit15
  doi: 10.1038/s41586-022-05610-3
– ident: ref4/cit4
  doi: 10.1038/nature16522
– ident: ref38/cit38
  doi: 10.1038/nphys2788
– ident: ref62/cit62
  doi: 10.1103/PhysRevResearch.6.023180
– ident: ref3/cit3
  doi: 10.1126/science.1197294
– ident: ref9/cit9
  doi: 10.1038/s41567-020-01148-1
– ident: ref29/cit29
  doi: 10.1038/nphys4024
– ident: ref69/cit69
  doi: 10.1103/PhysRevB.102.094315
– ident: ref2/cit2
  doi: 10.1103/RevModPhys.93.041002
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.124.153602
– ident: ref51/cit51
  doi: 10.1524/zkri.2005.220.12.1009
– ident: ref1/cit1
  doi: 10.1038/nmat5017
– ident: ref34/cit34
  doi: 10.1103/PhysRevB.101.180507
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.89.184516
– ident: ref45/cit45
  doi: 10.1038/s41563-023-01791-y
– ident: ref60/cit60
  doi: 10.1103/PhysRevA.105.033303
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.94.214504
– ident: ref36/cit36
  doi: 10.1038/s41467-024-46632-x
– ident: ref7/cit7
  doi: 10.1103/PhysRevB.101.184519
– ident: ref42/cit42
  doi: 10.1038/nmat3963
– ident: ref17/cit17
  doi: 10.1038/nphys2055
– ident: ref31/cit31
  doi: 10.1103/PhysRevB.96.045125
– ident: ref44/cit44
  doi: 10.1103/PhysRevX.10.031028
– ident: ref55/cit55
  doi: 10.1016/j.aop.2010.09.012
– ident: ref48/cit48
  doi: 10.1038/s41567-023-02235-9
– ident: ref33/cit33
  doi: 10.1021/acs.nanolett.7b05391
– ident: ref67/cit67
  doi: 10.1103/PhysRevB.94.165116
– ident: ref24/cit24
  doi: 10.1103/PhysRevX.3.041033
– ident: ref14/cit14
  doi: 10.1038/s41586-021-04051-8
– ident: ref49/cit49
  doi: 10.1038/nature13875
– ident: ref16/cit16
  doi: 10.1038/nature06119
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.96.054506
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.93.144506
– ident: ref32/cit32
  doi: 10.1103/PhysRevLett.120.246402
– ident: ref46/cit46
  doi: 10.1038/s41586-023-05853-8
– ident: ref68/cit68
  doi: 10.1016/j.aop.2019.167998
– ident: ref12/cit12
  doi: 10.1126/science.1239834
– ident: ref22/cit22
  doi: 10.1038/s41567-022-01512-3
– ident: ref37/cit37
  doi: 10.1103/PhysRevB.82.235205
– ident: ref41/cit41
  doi: 10.1016/j.cpc.2021.108106
– ident: ref59/cit59
  doi: 10.1016/j.aop.2021.168651
– ident: ref13/cit13
  doi: 10.1038/nphys3609
– ident: ref18/cit18
  doi: 10.1103/PhysRevB.89.220301
– ident: ref28/cit28
  doi: 10.1103/PhysRevB.96.014512
– ident: ref11/cit11
  doi: 10.1021/acs.nanolett.0c05125
– ident: ref61/cit61
  doi: 10.1103/PhysRevB.106.L081108
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.48.10345
– ident: ref19/cit19
  doi: 10.1038/nphys3925
– ident: ref66/cit66
  doi: 10.1103/PhysRevLett.107.070601
– ident: ref35/cit35
  doi: 10.1103/PhysRevX.11.041028
– ident: ref58/cit58
  doi: 10.1103/PhysRevLett.127.150504
– ident: ref57/cit57
  doi: 10.1038/s41567-019-0565-x
– ident: ref25/cit25
  doi: 10.1103/PhysRevB.92.224517
– ident: ref65/cit65
  doi: 10.1103/PhysRevB.95.205111
– ident: ref23/cit23
  doi: 10.1038/s41467-021-26030-3
– ident: ref20/cit20
  doi: 10.1038/s41567-021-01366-1
– ident: ref50/cit50
  doi: 10.1103/PhysRevB.91.094308
– ident: ref21/cit21
  doi: 10.1103/PhysRevX.11.021067
– ident: ref64/cit64
  doi: 10.1088/0034-4885/79/6/064503
– ident: ref39/cit39
  doi: 10.1126/sciadv.aap7427
