Asymptotics of Type I Hermite–Padé Polynomials for Semiclassical Functions

Type I Hermite–Padé polynomials for a set of functions We discuss in more detail the case when From methodological considerations and in order to make the situation clearer, we start our exposition with the better known case of Padé approximants (when

Saved in:
Bibliographic Details
Published inModern Trends in Constructive Function Theory Vol. 661; pp. 199 - 228
Main Authors Martínez-Finkelshtein, Andrei, Rakhmanov, Evguenii A., Suetin, Sergey P.
Format Book Chapter
LanguageEnglish
Published Providence, Rhode Island American Mathematical Society 31.03.2016
SeriesContemporary Mathematics
Subjects
Online AccessGet full text
ISBN1470425343
9781470425340
ISSN0271-4132
1098-3627
DOI10.1090/conm/661/13283

Cover

Abstract Type I Hermite–Padé polynomials for a set of functions We discuss in more detail the case when From methodological considerations and in order to make the situation clearer, we start our exposition with the better known case of Padé approximants (when
AbstractList Type I Hermite–Padé polynomials for a set of functions We discuss in more detail the case when From methodological considerations and in order to make the situation clearer, we start our exposition with the better known case of Padé approximants (when
Author Rakhmanov, Evguenii A.
Suetin, Sergey P.
Martínez-Finkelshtein, Andrei
Author_xml – sequence: 1
  givenname: Andrei
  surname: Martínez-Finkelshtein
  fullname: Martínez-Finkelshtein, Andrei
  email: andrei@ual.es
  organization: Department of Mathematics, University of Almería, SPAIN, and Instituto Carlos I de Física Teórica y Computacional, Granada University, SPAIN
– sequence: 2
  givenname: Evguenii A.
  surname: Rakhmanov
  fullname: Rakhmanov, Evguenii A.
  email: rakhmano@mail.usf.edu
  organization: Department of Mathematics, University of South Florida, USA
– sequence: 3
  givenname: Sergey P.
  surname: Suetin
  fullname: Suetin, Sergey P.
  email: suetin@mi.ras.ru
  organization: Steklov Mathematical Institute of Russian Academy of Sciences, Russia
BookMark eNotkL1OwzAUhQ0URFq6MmdkCfW1Hf-MVUVppSIqUWbLdRwRSOIQp0M33oGn4Dl4E56ElHKXM9zzneEbokHta4fQNeBbwApPrK-rCecwAUokPUFjJSQwgRlRlMlTFPUtmVBOxBkaHh8pZXSAIkwEJKzHLlCkFBWcgJSXaBzCK-6PYcJSiNDDNOyrpvNdYUPs83izb1y8jBeurYrO_Xx8rk32_RWvfbmvfVWYMsS5b-MnVxW2NCEU1pTxfFfbrvB1uELneV9x4_8coef53Wa2SFaP98vZdJUYIkiXOAq5kSC44KBYllpOhclzrnKCCXCKt4wY5QxNKXAreObydOtoJsnWZUAMHSF63G1a_75zodNu6_2bdXXXmtK-mKZzbdBMYRAKayE1AdxTN0fKVOEIBA1YH0Trg2jdi9Z_oukvdZNteg
ContentType Book Chapter
DBID FFUUA
DEWEY 511.3/26
DOI 10.1090/conm/661/13283
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781470429348
1470429349
EISSN 1098-3627
Editor Lubinsky, Doron S.
Simanek, Brian Z.
Hardin, Douglas P.
Editor_xml – sequence: 1
  givenname: Douglas P.
  surname: Hardin
  fullname: Hardin, Douglas P.
  organization: Vanderbilt University, Nashville, TN
– sequence: 2
  givenname: Doron S.
  surname: Lubinsky
  fullname: Lubinsky, Doron S.
  organization: Georgia Institute of Technology, Atlanta, GA
– sequence: 3
  givenname: Brian Z.
  surname: Simanek
  fullname: Simanek, Brian Z.
  organization: Vanderbilt University, Nashville, TN
EndPage 228
ExternalDocumentID EBC4901790_78_210
10_1090_conm_661_13283
GroupedDBID AABBV
AAWPO
ABARN
ABQPQ
ACLGV
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CZZ
GEOUK
S5T
FFUUA
ID FETCH-LOGICAL-a272t-e31fa817676194d5c637aff69f2021630b42a9ea35316c76def5be3d82bed12a3
ISBN 1470425343
9781470425340
ISSN 0271-4132
IngestDate Thu May 29 01:14:37 EDT 2025
Thu Aug 14 15:25:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords WKB approximation
convergence
zero distribution
rational approximation
Padé approximation
Hermite–Padé polynomials
differential equations
LCCallNum QA331.M677 2016
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a272t-e31fa817676194d5c637aff69f2021630b42a9ea35316c76def5be3d82bed12a3
OCLC 993762188
OpenAccessLink http://hdl.handle.net/10835/4880
PQID EBC4901790_78_210
PageCount 30
ParticipantIDs proquest_ebookcentralchapters_4901790_78_210
ams_ebooks_10_1090_conm_661_13283
PublicationCentury 2000
PublicationDate 20160331
2016
PublicationDateYYYYMMDD 2016-03-31
2016-01-01
PublicationDate_xml – month: 3
  year: 2016
  text: 20160331
  day: 31
PublicationDecade 2010
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: United States
PublicationSeriesTitle Contemporary Mathematics
PublicationTitle Modern Trends in Constructive Function Theory
PublicationYear 2016
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
References G. López Lagomasino, S. Medina Peralta, and U. Fidalgo Prieto, Hermite-Padé approximation for certain systems of meromorphic functions, Mat. Sb. 206 (2015), no. 2, 57–76 (Russian); English transl., Sb. Math. 206 (2015), no. 1-2, 225-241. MR 3354972, DOI 10.4213/sm8293
A. Martínez-Finkelshtein and E. A. Rakhmanov, Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials, Comm. Math. Phys. 302 (2011), no. 1, 53–111. MR 2770010 (2012c:42062), DOI 10.1007/s00220-010-1177-6
A. A. Gonchar and E. A. Rakhmanov, The equilibrium problem for vector potentials, Uspekhi Mat. Nauk 40 (1985), no. 4(244), 155–156 (Russian). MR 807734
Laguerre, Sur la réduction en fractions continues d’une fonction qui satisfait à une équation linéaire du premier ordre à coefficients rationnels, Bull. Soc. Math. France 8 (1880), 21–27 (French). MR 1503827
E. A. Rakhmanov, On the asymptotics of Hermite-Padé polynomials for two Markov functions, Mat. Sb. 202 (2011), no. 1, 133–140 (Russian, with Russian summary); English transl., Sb. Math. 202 (2011), no. 1-2, 127–134. MR 2796829 (2012d:41012), DOI 10.1070/SM2011v202n01ABEH004140
Alexander I. Aptekarev, Arno B. J. Kuijlaars, and Walter Van Assche, Asymptotics of Hermite-Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0), Int. Math. Res. Pap. IMRP (2008), Art. ID rpm007, 128 pp. MR 2470572 (2010m:41020)
Walter Van Assche, Padé and Hermite-Padé approximation and orthogonality, Surv. Approx. Theory 2 (2006), 61–91. MR 2247778 (2007c:41011)
D. V. Chudnovsky and G. V. Chudnovsky, The Wronskian formalism for linear differential equations and Padé approximations, Adv. in Math. 53 (1984), no. 1, 28–54. MR 748895 (86i:11038), DOI 10.1016/0001-8708(84)90016-1
Kouichi Takemura, Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial, J. Phys. A 45 (2012), no. 8, 085211, 14. MR 2897019, DOI 10.1088/1751-8113/45/8/085211
J. Arvesú, J. Coussement, and W. Van Assche, Some discrete multiple orthogonal polynomials, Proceedings of the Sixth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Rome, 2001), 2003, pp. 19–45. MR 1985676 (2004g:33015), DOI 10.1016/S0377-0427(02)00597-6
Kouichi Takemura, Heun’s differential equation [translation of MR 2427179], Selected papers on analysis and differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 230, Amer. Math. Soc., Providence, RI, 2010, pp. 45–68. MR 2759458
J. Nuttall, Asymptotics of diagonal Hermite-Padé polynomials, J. Approx. Theory 42 (1984), no. 4, 299–386. MR 769985 (86j:41017), DOI 10.1016/0021-9045(84)90036-4
E. A. Rakhmanov and S. P. Suetin, Asymptotic behavior of Hermite-Padé polynomials of the first kind for a pair of functions forming a Nikishin system, Uspekhi Mat. Nauk 67 (2012), no. 5(407), 177–178 (Russian); English transl., Russian Math. Surveys 67 (2012), no. 5, 954–956. MR 3058747, DOI 10.1070/RM2012v067n05ABEH004811
E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, Translations of Mathematical Monographs, vol. 92, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Ralph P. Boas. MR 1130396 (92i:30037)
Boris Shapiro, Algebro-geometric aspects of Heine-Stieltjes theory, J. Lond. Math. Soc. (2) 83 (2011), no. 1, 36–56. MR 2763943 (2011m:34031), DOI 10.1112/jlms/jdq061
Boris Shapiro, Kouichi Takemura, and Miloš Tater, On spectral polynomials of the Heun equation. II, Comm. Math. Phys. 311 (2012), no. 2, 277–300. MR 2902190, DOI 10.1007/s00220-012-1466-3
N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027 (50 \#2520)
Georg Friedrich Bernhard Riemann, Œuvres mathématiques de Riemann, Traduites de l’allemand par L. Laugel, avec une préface de C. Hermite et un discours de Félix Klein. Nouveau tirage, Librairie Scientifique et Technique Albert Blanchard, Paris, 1968 (French). MR 0221900 (36 \#4952)
U. Fidalgo Prieto and G. López Lagomasino, Nikishin systems are perfect, Constr. Approx. 34 (2011), no. 3, 297–356. MR 2852293 (2012i:41012), DOI 10.1007/s00365-011-9139-6
M. V. Fedoryuk, Asymptotics of the spectrum of the Heune equation and of Heune functions, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 3, 631–646 (Russian); English transl., Math. USSR-Izv. 38 (1992), no. 3, 621–635. MR 1129829 (93d:34003)
Herbert Stahl, Orthogonal polynomials with complex-valued weight function. I, II, Constr. Approx. 2 (1986), no. 3, 225–240, 241–251. MR 891973 (88h:42028), DOI 10.1007/BF01893429
George A. Baker Jr. and Peter Graves-Morris, Padé approximants, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 59, Cambridge University Press, Cambridge, 1996. MR 1383091 (97h:41001), DOI 10.1017/CBO9780511530074
Walter Van Assche and Els Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001), no. 1-2, 317–347. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR 1808581 (2001i:33012), DOI 10.1016/S0377-0427(00)00503-3
A. A. Gonchar and E. A. Rakhmanov, The equilibrium measure and distribution of zeros of extremal polynomials, Mat. Sb. (N.S.) 125(167) (1984), no. 1(9), 117–127 (Russian). MR 760416 (86f:41002)
F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR 0435697 (55 \#8655)
V. I. Buslaev, Convergence of multipoint Padé approximants of piecewise-analytic functions, Mat. Sb. 204 (2013), no. 2, 39–72 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 1-2, 190–222. MR 3087097, DOI 10.1070/SM2013v204n02ABEH004297
J. Nuttall, Asymptotics of generalized Jacobi polynomials, Constr. Approx. 2 (1986), no. 1, 59–77. MR 891770 (88h:41029), DOI 10.1007/BF01893417
S. Del′vo, A. Lopes, and G. Lopes Lagomasino, On a family of Nikishin systems with periodic recurrence coefficients, Mat. Sb. 204 (2013), no. 1, 47–78 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 1-2, 43–74. MR 3060076, DOI 10.1070/SM2013v204n01ABEH004291
Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, R.I., 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII. MR 0372517 (51 \#8724)
A. I. Aptekarev and A. B. È. Koĭèlaars, Hermite-Padé approximations and ensembles of multiple orthogonal polynomials, Uspekhi Mat. Nauk 66 (2011), no. 6(402), 123–190 (Russian, with Russian summary); English transl., Russian Math. Surveys 66 (2011), no. 6, 1133–1199. MR 2963452, DOI 10.1070/RM2011v066n06ABEH004771
F. Marcellán, A. Martínez-Finkelshtein, and P. Martínez-González, Electrostatic models for zeros of polynomials: old, new, and some open problems, J. Comput. Appl. Math. 207 (2007), no. 2, 258–272. MR 2345246 (2008h:33017), DOI 10.1016/j.cam.2006.10.020
