Computational Thermodynamics of Materials
This unique and comprehensive introduction offers an unrivalled and in-depth understanding of the computational-based thermodynamic approach and how it can be used to guide the design of materials for robust performances, integrating basic fundamental concepts with experimental techniques and practi...
Saved in:
Main Author | |
---|---|
Format | eBook Book |
Language | English |
Published |
Cambridge
Cambridge University Press
2016
|
Edition | 1 |
Subjects | |
Online Access | Get full text |
ISBN | 0521198968 9780521198967 |
DOI | 10.1017/CBO9781139018265 |
Cover
Table of Contents:
- Title Page About This Book Table of Contents 1. Laws of Thermodynamics 2. Gibbs Energy Function 3. Phase Equilibria in Heterogeneous Systems 4. Experimental Data for Thermodynamic Modeling 5. First-Principles Calculations and Theory 6. CALPHAD Modeling of Thermodynamics 7. Applications to Chemical Reactions 8. Applications to Electrochemical Systems 9. Critical Phenomena, Thermal Expansion, and Materials Genome® Appendices References Index
- B.9 64-atom SQS for L12 structure with composition A(A0.25B0.75)B2 -- B.10 64-atom SQS for L12 structure with composition A(A0.5B0.5)B2 -- B.11 24-atom SQS for fcc structure with composition A1/3B1/3C1/3 -- B.12 32-atom SQS for fcc structure with composition A0.5B0.25C0.25 -- B.13 80-atom SQS for ABO3 structure with composition A0.5B0.25C0.25 -- References -- Index
- 4.2.3 Vapor pressure method -- Exercises -- 5 First-principles calculations and theory -- 5.1 Nickel as the prototype -- 5.1.1 Helmholtz energy and quasi-harmonic approximation -- 5.1.2 Volume, entropy, enthalpy, thermal expansion, bulk modulus, and heat capacity -- 5.1.3 Formation enthalpy of Ni3Al -- 5.2 First-principles formulation of thermodynamics -- 5.2.1 Helmholtz energy -- 5.2.2 Mermin statistics for the thermal electronic contribution -- 5.2.3 Vibrational contribution by phonon theory -- 5.2.4 Debye-Grüneisen approximation to the vibrational contribution -- 5.2.5 System with multiple microstates (MMS model) -- 5.3 Quantum theory for the motion of electrons -- 5.3.1 Schrödinger equation -- 5.3.2 Born-Oppenheimer approximation -- 5.3.3 Hartree-Fock approximation to solve the Schrödinger equation -- 5.3.4 Density functional theory (DFT) and zero temperature Kohn-Sham equations -- 5.3.4.1 Solving the Kohn-Sham equations for a solid -- 5.4 Lattice dynamics -- 5.4.1 Quantum theory for motion of atomic nuclei -- 5.4.2 Normal coordinates, eigenenergies, and phonons -- 5.4.3 Dynamical matrix and phonon mode -- 5.4.4 Linear-response method versus supercell method -- 5.5 First-principles approaches to disordered alloys -- 5.5.1 Cluster expansions -- 5.5.2 Special quasi-random structures -- 5.5.3 Phonon calculations for SQSs -- Exercises -- 6 CALPHAD modeling of thermodynamics -- 6.1 Importance of lattice stability -- 6.2 Modeling of pure elements -- 6.3 Modeling of stoichiometric phases -- 6.4 Modeling of random solution phases -- 6.5 Modeling of solution phases with long-range ordering -- 6.6 Modeling of magnetic and electric polarizations -- 7 Applications to chemical reactions -- 7.1 Internal process and differential and integrated driving forces -- 7.2 Ellingham diagram and buffered systems -- 7.3 Trends of entropies of reactions
