Computational Thermodynamics of Materials

This unique and comprehensive introduction offers an unrivalled and in-depth understanding of the computational-based thermodynamic approach and how it can be used to guide the design of materials for robust performances, integrating basic fundamental concepts with experimental techniques and practi...

Full description

Saved in:
Bibliographic Details
Main Author Liu, Zi-Kui
Format eBook Book
LanguageEnglish
Published Cambridge Cambridge University Press 2016
Edition1
Subjects
Online AccessGet full text
ISBN0521198968
9780521198967
DOI10.1017/CBO9781139018265

Cover

Table of Contents:
  • Title Page About This Book Table of Contents 1. Laws of Thermodynamics 2. Gibbs Energy Function 3. Phase Equilibria in Heterogeneous Systems 4. Experimental Data for Thermodynamic Modeling 5. First-Principles Calculations and Theory 6. CALPHAD Modeling of Thermodynamics 7. Applications to Chemical Reactions 8. Applications to Electrochemical Systems 9. Critical Phenomena, Thermal Expansion, and Materials Genome® Appendices References Index
  • B.9 64-atom SQS for L12 structure with composition A(A0.25B0.75)B2 -- B.10 64-atom SQS for L12 structure with composition A(A0.5B0.5)B2 -- B.11 24-atom SQS for fcc structure with composition A1/3B1/3C1/3 -- B.12 32-atom SQS for fcc structure with composition A0.5B0.25C0.25 -- B.13 80-atom SQS for ABO3 structure with composition A0.5B0.25C0.25 -- References -- Index
  • 4.2.3 Vapor pressure method -- Exercises -- 5 First-principles calculations and theory -- 5.1 Nickel as the prototype -- 5.1.1 Helmholtz energy and quasi-harmonic approximation -- 5.1.2 Volume, entropy, enthalpy, thermal expansion, bulk modulus, and heat capacity -- 5.1.3 Formation enthalpy of Ni3Al -- 5.2 First-principles formulation of thermodynamics -- 5.2.1 Helmholtz energy -- 5.2.2 Mermin statistics for the thermal electronic contribution -- 5.2.3 Vibrational contribution by phonon theory -- 5.2.4 Debye-Grüneisen approximation to the vibrational contribution -- 5.2.5 System with multiple microstates (MMS model) -- 5.3 Quantum theory for the motion of electrons -- 5.3.1 Schrödinger equation -- 5.3.2 Born-Oppenheimer approximation -- 5.3.3 Hartree-Fock approximation to solve the Schrödinger equation -- 5.3.4 Density functional theory (DFT) and zero temperature Kohn-Sham equations -- 5.3.4.1 Solving the Kohn-Sham equations for a solid -- 5.4 Lattice dynamics -- 5.4.1 Quantum theory for motion of atomic nuclei -- 5.4.2 Normal coordinates, eigenenergies, and phonons -- 5.4.3 Dynamical matrix and phonon mode -- 5.4.4 Linear-response method versus supercell method -- 5.5 First-principles approaches to disordered alloys -- 5.5.1 Cluster expansions -- 5.5.2 Special quasi-random structures -- 5.5.3 Phonon calculations for SQSs -- Exercises -- 6 CALPHAD modeling of thermodynamics -- 6.1 Importance of lattice stability -- 6.2 Modeling of pure elements -- 6.3 Modeling of stoichiometric phases -- 6.4 Modeling of random solution phases -- 6.5 Modeling of solution phases with long-range ordering -- 6.6 Modeling of magnetic and electric polarizations -- 7 Applications to chemical reactions -- 7.1 Internal process and differential and integrated driving forces -- 7.2 Ellingham diagram and buffered systems -- 7.3 Trends of entropies of reactions