A. Martines-Finkel′shteĭn, E. A. Rakhmanov, and S. P. Suetin, A variation of the equilibrium measure and the SS-property of a stationary compact set, Uspekhi Mat. Nauk 66 (2011), no. 1(397), 183–184 (Russian); English transl., Russian Math. Surveys 66 (2011), no. 1, 176–178. MR 2841691, DOI 10.1070/RM2011v066n01ABEH004733
A. Martines-Finkel′shteĭn, E. A. Rakhmanov, and S. P. Suetin, Differential equations for Hermite-Padé polynomials, Uspekhi Mat. Nauk 68 (2013), no. 1(409), 197–198 (Russian); English transl., Russian Math. Surveys 68 (2013), no. 1, 183–185. MR 3088082
E. A. Rakhmanov and S. P. Suetin, Distribution of zeros of Hermite-Padé polynomials for a pair of functions forming a Nikishin system, Mat. Sb. 204 (2013), no. 9, 115–160 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 9-10, 1347–1390. MR 3137137
Kouichi Takemura, On the Heun equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), no. 1867, 1179–1201. MR 2377689 (2009b:34274), DOI 10.1098/rsta.2007.2065
Herbert Stahl, Extremal domains associated with an analytic function. I, II, Complex Variables Theory Appl. 4 (1985), no. 4, 311–324, 325–338. MR 858916 (88d:30004a)
G. López Lagomasino and S. Medina Peralta, On the convergence of type I Hermite-Padé approximants for rational perturbations of a Nikishin system, J. Comput. Appl. Math. 284 (2015), 216–227. MR 3319505, DOI 10.1016/j.cam.2015.01.010
G. V. Chudnovsky, Padé approximation and the Riemann monodromy problem, Bifurcation phenomena in mathematical physics and related topics (Proc. NATO Advanced Study Inst., Cargèse, 1979) NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., vol. 54, Reidel, Dordrecht-Boston, Mass., 1980, pp. 449–510. MR 580307 (82h:10047)
Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423 (86a:30072), DOI 10.1007/978-3-662-02414-0
A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, On Hermite-Padé approximants for systems of functions of Markov type, Mat. Sb. 188 (1997), no. 5, 33–58 (Russian, with Russian summary); English transl., Sb. Math. 188 (1997), no. 5, 671–696. MR 1478629 (98h:41017), DOI 10.1070/SM1997v188n05ABEH000225
Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2005. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey. MR 2191786 (2007f:33001), DOI 10.1017/CBO9781107325982
G. López Lagomasino and S. Medina Peralta, On the convergence of type I Hermite-Padé approximants, Adv. Math. 273 (2015), 124–148. MR 3311759, DOI 10.1016/j.aim.2014.12.025
Walter Van Assche, Jeffrey S. Geronimo, and Arno B. J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, Special functions 2000: current perspective and
References_xml – reference: Alexander I. Aptekarev, Arno B. J. Kuijlaars, and Walter Van Assche, Asymptotics of Hermite-Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0), Int. Math. Res. Pap. IMRP (2008), Art. ID rpm007, 128 pp. MR 2470572 (2010m:41020)
– reference: J. Arvesú, J. Coussement, and W. Van Assche, Some discrete multiple orthogonal polynomials, Proceedings of the Sixth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Rome, 2001), 2003, pp. 19–45. MR 1985676 (2004g:33015), DOI 10.1016/S0377-0427(02)00597-6
– reference: F. Marcellán, A. Martínez-Finkelshtein, and P. Martínez-González, Electrostatic models for zeros of polynomials: old, new, and some open problems, J. Comput. Appl. Math. 207 (2007), no. 2, 258–272. MR 2345246 (2008h:33017), DOI 10.1016/j.cam.2006.10.020
– reference: Kouichi Takemura, On the Heun equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), no. 1867, 1179–1201. MR 2377689 (2009b:34274), DOI 10.1098/rsta.2007.2065
– reference: M. V. Fedoryuk, Asymptotics of the spectrum of the Heune equation and of Heune functions, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 3, 631–646 (Russian); English transl., Math. USSR-Izv. 38 (1992), no. 3, 621–635. MR 1129829 (93d:34003)
– reference: N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027 (50 \#2520)