- 7.4 Maximum reaction rate and chemical transport reactions -- Exercises -- 8 Applications to electrochemical systems -- 8.1 Electrolyte reactions and electrochemical reactions -- 8.2 Concentrations, activities, and reference states of electrolyte species -- 8.3 Electrochemical cells and half-cell potentials -- 8.3.1 Electrochemical cells -- 8.3.2 Half-cell potentials -- 8.4 Aqueous solution and Pourbaix diagram -- 8.5 Application examples -- 8.5.1 Metastability and passivation -- 8.5.2 Galvanic protection -- 8.5.3 Fuel cells -- 8.5.4 Ion transport membranes -- 8.5.5 Electrical batteries -- Exercises -- 9 Critical phenomena, thermal expansion, and Materials Genome® -- 9.1 MMS model applied to thermal expansion -- 9.2 Application to cerium -- 9.3 Application to Fe3Pt -- 9.4 Concept of Materials Genome® -- Appendix A: YPHON -- A.1 General software requirements -- A.2 Get and unpack YPHON -- A.3 Contents of the YPHON package -- A.4 Command line options and files used by YPHON -- A.4.1 Ycell -- A.4.2 Yphon -- A.5 Files used by YPHON -- A.5.1 superfij.out file -- A.5.2 dielecfij.out file -- A.5.3 vdos.plt file -- A.5.4 vdos.out file -- A.5.5 pvdos.out file -- A.5.6 vdis.plt file -- A.5.7 vdis.out file -- A.6 File for dispersion calculation -- A.7 Troubleshooting -- Appendix B: SQS templates -- B.1 16-atom SQS for fcc structure with composition A0.25B0.75 -- B.2 16-atom SQS for fcc structure with composition A0.5B0.5 -- B.3 16-atom SQS for bcc structure with composition A0.25B0.75 -- B.4 16-atom SQS for bcc structure with composition A0.5B0.5 -- B.5 16-atom SQS for hcp structure with composition A0.25B0.75 -- B.6 16-atom SQS for hcp structure with composition A0.5B0.5 -- B.7 64-atom SQS for L12 structure with composition (A0.25B0.75)B3 -- B.8 64-atom SQS for L12 structure with composition (A0.5B0.5)B3
- Cover -- Half-title -- Title page -- Copyright information -- Table of contents -- 1 Laws of thermodynamics -- 1.1 First and second laws of thermodynamics -- 1.2 Combined law of thermodynamics and equilibrium conditions -- 1.3 Stability at equilibrium and property anomaly -- 1.4 Gibbs-Duhem equation -- Exercises -- 2 Gibbs energy function -- 2.1 Phases with fixed compositions -- 2.2 Phases with variable compositions: random solutions -- 2.2.1 Random solutions -- 2.2.2 Binary random solutions -- 2.2.3 Ternary random solutions -- 2.2.4 Multi-component random solutions -- 2.3 Phases with variable compositions: solutions with ordering -- 2.3.1 Solutions with short-range ordering -- 2.3.2 Solutions with long-range ordering -- 2.3.3 Solutions with both short-range and long-range ordering -- 2.3.4 Solutions with charged species -- 2.4 Polymer solutions and polymer blends -- 2.5 Elastic, magnetic, and electric contributions to the free energy -- Exercises -- 3 Phase equilibria in heterogeneous systems -- 3.1 General condition for equilibrium -- 3.2 Gibbs phase rule -- 3.3 Potential phase diagrams -- 3.3.1 Potential phase diagrams of one-component systems -- 3.3.2 Potential phase diagrams of two-component systems -- 3.3.3 Sectioning of potential phase diagrams -- 3.4 Molar phase diagrams -- 3.4.1 Tie-lines and lever rule -- 3.4.2 Phase diagrams with both potential and molar quantities -- 3.4.3 Phase diagrams with only molar quantities -- 3.4.4 Projection and sectioning of phase diagrams with potential and molar quantities -- Exercises -- 4 Experimental data for thermodynamic modeling -- 4.1 Phase equilibrium data -- 4.1.1 Equilibrated materials -- 4.1.2 Diffusion couples/multiples -- 4.1.3 Additional methods -- 4.2 Thermodynamic data -- 4.2.1 Solution calorimetry -- 4.2.2 Combustion, direct reaction, and heat capacity calorimetry