– ident: ref52/cit52
  doi: 10.1103/PhysRevLett.69.2863
– ident: ref6/cit6
  doi: 10.1039/C8CC01745J
– ident: ref63/cit63
  doi: 10.1038/s41586-022-05437-y
– ident: ref5/cit5
  doi: 10.1038/s41567-018-0134-8
– ident: ref40/cit40
  doi: 10.21468/SciPostPhys.10.3.058
– ident: ref10/cit10
  doi: 10.1103/PhysRevX.11.011055
– ident: ref47/cit47
  doi: 10.1103/PhysRevX.10.011053
– ident: ref54/cit54
  doi: 10.1103/RevModPhys.77.259
SSID ssj0009350
Score 2.5131161
Snippet We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 15693
Title Phonon State Tomography of Electron Correlation Dynamics in Optically Excited Solids
URI http://dx.doi.org/10.1021/acs.nanolett.4c04314
https://www.ncbi.nlm.nih.gov/pubmed/39588984
https://www.proquest.com/docview/3132846389
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46X_TB-2XeiOCLD51dmibNo8yNIeiEbbC3kqYpDmc7bAfqr_ekF-eFob6VtoTkXJrv9OR8B6Fz5VAOwIBatqLEotzhVgAxtsVlFJIgsDVRpjj59o51h_Rm5I7mgeL3DD5pXkqVNmIZJ7CMrEGVIYOhy2iFcIjADRRq9ecku07ekRWcGEIi4dGqVG7BKGZDUunXDWkBysx3m84G6lU1O8Uhk8fGLAsa6u0nheMfF7KJ1kvgia8KS9lCSzreRmuf6Ah30OD-IYmTGOcAFA-Sp5LOGicRbpftcnDLtPMoDtDh66KdfYrHMe5N87_ik1fcflEGx-J-MhmH6S4adtqDVtcquy5YEqBMlp88kUJrDV-CyNOc2VpKqlWovIgypmwmpLAjeE7DZuBJuCSMBw53qEulDJ09VIO56gOEhaKcKyUioSX1bA1YUUjXBDGacenKOroAofil16R-nhAnTd_crCTll5KqI6tSkz8tiDh-ef-s0qUPHmPSIDLWySz1DVkloC5AanW0Xyj5Y0RHuJ4HlnP4j5kdoVWwbmoKFAk7RrXseaZPAKlkwWlunu84WeXN
link.rule.ids 314,780,784,2765,27076,27924,27925,56738,56788
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ7oelAPvh_rsyZePLCyUCg9mnXN-jZxNd5IKSVuVDDCJuqvd1rAVRNjvJFCJtN2hn7tdL4B2JUuZQgMqGVL6liUucyKcI9tMZHEThTZypE6Ofn8wu_d0JM7724MvDoXBpXIUVJugvgjdoH2vm5LRZphb4oWlZoTho7DhKerVmpE1Lkece26pjAr-jLujHhA64y5X6TodUnm39elX8CmWXSOZuH2U11z1-ShNSyilnz_weT47_7MwUwFQ8lBaTfzMKbSBZj-Qk64CP2r-yzNUmLgKOlnTxW5NckS0q2K55COLu5RXqcjh2Vx-5wMUnL5bM7IH99I91VqVEuus8dBnC_BzVG33-lZVQ0GSyCwKcw9FMGVUvhfSALFfFsJQZWMZZBQ35e2zwW3E3xP43YUCHx0fBa5zKUeFSJ2l6GBuqpVIFxSxqTkCVeCBrZC5MiFp7c0ymfCE03Yw0EJKx_KQxMed9qhbqxHKqxGqglWPVvhc0nL8cf3O_WUhug_OigiUpUN81BTVyIGQ9zWhJVyrj8lutwLAjSgtX9otg2Tvf75WXh2fHG6DlNo91SnLjr-BjSKl6HaRAxTRFvGYj8AQvjuOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48QPTB-1jPCL740LXbpk3zKOsunqvgCuJLSdMUF7VdbBfUX-8k7a4HiOhbScswSWYyX5rJNwB70qUMgQG1bEkdizKXWRHusS0mktiJIls5Ul9Ovuj4xzf09Na7_VTqC5XIUVJuDvG1V_fjpGIYaBzo9lSkGfaoqFOpeWHoOEx6uODqbK7D5vUH365rirOiP-PuiAd0eGvuByk6Nsn8a2z6AXCawNOeg7uRyibf5KE-KKK6fPvG5vivPs3DbAVHyWFpPwswptJFmPlEUrgE3av7LM1SYmAp6WZPFck1yRLSqorokKYu8lGm1ZGjssh9Tnopueybf-WPr6T1IjW6JdfZYy_Ol-Gm3eo2j62qFoMlEOAUJh9FcKUUrg9JoJhvKyGokrEMEur70va54HaC72nciAKBj47PIpe51KNCxO4KTKCuag0Il5QxKXnClaCBrRBBcuHprY3ymfBEDfZxUMLKl_LQHJM7jVA3DkcqrEaqBtZwxsJ-Sc_xy_e7w2kN0Y_04YhIVTbIQ01hiVgM8VsNVsv5Hkl0uRcEaETrf9BsB6aujtrh-UnnbAOm0fypvsHo-JswUTwP1BZCmSLaNkb7DvP28L0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phonon+State+Tomography+of+Electron+Correlation+Dynamics+in+Optically+Excited+Solids&rft.jtitle=Nano+letters&rft.au=Moroder%2C+Mattia&rft.au=Mitrano%2C+Matteo&rft.au=Schollw%C3%B6ck%2C+Ulrich&rft.au=Paeckel%2C+Sebastian&rft.date=2024-11-26&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021%2Facs.nanolett.4c04314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_4c04314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon