Asymptotics of Type I Hermite–Padé Polynomials for Semiclassical Functions
Type I Hermite–Padé polynomials for a set of functions We discuss in more detail the case when From methodological considerations and in order to make the situation clearer, we start our exposition with the better known case of Padé approximants (when
Saved in:
Published in | Modern Trends in Constructive Function Theory Vol. 661; pp. 199 - 228 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Providence, Rhode Island
American Mathematical Society
31.03.2016
|
Series | Contemporary Mathematics |
Subjects | |
Online Access | Get full text |
ISBN | 1470425343 9781470425340 |
ISSN | 0271-4132 1098-3627 |
DOI | 10.1090/conm/661/13283 |
Cover
Abstract | Type I Hermite–Padé polynomials for a set of functions
We discuss in more detail the case when
From methodological considerations and in order to make the situation clearer, we start our exposition with the better known
case of Padé approximants (when |
---|---|
AbstractList | Type I Hermite–Padé polynomials for a set of functions
We discuss in more detail the case when
From methodological considerations and in order to make the situation clearer, we start our exposition with the better known
case of Padé approximants (when |
Author | Rakhmanov, Evguenii A. Suetin, Sergey P. Martínez-Finkelshtein, Andrei |
Author_xml | – sequence: 1 givenname: Andrei surname: Martínez-Finkelshtein fullname: Martínez-Finkelshtein, Andrei email: andrei@ual.es organization: Department of Mathematics, University of Almería, SPAIN, and Instituto Carlos I de Física Teórica y Computacional, Granada University, SPAIN – sequence: 2 givenname: Evguenii A. surname: Rakhmanov fullname: Rakhmanov, Evguenii A. email: rakhmano@mail.usf.edu organization: Department of Mathematics, University of South Florida, USA – sequence: 3 givenname: Sergey P. surname: Suetin fullname: Suetin, Sergey P. email: suetin@mi.ras.ru organization: Steklov Mathematical Institute of Russian Academy of Sciences, Russia |
BookMark | eNotkL1OwzAUhQ0URFq6MmdkCfW1Hf-MVUVppSIqUWbLdRwRSOIQp0M33oGn4Dl4E56ElHKXM9zzneEbokHta4fQNeBbwApPrK-rCecwAUokPUFjJSQwgRlRlMlTFPUtmVBOxBkaHh8pZXSAIkwEJKzHLlCkFBWcgJSXaBzCK-6PYcJSiNDDNOyrpvNdYUPs83izb1y8jBeurYrO_Xx8rk32_RWvfbmvfVWYMsS5b-MnVxW2NCEU1pTxfFfbrvB1uELneV9x4_8coef53Wa2SFaP98vZdJUYIkiXOAq5kSC44KBYllpOhclzrnKCCXCKt4wY5QxNKXAreObydOtoJsnWZUAMHSF63G1a_75zodNu6_2bdXXXmtK-mKZzbdBMYRAKayE1AdxTN0fKVOEIBA1YH0Trg2jdi9Z_oukvdZNteg |
ContentType | Book Chapter |
DBID | FFUUA |
DEWEY | 511.3/26 |
DOI | 10.1090/conm/661/13283 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISBN | 9781470429348 1470429349 |
EISSN | 1098-3627 |
Editor | Lubinsky, Doron S. Simanek, Brian Z. Hardin, Douglas P. |
Editor_xml | – sequence: 1 givenname: Douglas P. surname: Hardin fullname: Hardin, Douglas P. organization: Vanderbilt University, Nashville, TN – sequence: 2 givenname: Doron S. surname: Lubinsky fullname: Lubinsky, Doron S. organization: Georgia Institute of Technology, Atlanta, GA – sequence: 3 givenname: Brian Z. surname: Simanek fullname: Simanek, Brian Z. organization: Vanderbilt University, Nashville, TN |
EndPage | 228 |
ExternalDocumentID | EBC4901790_78_210 10_1090_conm_661_13283 |
GroupedDBID | AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AERYV AFOJC AHWGJ AJFER ALMA_UNASSIGNED_HOLDINGS AZZ BBABE CZZ GEOUK S5T FFUUA |
ID | FETCH-LOGICAL-a272t-e31fa817676194d5c637aff69f2021630b42a9ea35316c76def5be3d82bed12a3 |
ISBN | 1470425343 9781470425340 |
ISSN | 0271-4132 |