– reference: D. V. Chudnovsky and G. V. Chudnovsky, The Wronskian formalism for linear differential equations and Padé approximations, Adv. in Math. 53 (1984), no. 1, 28–54. MR 748895 (86i:11038), DOI 10.1016/0001-8708(84)90016-1
– reference: A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and the rate of rational approximation of analytic functions, Mat. Sb. (N.S.) 134(176) (1987), no. 3, 306–352, 447 (Russian); English transl., Math. USSR-Sb. 62 (1989), no. 2, 305–348. MR 922628 (89h:30054)
– reference: F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR 0435697 (55 \#8655)
– reference: Herbert Stahl, Extremal domains associated with an analytic function. I, II, Complex Variables Theory Appl. 4 (1985), no. 4, 311–324, 325–338. MR 858916 (88d:30004a)
– reference: A. I. Aptekarev, A. Branquinho, and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3887–3914. MR 1990569 (2004g:33014), DOI 10.1090/S0002-9947-03-03330-0
– reference: S. Del′vo, A. Lopes, and G. Lopes Lagomasino, On a family of Nikishin systems with periodic recurrence coefficients, Mat. Sb. 204 (2013), no. 1, 47–78 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 1-2, 43–74. MR 3060076, DOI 10.1070/SM2013v204n01ABEH004291
– reference: Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2005. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey. MR 2191786 (2007f:33001), DOI 10.1017/CBO9781107325982
– reference: Boris Shapiro, Kouichi Takemura, and Miloš Tater, On spectral polynomials of the Heun equation. II, Comm. Math. Phys. 311 (2012), no. 2, 277–300. MR 2902190, DOI 10.1007/s00220-012-1466-3
– reference: E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, Translations of Mathematical Monographs, vol. 92, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Ralph P. Boas. MR 1130396 (92i:30037)
– reference: Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR 1485778 (99h:31001), DOI 10.1007/978-3-662-03329-6
– reference: Kouichi Takemura, Heun’s differential equation [translation of MR 2427179], Selected papers on analysis and differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 230, Amer. Math. Soc., Providence, RI, 2010, pp. 45–68. MR 2759458
– reference: Walter Van Assche, Jeffrey S. Geronimo, and Arno B. J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, Special functions 2000: current perspective and future directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., vol. 30, Kluwer Acad. Publ., Dordrecht, 2001, pp. 23–59. MR 2006283 (2004e:30065), DOI 10.1007/978-94-010-0818-1_2
– reference: E. A. Rakhmanov and S. P. Suetin, Asymptotic behavior of Hermite-Padé polynomials of the first kind for a pair of functions forming a Nikishin system, Uspekhi Mat. Nauk 67 (2012), no. 5(407), 177–178 (Russian); English transl., Russian Math. Surveys 67 (2012), no. 5, 954–956. MR 3058747, DOI 10.1070/RM2012v067n05ABEH004811
– reference: Herbert Stahl, Orthogonal polynomials with complex-valued weight function. I, II, Constr. Approx. 2 (1986), no. 3, 225–240, 241–251. MR 891973 (88h:42028), DOI 10.1007/BF01893429
– reference: George A. Baker Jr. and Peter Graves-Morris, Padé approximants, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 59, Cambridge University Press, Cambridge, 1996. MR 1383091 (97h:41001), DOI 10.1017/CBO9780511530074
– reference: Kouichi Takemura, Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial, J. Phys. A 45 (2012), no. 8, 085211, 14. MR 2897019, DOI 10.1088/1751-8113/45/8/085211
– reference: A. Martines-Finkel′shteĭn, E. A. Rakhmanov, and S. P. Suetin, Differential equations for Hermite-Padé polynomials, Uspekhi Mat. Nauk 68 (2013), no. 1(409), 197–198 (Russian); English transl., Russian Math. Surveys 68 (2013), no. 1, 183–185. MR 3088082
– reference: G. López Lagomasino, S. Medina Peralta, and U. Fidalgo Prieto, Hermite-Padé approximation for certain systems of meromorphic functions, Mat. Sb. 206 (2015), no. 2, 57–76 (Russian); English transl., Sb. Math. 206 (2015), no. 1-2, 225-241. MR 3354972, DOI 10.4213/sm8293
