Rock mass classification : a practical approach in civil engineering

Rock Mass Classifications - A Practical Approach in Civil Engineering was written in response to the many unanswered questions regarding this subject.Questions such as - Is Classification reasonably reliable?Can it be successful in crisis management of geohazards?Can a single Classification system b...

Full description

Saved in:
Bibliographic Details
Main Authors Singh, Bhawani, Goal, R.K.
Format eBook Book
LanguageEnglish
Published Amsterdam ; Tokyo Elsevier 1999
Elsevier Science & Technology
Elsevier Science
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • 13.6 Tensile Strength Across Discontinuous Joints -- 13.7 Dynamic Strength of Rock Mass -- 13.8 Residual Strength Parameters -- CHAPTER 14. STRENGTH OF DISCONTINUITIES -- 14.1 Introduction -- 14.2 Joint Wall Roughness Coefficient (JRC) -- 14.3 Joint Wall Compressive Strength (JCS) -- 14.4 Joint Matching Coefficient (JMC) -- 14.5 Angle of Internal Friction -- 14.6 Shear Strength of Joints -- CHAPTER 15. SHEAR STRENGTH OF ROCK MASSES IN SLOPES -- 15.1 Mohr-Coulomb Strength Parameters -- 15.2 Non-Linear Failure Envelopes for Rock Masses -- 15.3 Strength of Rock Masses in Slopes -- 15.4 Back Analysis of Distressed Slopes -- CHAPTER 16. TYPES OF ROCK SLOPE FAILURES -- 16.1 Introduction -- 16.2 Planar (Translational) Failure -- 16.3 3D Wedge Failure -- 16.4 Circular (Rotational) Failure -- 16.5 Toppling Failure (Topples) -- 16.6 Ravelling Slopes (Falls) -- 16.7 Effect of Height and Ground Water Conditions on Safe Slope Angle -- 16.8 Landslide Classification System -- CHAPTER 17. SLOPE MASS RATING (SMR) -- 17.1 The Slope Mass Rating (SMR) -- 17.2 Slope Stability Classes -- 17.3 Support Measures -- 17.4 Modified SMR Approach -- 17.5 Case Study of Stability Analysis Using Modified SMR Approach -- CHAPTER 18. LANDSLIDE HAZARD ZONATION -- 18.1 Introduction -- 18.2 Landslide Hazard Zonation Maps - The Methodology -- 18.3 A Case History -- 18.4 Proposition for Tea Gardens -- CHAPTER 19. ALLOWABLE BEARING PRESSURE FOR BUILDING FOUNDATIONS -- 19.1 Introduction -- 19.2 Classification for Net Safe Bearing Pressure -- 19.3 Allowable Bearing Pressure -- 19.4 Coefficient of Elastic Uniform Compression for Machine Foundations -- CHAPTER 20. METHOD OF EXCAVATION -- 20.1 Excavation Techniques -- 20.2 Assessing the Rippability -- 20.3 Rock Mass Classification According to Ease of Ripping -- 20.4 Empirical Methods in Blasting -- CHAPTER 21. ROCK DRILLABILITY
  • 21.1 Drillability and Affecting Parameters -- 21.2 Classification for Drilling Condition -- 21.3 Other Approaches -- CHAPTER 22. PERMEABILITY AND GROUTABILITY -- 22.1 Permeability -- 22.2 Permeability of Various Rock Types -- 22.3 Permeability for Classifying Rock Masses -- 22.4 Permeability vs Grouting -- 22.5 Determination of Permeability -- 22.6 Grouting -- CHAPTER 23. GOUGE MATERIAL -- 23.1 Gouge -- 23.2 Influence of Gouge Material -- 23.3 Shear Strength of Filled Discontinuities (Silty to Clayey Gouge) -- 23.4 Dynamic Strength -- CHAPTER 24. ENGINEERING PROPERTIES OF HARD ROCK MASSES -- 24.1 Hard Rock Masses -- 24.2 Modulus of Deformation -- 24.3 Uniaxial Compressive Strength (UCS) -- 24.4 Uniaxial Tensile Strength (UTS) -- 24.5 Strength Criterion -- 24.6 Support Pressure in Non-squeezing/Non-Rock Burst Conditions -- 24.7 Half-Tunnels -- CHAPTER 25. GEOLOGICAL STRENGTH INDEX (GSI) -- 25.1 Geological Strength Index (GSI) -- 25.2 Modified Strength Criterion -- 25.3 Mohr-Coulomb Strength Parameters -- 25.4 Modulus of Deformation -- 25.5 Selection of Rock Parameters for Intact Schistose -- CHAPTER 26. EVALUATION OF CRITICAL ROCK PARAMETERS -- 26.1 Introduction -- 26.2 Critical Parameters -- 26.3 Parameter Intensity and Dominance -- 26.4 Classification of Rock Mass -- 26.5 Example for Studying Parameter Dominance in Underground Excavation for a Coal Mine with Flat Roof -- 26.6 Relative Importance of Rock Parameters in Major Projects -- 26.7 Application in Entropy Management -- CHAPTER 27. INSITU STRESSES -- 27.1 Need for Insitu Stress Measurement -- 27.2 Classification of Geological Conditions and Stress Regimes -- 27.3 Variation of Insitu Stresses with Depth -- Author Index -- Subject Index