IngestDate | Thu May 29 01:14:37 EDT 2025 Thu Aug 14 15:25:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | WKB approximation convergence zero distribution rational approximation Padé approximation Hermite–Padé polynomials differential equations |
LCCallNum | QA331.M677 2016 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a272t-e31fa817676194d5c637aff69f2021630b42a9ea35316c76def5be3d82bed12a3 |
OCLC | 993762188 |
OpenAccessLink | http://hdl.handle.net/10835/4880 |
PQID | EBC4901790_78_210 |
PageCount | 30 |
ParticipantIDs | proquest_ebookcentralchapters_4901790_78_210 ams_ebooks_10_1090_conm_661_13283 |
PublicationCentury | 2000 |
PublicationDate | 20160331 2016 |
PublicationDateYYYYMMDD | 2016-03-31 2016-01-01 |
PublicationDate_xml | – month: 3 year: 2016 text: 20160331 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Providence, Rhode Island |
PublicationPlace_xml | – name: Providence, Rhode Island – name: United States |
PublicationSeriesTitle | Contemporary Mathematics |
PublicationTitle | Modern Trends in Constructive Function Theory |
PublicationYear | 2016 |
Publisher | American Mathematical Society |
Publisher_xml | – name: American Mathematical Society |
References | G. López Lagomasino, S. Medina Peralta, and U. Fidalgo Prieto, Hermite-Padé approximation for certain systems of meromorphic functions, Mat. Sb. 206 (2015), no. 2, 57–76 (Russian); English transl., Sb. Math. 206 (2015), no. 1-2, 225-241. MR 3354972, DOI 10.4213/sm8293 A. Martínez-Finkelshtein and E. A. Rakhmanov, Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials, Comm. Math. Phys. 302 (2011), no. 1, 53–111. MR 2770010 (2012c:42062), DOI 10.1007/s00220-010-1177-6 A. A. Gonchar and E. A. Rakhmanov, The equilibrium problem for vector potentials, Uspekhi Mat. Nauk 40 (1985), no. 4(244), 155–156 (Russian). MR 807734 Laguerre, Sur la réduction en fractions continues d’une fonction qui satisfait à une équation linéaire du premier ordre à coefficients rationnels, Bull. Soc. Math. France 8 (1880), 21–27 (French). MR 1503827 E. A. Rakhmanov, On the asymptotics of Hermite-Padé polynomials for two Markov functions, Mat. Sb. 202 (2011), no. 1, 133–140 (Russian, with Russian summary); English transl., Sb. Math. 202 (2011), no. 1-2, 127–134. MR 2796829 (2012d:41012), DOI 10.1070/SM2011v202n01ABEH004140 Alexander I. Aptekarev, Arno B. J. Kuijlaars, and Walter Van Assche, Asymptotics of Hermite-Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0), Int. Math. Res. Pap. IMRP (2008), Art. ID rpm007, 128 pp. MR 2470572 (2010m:41020) Walter Van Assche, Padé and Hermite-Padé approximation and orthogonality, Surv. Approx. Theory 2 (2006), 61–91. MR 2247778 (2007c:41011) D. V. Chudnovsky and G. V. Chudnovsky, The Wronskian formalism for linear differential equations and Padé approximations, Adv. in Math. 53 (1984), no. 1, 28–54. MR 748895 (86i:11038), DOI 10.1016/0001-8708(84)90016-1 Kouichi Takemura, Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial, J. Phys. A 45 (2012), no. 8, 085211, 14. MR 2897019, DOI 10.1088/1751-8113/45/8/085211 J. Arvesú, J. Coussement, and W. Van Assche, Some discrete multiple orthogonal polynomials, Proceedings of the Sixth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Rome, 2001), 2003, pp. 19–45. MR 1985676 (2004g:33015), DOI 10.1016/S0377-0427(02)00597-6 Kouichi Takemura, Heun’s differential equation [translation of MR 2427179], Selected papers on analysis and differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 230, Amer. Math. Soc., Providence, RI, 2010, pp. 45–68. MR 2759458 J. Nuttall, Asymptotics of diagonal Hermite-Padé polynomials, J. Approx. Theory 42 (1984), no. 4, 299–386. MR 769985 (86j:41017), DOI 10.1016/0021-9045(84)90036-4 E. A. Rakhmanov and S. P. Suetin, Asymptotic behavior of Hermite-Padé polynomials of the first kind for a pair of functions forming a Nikishin system, Uspekhi Mat. Nauk 67 (2012), no. 5(407), 177–178 (Russian); English transl., Russian Math. Surveys 67 (2012), no. 5, 954–956. MR 3058747, DOI 10.1070/RM2012v067n05ABEH004811 E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, Translations of Mathematical Monographs, vol. 92, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Ralph P. Boas. MR 1130396 (92i:30037) Boris Shapiro, Algebro-geometric aspects of Heine-Stieltjes theory, J. Lond. Math. Soc. (2) 83 (2011), no. 1, 36–56. MR 2763943 (2011m:34031), DOI 10.1112/jlms/jdq061 Boris Shapiro, Kouichi Takemura, and Miloš Tater, On spectral polynomials of the Heun equation. II, Comm. Math. Phys. 311 (2012), no. 2, 277–300. MR 2902190, DOI 10.1007/s00220-012-1466-3 N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027 (50 \#2520) Georg Friedrich Bernhard Riemann, Œuvres mathématiques de Riemann, Traduites de l’allemand par L. Laugel, avec une préface de C. Hermite et un discours de Félix Klein. Nouveau tirage, Librairie Scientifique et Technique Albert Blanchard, Paris, 1968 (French). MR 0221900 (36 \#4952) U. Fidalgo Prieto and G. López Lagomasino, Nikishin systems are perfect, Constr. Approx. 34 (2011), no. 3, 297–356. MR 2852293 (2012i:41012), DOI 10.1007/s00365-011-9139-6 M. V. Fedoryuk, Asymptotics of the spectrum of the Heune equation and of Heune functions, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 3, 631–646 (Russian); English transl., Math. USSR-Izv. 38 (1992), no. 3, 621–635. MR 1129829 (93d:34003) Herbert Stahl, Orthogonal polynomials with complex-valued weight function. I, II, Constr. Approx. 2 (1986), no. 3, 225–240, 241–251. MR 891973 (88h:42028), DOI 10.1007/BF01893429 George A. Baker Jr. and Peter Graves-Morris, Padé approximants, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 59, Cambridge University Press, Cambridge, 1996. MR 1383091 (97h:41001), DOI 10.1017/CBO9780511530074 Walter Van Assche and Els Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001), no. 1-2, 317–347. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR 1808581 (2001i:33012), DOI 10.1016/S0377-0427(00)00503-3 A. A. Gonchar and E. A. Rakhmanov, The equilibrium measure and distribution of zeros of extremal polynomials, Mat. Sb. (N.S.) 125(167) (1984), no. 1(9), 117–127 (Russian). MR 760416 (86f:41002) F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR 0435697 (55 \#8655) V. I. Buslaev, Convergence of multipoint Padé approximants of piecewise-analytic functions, Mat. Sb. 204 (2013), no. 2, 39–72 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 1-2, 190–222. MR 3087097, DOI 10.1070/SM2013v204n02ABEH004297 J. Nuttall, Asymptotics of generalized Jacobi polynomials, Constr. Approx. 2 (1986), no. 1, 59–77. MR 891770 (88h:41029), DOI 10.1007/BF01893417 S. Del′vo, A. Lopes, and G. Lopes Lagomasino, On a family of Nikishin systems with periodic recurrence coefficients, Mat. Sb. 204 (2013), no. 1, 47–78 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 1-2, 43–74. MR 3060076, DOI 10.1070/SM2013v204n01ABEH004291 Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, R.I., 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII. MR 0372517 (51 \#8724) A. I. Aptekarev and A. B. È. Koĭèlaars, Hermite-Padé approximations and ensembles of multiple orthogonal polynomials, Uspekhi Mat. Nauk 66 (2011), no. 6(402), 123–190 (Russian, with Russian summary); English transl., Russian Math. Surveys 66 (2011), no. 6, 1133–1199. MR 2963452, DOI 10.1070/RM2011v066n06ABEH004771 F. Marcellán, A. Martínez-Finkelshtein, and P. Martínez-González, Electrostatic models for zeros of polynomials: old, new, and some open problems, J. Comput. Appl. Math. 207 (2007), no. 2, 258–272. MR 2345246 (2008h:33017), DOI 10.1016/j.cam.2006.10.020 A. Martines-Finkel′shteĭn, E. A. Rakhmanov, and S. P. Suetin, A variation of the equilibrium measure and the SS-property of a stationary compact set, Uspekhi Mat. Nauk 66 (2011), no. 1(397), 183–184 (Russian); English transl., Russian Math. Surveys 66 (2011), no. 1, 176–178. MR 2841691, DOI 10.1070/RM2011v066n01ABEH004733 A. Martines-Finkel′shteĭn, E. A. Rakhmanov, and S. P. Suetin, Differential equations for Hermite-Padé polynomials, Uspekhi Mat. Nauk 68 (2013), no. 1(409), 197–198 (Russian); English transl., Russian Math. Surveys 68 (2013), no. 1, 183–185. MR 3088082 E. A. Rakhmanov and S. P. Suetin, Distribution of zeros of Hermite-Padé polynomials for a pair of functions forming a Nikishin system, Mat. Sb. 204 (2013), no. 9, 115–160 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 9-10, 1347–1390. MR 3137137 Kouichi Takemura, On the Heun equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), no. 1867, 1179–1201. MR 2377689 (2009b:34274), DOI 10.1098/rsta.2007.2065 Herbert Stahl, Extremal domains associated with an analytic function. I, II, Complex Variables Theory Appl. 4 (1985), no. 4, 311–324, 325–338. MR 858916 (88d:30004a) G. López Lagomasino and S. Medina Peralta, On the convergence of type I Hermite-Padé approximants for rational perturbations of a Nikishin system, J. Comput. Appl. Math. 284 (2015), 216–227. MR 3319505, DOI 10.1016/j.cam.2015.01.010 G. V. Chudnovsky, Padé approximation and the Riemann monodromy problem, Bifurcation phenomena in mathematical physics and related topics (Proc. NATO Advanced Study Inst., Cargèse, 1979) NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., vol. 54, Reidel, Dordrecht-Boston, Mass., 1980, pp. 449–510. MR 580307 (82h:10047) Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423 (86a:30072), DOI 10.1007/978-3-662-02414-0 A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, On Hermite-Padé approximants for systems of functions of Markov type, Mat. Sb. 188 (1997), no. 5, 33–58 (Russian, with Russian summary); English transl., Sb. Math. 188 (1997), no. 5, 671–696. MR 1478629 (98h:41017), DOI 10.1070/SM1997v188n05ABEH000225 Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2005. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey. MR 2191786 (2007f:33001), DOI 10.1017/CBO9781107325982 G. López Lagomasino and S. Medina Peralta, On the convergence of type I Hermite-Padé approximants, Adv. Math. 273 (2015), 124–148. MR 3311759, DOI 10.1016/j.aim.2014.12.025 Walter Van Assche, Jeffrey S. Geronimo, and Arno B. J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, Special functions 2000: current perspective and |