– reference: U. Fidalgo Prieto and G. López Lagomasino, Nikishin systems are perfect, Constr. Approx. 34 (2011), no. 3, 297–356. MR 2852293 (2012i:41012), DOI 10.1007/s00365-011-9139-6
– reference: G. López Lagomasino and S. Medina Peralta, On the convergence of type I Hermite-Padé approximants, Adv. Math. 273 (2015), 124–148. MR 3311759, DOI 10.1016/j.aim.2014.12.025
– reference: Laguerre, Sur la réduction en fractions continues d’une fonction qui satisfait à une équation linéaire du premier ordre à coefficients rationnels, Bull. Soc. Math. France 8 (1880), 21–27 (French). MR 1503827
– reference: A. I. Aptekarev and A. B. È. Koĭèlaars, Hermite-Padé approximations and ensembles of multiple orthogonal polynomials, Uspekhi Mat. Nauk 66 (2011), no. 6(402), 123–190 (Russian, with Russian summary); English transl., Russian Math. Surveys 66 (2011), no. 6, 1133–1199. MR 2963452, DOI 10.1070/RM2011v066n06ABEH004771
– reference: Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, R.I., 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII. MR 0372517 (51 \#8724)
– reference: J. Nuttall, Asymptotics of diagonal Hermite-Padé polynomials, J. Approx. Theory 42 (1984), no. 4, 299–386. MR 769985 (86j:41017), DOI 10.1016/0021-9045(84)90036-4
– reference: E. A. Rakhmanov and S. P. Suetin, Distribution of zeros of Hermite-Padé polynomials for a pair of functions forming a Nikishin system, Mat. Sb. 204 (2013), no. 9, 115–160 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 9-10, 1347–1390. MR 3137137
– reference: G. López Lagomasino and S. Medina Peralta, On the convergence of type I Hermite-Padé approximants for rational perturbations of a Nikishin system, J. Comput. Appl. Math. 284 (2015), 216–227. MR 3319505, DOI 10.1016/j.cam.2015.01.010
– reference: A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, On Hermite-Padé approximants for systems of functions of Markov type, Mat. Sb. 188 (1997), no. 5, 33–58 (Russian, with Russian summary); English transl., Sb. Math. 188 (1997), no. 5, 671–696. MR 1478629 (98h:41017), DOI 10.1070/SM1997v188n05ABEH000225
– reference: A. A. Gonchar and E. A. Rakhmanov, The equilibrium measure and distribution of zeros of extremal polynomials, Mat. Sb. (N.S.) 125(167) (1984), no. 1(9), 117–127 (Russian). MR 760416 (86f:41002)
– reference: Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423 (86a:30072), DOI 10.1007/978-3-662-02414-0
– reference: A. Martínez-Finkelshtein and E. A. Rakhmanov, Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials, Comm. Math. Phys. 302 (2011), no. 1, 53–111. MR 2770010 (2012c:42062), DOI 10.1007/s00220-010-1177-6
– reference: A. Martines-Finkel′shteĭn, E. A. Rakhmanov, and S. P. Suetin, A variation of the equilibrium measure and the SS-property of a stationary compact set, Uspekhi Mat. Nauk 66 (2011), no. 1(397), 183–184 (Russian); English transl., Russian Math. Surveys 66 (2011), no. 1, 176–178. MR 2841691, DOI 10.1070/RM2011v066n01ABEH004733
– reference: J. Nuttall, Asymptotics of generalized Jacobi polynomials, Constr. Approx. 2 (1986), no. 1, 59–77. MR 891770 (88h:41029), DOI 10.1007/BF01893417
– reference: A. A. Gonchar and E. A. Rakhmanov, On the convergence of simultaneous Padé approximants for systems of functions of Markov type, Trudy Mat. Inst. Steklov. 157 (1981), 31–48, 234 (Russian). Number theory, mathematical analysis and their applications. MR 651757 (84d:41028)
– reference: Walter Van Assche and Els Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001), no. 1-2, 317–347. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR 1808581 (2001i:33012), DOI 10.1016/S0377-0427(00)00503-3
– reference: E. A. Rakhmanov, On the asymptotics of Hermite-Padé polynomials for two Markov functions, Mat. Sb. 202 (2011), no. 1, 133–140 (Russian, with Russian summary); English transl., Sb. Math. 202 (2011), no. 1-2, 127–134. MR 2796829 (2012d:41012), DOI 10.1070/SM2011v202n01ABEH004140