  • Front Cover -- ROCK MASS CLASSIFICATION: A Practical Approach in Civil Engineering -- Copyright Page -- CONTENTS -- PREFACE -- CHAPTER 1. PHILOSOPHY OF QUANTITATIVE CLASSIFICATIONS -- 1.1 The Classification -- 1.2 Philosophy of Classification System -- 1.3 Management of Uncertainties -- 1.4 Present Day Practice -- 1.5 Scope of the Book -- CHAPTER 2. SHEAR ZONE TREATMENT IN TUNNELS AND FOUNDATIONS -- 2.1 Shear Zone -- 2.2 Treatment for Tunnels -- 2.3 Treatment for Dam Foundations -- CHAPTER 3. ROCK MATERIAL -- 3.1 Rock Material -- 3.2 Homogeneity and Inhomogeneity -- 3.3 Classification of Rock Material -- 3.4 Class l and II Rocks -- 3.5 Uniaxial Compression -- 3.6 Stability in Water -- 3.7 Classification on the Basis of Slake Durability Index -- CHAPTER 4. ROCK QUALITY DESIGNATION -- 4.1 Rock Quality Designation (RQD) -- 4.2 Direct Method -- 4.3 Indirect Methods -- 4.4 Weighted Joint Density -- CHAPTER 5. TERZAGHl'S ROCK LOAD THEORY -- 5.1 Introduction -- 5.2 Rock Classes -- 5.3 Rock Load Factor -- 5.4 Modified Terzaghi's Theory for Tunnels and Caverns -- CHAPTER 6. ROCK MASS RATING (RMR) -- 6.1 Introduction -- 6.2 Collection of Field Data -- 6.3 Estimation of Rock Mass Rating (RMR) -- 6.4 Applications of RMR -- 6.5 Inter-relation Between RMR and Q -- 6.6 Precautions -- CHAPTER 7. PREDICTION OF GROUND CONDITIONS FOR TUNNELLING -- 7.1 Introduction -- 7.2 The Tunnelling Conditions -- 7.3 Empirical Approach -- 7.4 Theoretical / Analytical Approach -- 7.5 Effect of Thickness of Weak Band on Squeezing Ground Condition -- CHAPTER 8. ROCK MASS QUALITY (Q) - SYSTEM -- 8.1 The Q-System -- 8.2 The Joint Orientation and the Q-system -- 8.3 Updating of the Q-system -- 8.4 Collection of Field Data -- 8.5 Classification of the Rock Mass -- 8.6 Estimation of Support Pressure -- 8.7 Unsupported Span -- 8.8 Design of Supports
  • 8.9 New Austrian Tunnelling Method (NATM) -- 8.10 Norwegian Method of Tunnelling (NMT) -- 8.11 Other Applications of the Q - System -- CHAPTER 9. ROCK MASS NUMBER -- 9.1 Introduction -- 9.2 Inter-relation Between Q and RMR -- 9.3 Prediction of Ground Conditions -- 9.4 Prediction of Support Pressure -- 9.5 Effect of Tunnel Size on Support Pressure -- 9.6 Correlations for Estimating Tunnel Closure -- 9.7 Effect of Tunnel Depth on Support Pressure and Closure in Tunnels -- 9.8 Approach for Obtaining Ground Reaction Curve (GRC) -- 9.9 Coefficient of Volumetric Expansion of Failed Rock Mass -- CHAPTER 10. ROCK MASS INDEX -- 10.1 Introduction -- 10.2 Selection of Parameters used in RMi -- 10.3 Calibration of RMi from Known Rock Mass Strength Data -- 10.4 Scale Effect -- 10.5 Examples (Palmstrom, 1995) -- 10.6 Applications of RMi -- 10.7 Benefits of Using RMi -- 10.8 Limitations of RMi -- CHAPTER 11. RATE OF TUNNELLING -- 11.1 Introduction -- 11.2 Classification of Ground/Job Conditions for Rate of Tunnelling -- 11.3 Classification of Management Conditions for Rate of Tunnelling -- 11.4 Combined Effect of Ground and Management Conditions on Rate of Tunnelling -- CHAPTER 12. SUPPORT SYSTEM IN CAVERNS -- 12.1 Support Pressure -- 12.2 Wall Support in Caverns -- 12.3 Roof Support in Caverns -- 12.4 Stress Distribution in Caverns -- 12.5 Opening of Discontinuities in Roof Due to Tensile Stress -- 12.6 Rock Reinforcement Near Intersections -- 12.7 Radial Displacements -- 12.8 Precautions -- CHAPTER 13. STRENGTH ENHANCEMENT OF ROCK MASS IN TUNNELS -- 13.1 Causes of Strength Enhancement -- 13.2 Effect of Intermediate Principal Stress on Tangential Stress at Failure in Tunnels -- 13.3 Uniaxial Compressive Strength of Rock Mass -- 13.4 Reason for Strength Enhancement in Tunnels and A Suggested New Failure Theory -- 13.5 Criterion for Squeezing of Rock Masses