  • 7.4 Maximum reaction rate and chemical transport reactions -- Exercises -- 8 Applications to electrochemical systems -- 8.1 Electrolyte reactions and electrochemical reactions -- 8.2 Concentrations, activities, and reference states of electrolyte species -- 8.3 Electrochemical cells and half-cell potentials -- 8.3.1 Electrochemical cells -- 8.3.2 Half-cell potentials -- 8.4 Aqueous solution and Pourbaix diagram -- 8.5 Application examples -- 8.5.1 Metastability and passivation -- 8.5.2 Galvanic protection -- 8.5.3 Fuel cells -- 8.5.4 Ion transport membranes -- 8.5.5 Electrical batteries -- Exercises -- 9 Critical phenomena, thermal expansion, and Materials Genome® -- 9.1 MMS model applied to thermal expansion -- 9.2 Application to cerium -- 9.3 Application to Fe3Pt -- 9.4 Concept of Materials Genome® -- Appendix A: YPHON -- A.1 General software requirements -- A.2 Get and unpack YPHON -- A.3 Contents of the YPHON package -- A.4 Command line options and files used by YPHON -- A.4.1 Ycell -- A.4.2 Yphon -- A.5 Files used by YPHON -- A.5.1 superfij.out file -- A.5.2 dielecfij.out file -- A.5.3 vdos.plt file -- A.5.4 vdos.out file -- A.5.5 pvdos.out file -- A.5.6 vdis.plt file -- A.5.7 vdis.out file -- A.6 File for dispersion calculation -- A.7 Troubleshooting -- Appendix B: SQS templates -- B.1 16-atom SQS for fcc structure with composition A0.25B0.75 -- B.2 16-atom SQS for fcc structure with composition A0.5B0.5 -- B.3 16-atom SQS for bcc structure with composition A0.25B0.75 -- B.4 16-atom SQS for bcc structure with composition A0.5B0.5 -- B.5 16-atom SQS for hcp structure with composition A0.25B0.75 -- B.6 16-atom SQS for hcp structure with composition A0.5B0.5 -- B.7 64-atom SQS for L12 structure with composition (A0.25B0.75)B3 -- B.8 64-atom SQS for L12 structure with composition (A0.5B0.5)B3
  • Cover -- Half-title -- Title page -- Copyright information -- Table of contents -- 1 Laws of thermodynamics -- 1.1 First and second laws of thermodynamics -- 1.2 Combined law of thermodynamics and equilibrium conditions -- 1.3 Stability at equilibrium and property anomaly -- 1.4 Gibbs-Duhem equation -- Exercises -- 2 Gibbs energy function -- 2.1 Phases with fixed compositions -- 2.2 Phases with variable compositions: random solutions -- 2.2.1 Random solutions -- 2.2.2 Binary random solutions -- 2.2.3 Ternary random solutions -- 2.2.4 Multi-component random solutions -- 2.3 Phases with variable compositions: solutions with ordering -- 2.3.1 Solutions with short-range ordering -- 2.3.2 Solutions with long-range ordering -- 2.3.3 Solutions with both short-range and long-range ordering -- 2.3.4 Solutions with charged species -- 2.4 Polymer solutions and polymer blends -- 2.5 Elastic, magnetic, and electric contributions to the free energy -- Exercises -- 3 Phase equilibria in heterogeneous systems -- 3.1 General condition for equilibrium -- 3.2 Gibbs phase rule -- 3.3 Potential phase diagrams -- 3.3.1 Potential phase diagrams of one-component systems -- 3.3.2 Potential phase diagrams of two-component systems -- 3.3.3 Sectioning of potential phase diagrams -- 3.4 Molar phase diagrams -- 3.4.1 Tie-lines and lever rule -- 3.4.2 Phase diagrams with both potential and molar quantities -- 3.4.3 Phase diagrams with only molar quantities -- 3.4.4 Projection and sectioning of phase diagrams with potential and molar quantities -- Exercises -- 4 Experimental data for thermodynamic modeling -- 4.1 Phase equilibrium data -- 4.1.1 Equilibrated materials -- 4.1.2 Diffusion couples/multiples -- 4.1.3 Additional methods -- 4.2 Thermodynamic data -- 4.2.1 Solution calorimetry -- 4.2.2 Combustion, direct reaction, and heat capacity calorimetry