– reference: V. I. Buslaev, Convergence of multipoint Padé approximants of piecewise-analytic functions, Mat. Sb. 204 (2013), no. 2, 39–72 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 1-2, 190–222. MR 3087097, DOI 10.1070/SM2013v204n02ABEH004297
– reference: Georg Friedrich Bernhard Riemann, Œuvres mathématiques de Riemann, Traduites de l’allemand par L. Laugel, avec une préface de C. Hermite et un discours de Félix Klein. Nouveau tirage, Librairie Scientifique et Technique Albert Blanchard, Paris, 1968 (French). MR 0221900 (36 \#4952)
– reference: G. V. Chudnovsky, Padé approximation and the Riemann monodromy problem, Bifurcation phenomena in mathematical physics and related topics (Proc. NATO Advanced Study Inst., Cargèse, 1979) NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., vol. 54, Reidel, Dordrecht-Boston, Mass., 1980, pp. 449–510. MR 580307 (82h:10047)
– reference: Walter Van Assche, Padé and Hermite-Padé approximation and orthogonality, Surv. Approx. Theory 2 (2006), 61–91. MR 2247778 (2007c:41011)
– reference: A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkel′shteĭn, and S. P. Suetin, Padé approximants, continued fractions, and orthogonal polynomials, Uspekhi Mat. Nauk 66 (2011), no. 6(402), 37–122 (Russian, with Russian summary); English transl., Russian Math. Surveys 66 (2011), no. 6, 1049–1131. MR 2963451, DOI 10.1070/RM2011v066n06ABEH004770
– reference: Herbert Stahl, Asymptotics of Hermite-Padé polynomials and related convergence results—a summary of results, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., vol. 43, Reidel, Dordrecht, 1988, pp. 23–53. MR 1005350 (90h:30088)
– reference: Boris Shapiro, Algebro-geometric aspects of Heine-Stieltjes theory, J. Lond. Math. Soc. (2) 83 (2011), no. 1, 36–56. MR 2763943 (2011m:34031), DOI 10.1112/jlms/jdq061
– reference: A. A. Gonchar and E. A. Rakhmanov, The equilibrium problem for vector potentials, Uspekhi Mat. Nauk 40 (1985), no. 4(244), 155–156 (Russian). MR 807734
SSID ssj0000402451
ssj0001648940
ssib056838744
Score 1.9139898
Snippet Type I Hermite–Padé polynomials for a set of functions We discuss in more detail the case when From methodological considerations and in order to make the...
SourceID proquest
ams
SourceType Publisher
StartPage 199
Title Asymptotics of Type I Hermite–Padé Polynomials for Semiclassical Functions
URI https://www.ams.org/conm/661/13283/
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4901790&ppg=210
Volume 661
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBbt9tLm0l-a_qFCb6m7siRL1rENuySFlEITCL0YWZahlOwWvBSSU9-hT9Hn6Jv0SToj2fI66SW9GGOEGeYbSaPRzDeEvGKNkc7pPLMNRquMV_DG6swy41xjC69zLHA--qAOTuT70-J0bKsYqks29Rt38c-6kv9BFb4Brlglew1k00_hA7wDvvAEhOF5yfmdhlljh6HYxWxMasXem5EN9rvfW8J-FaBNxfcxkPLlzK7814gqzu3P2zbztjs_-7ZZB-ZmcCLxjLp3CDsTFv37IS1CfASrCNfrmDx3jmXNSMGM6YqfMNMe3fGA_CDCJLKQX44sjFdGiUAWCUrWiaEkHUNzqXHui0i8NKyrKrKsX1mjmcGkRjjtg8EvYRDGDgSP7WymhNi8z3idEmIv3u1LgwsJq3RZcayvu6lLOSO3YCdfpFhNoUqRuP1DxE3J0kgWqvt6ecVA-jXIn2g92RwFnIN48yBcIOLtrmzYwQs5vkt2sDKFYskISHqP3PCr--TOqLfuATnagpCuW4oQ0kPaQ_jnx08A7_cvugUcBeDoBDiagHtITpaL4_2DrO-YkVmu-SbzIm9tmWsVglNN4ZTQtm2VaTn4ckqwWnJrvBWw8iqnVePbovaiKXntm5xb8YjMVuuVf0yo40xa8GRgIuOZ1RujfQNnU8udhB_lu-QlKKQKV_pdFVMZWIVKq0BpVVDaLnk9qCsO7BOOXdRTV01xfHK94U_J7dFqn5EZzDD_HDzETf2iN4W_g_NkFA
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Modern+Trends+in+Constructive+Function+Theory&rft.au=Simanek%2C+Brian+Z&rft.atitle=Asymptotics+of+Type+I+Hermite%E2%80%93Pad%C3%A9+Polynomials+for+Semiclassical+Functions&rft.date=2016-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470425340&rft.volume=661&rft_id=info:doi/10.1090%2Fconm%2F661%2F13283&rft.externalDBID=210&rft.externalDocID=EBC4901790_78_210
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4901790-l.jpg