References_xml | – reference: Alexander I. Aptekarev, Arno B. J. Kuijlaars, and Walter Van Assche, Asymptotics of Hermite-Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0), Int. Math. Res. Pap. IMRP (2008), Art. ID rpm007, 128 pp. MR 2470572 (2010m:41020) – reference: J. Arvesú, J. Coussement, and W. Van Assche, Some discrete multiple orthogonal polynomials, Proceedings of the Sixth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Rome, 2001), 2003, pp. 19–45. MR 1985676 (2004g:33015), DOI 10.1016/S0377-0427(02)00597-6 – reference: F. Marcellán, A. Martínez-Finkelshtein, and P. Martínez-González, Electrostatic models for zeros of polynomials: old, new, and some open problems, J. Comput. Appl. Math. 207 (2007), no. 2, 258–272. MR 2345246 (2008h:33017), DOI 10.1016/j.cam.2006.10.020 – reference: Kouichi Takemura, On the Heun equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), no. 1867, 1179–1201. MR 2377689 (2009b:34274), DOI 10.1098/rsta.2007.2065 – reference: M. V. Fedoryuk, Asymptotics of the spectrum of the Heune equation and of Heune functions, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 3, 631–646 (Russian); English transl., Math. USSR-Izv. 38 (1992), no. 3, 621–635. MR 1129829 (93d:34003) – reference: N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027 (50 \#2520) – reference: D. V. Chudnovsky and G. V. Chudnovsky, The Wronskian formalism for linear differential equations and Padé approximations, Adv. in Math. 53 (1984), no. 1, 28–54. MR 748895 (86i:11038), DOI 10.1016/0001-8708(84)90016-1 – reference: A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and the rate of rational approximation of analytic functions, Mat. Sb. (N.S.) 134(176) (1987), no. 3, 306–352, 447 (Russian); English transl., Math. USSR-Sb. 62 (1989), no. 2, 305–348. MR 922628 (89h:30054) – reference: F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR 0435697 (55 \#8655) – reference: Herbert Stahl, Extremal domains associated with an analytic function. I, II, Complex Variables Theory Appl. 4 (1985), no. 4, 311–324, 325–338. MR 858916 (88d:30004a) – reference: A. I. Aptekarev, A. Branquinho, and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3887–3914. MR 1990569 (2004g:33014), DOI 10.1090/S0002-9947-03-03330-0 – reference: S. Del′vo, A. Lopes, and G. Lopes Lagomasino, On a family of Nikishin systems with periodic recurrence coefficients, Mat. Sb. 204 (2013), no. 1, 47–78 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 1-2, 43–74. MR 3060076, DOI 10.1070/SM2013v204n01ABEH004291 – reference: Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2005. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey. MR 2191786 (2007f:33001), DOI 10.1017/CBO9781107325982 – reference: Boris Shapiro, Kouichi Takemura, and Miloš Tater, On spectral polynomials of the Heun equation. II, Comm. Math. Phys. 311 (2012), no. 2, 277–300. MR 2902190, DOI 10.1007/s00220-012-1466-3 – reference: E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, Translations of Mathematical Monographs, vol. 92, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Ralph P. Boas. MR 1130396 (92i:30037) – reference: Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR 1485778 (99h:31001), DOI 10.1007/978-3-662-03329-6 – reference: Kouichi Takemura, Heun’s differential equation [translation of MR 2427179], Selected papers on analysis and differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 230, Amer. Math. Soc., Providence, RI, 2010, pp. 45–68. MR 2759458 – reference: Walter Van Assche, Jeffrey S. Geronimo, and Arno B. J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, Special functions 2000: current perspective and future directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., vol. 30, Kluwer Acad. Publ., Dordrecht, 2001, pp. 23–59. MR 2006283 (2004e:30065), DOI 10.1007/978-94-010-0818-1_2 – reference: E. A. Rakhmanov and S. P. Suetin, Asymptotic behavior of Hermite-Padé polynomials of the first kind for a pair of functions forming a Nikishin system, Uspekhi Mat. Nauk 67 (2012), no. 5(407), 177–178 (Russian); English transl., Russian Math. Surveys 67 (2012), no. 5, 954–956. MR 3058747, DOI 10.1070/RM2012v067n05ABEH004811 – reference: Herbert Stahl, Orthogonal polynomials with complex-valued weight function. I, II, Constr. Approx. 2 (1986), no. 3, 225–240, 241–251. MR 891973 (88h:42028), DOI 10.1007/BF01893429 – reference: George A. Baker Jr. and Peter Graves-Morris, Padé approximants, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 59, Cambridge University Press, Cambridge, 1996. MR 1383091 (97h:41001), DOI 10.1017/CBO9780511530074 – reference: Kouichi Takemura, Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial, J. Phys. A 45 (2012), no. 8, 085211, 14. MR 2897019, DOI 10.1088/1751-8113/45/8/085211 – reference: A. Martines-Finkel′shteĭn, E. A. Rakhmanov, and S. P. Suetin, Differential equations for Hermite-Padé polynomials, Uspekhi Mat. Nauk 68 (2013), no. 1(409), 197–198 (Russian); English transl., Russian Math. Surveys 68 (2013), no. 1, 183–185. MR 3088082 – reference: G. López Lagomasino, S. Medina Peralta, and U. Fidalgo Prieto, Hermite-Padé approximation for certain systems of meromorphic functions, Mat. Sb. 206 (2015), no. 2, 57–76 (Russian); English transl., Sb. Math. 206 (2015), no. 1-2, 225-241. MR 3354972, DOI 10.4213/sm8293 – reference: U. Fidalgo Prieto and G. López Lagomasino, Nikishin systems are perfect, Constr. Approx. 34 (2011), no. 3, 297–356. MR 2852293 (2012i:41012), DOI 10.1007/s00365-011-9139-6 – reference: G. López Lagomasino and S. Medina Peralta, On the convergence of type I Hermite-Padé approximants, Adv. Math. 273 (2015), 124–148. MR 3311759, DOI 10.1016/j.aim.2014.12.025 – reference: Laguerre, Sur la réduction en fractions continues d’une fonction qui satisfait à une équation linéaire du premier ordre à coefficients rationnels, Bull. Soc. Math. France 8 (1880), 21–27 (French). MR 1503827 – reference: A. I. Aptekarev and A. B. È. Koĭèlaars, Hermite-Padé approximations and ensembles of multiple orthogonal polynomials, Uspekhi Mat. Nauk 66 (2011), no. 6(402), 123–190 (Russian, with Russian summary); English transl., Russian Math. Surveys 66 (2011), no. 6, 1133–1199. MR 2963452, DOI 10.1070/RM2011v066n06ABEH004771 – reference: Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, R.I., 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII. MR 0372517 (51 \#8724) – reference: J. Nuttall, Asymptotics of diagonal Hermite-Padé polynomials, J. Approx. Theory 42 (1984), no. 4, 299–386. MR 769985 (86j:41017), DOI 10.1016/0021-9045(84)90036-4 – reference: E. A. Rakhmanov and S. P. Suetin, Distribution of zeros of Hermite-Padé polynomials for a pair of functions forming a Nikishin system, Mat. Sb. 204 (2013), no. 9, 115–160 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 9-10, 1347–1390. MR 3137137 – reference: G. López Lagomasino and S. Medina Peralta, On the convergence of type I Hermite-Padé approximants for rational perturbations of a Nikishin system, J. Comput. Appl. Math. 284 (2015), 216–227. MR 3319505, DOI 10.1016/j.cam.2015.01.010 – reference: A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, On Hermite-Padé approximants for systems of functions of Markov type, Mat. Sb. 188 (1997), no. 5, 33–58 (Russian, with Russian summary); English transl., Sb. Math. 188 (1997), no. 5, 671–696. MR 1478629 (98h:41017), DOI 10.1070/SM1997v188n05ABEH000225 – reference: A. A. Gonchar and E. A. Rakhmanov, The equilibrium measure and distribution of zeros of extremal polynomials, Mat. Sb. (N.S.) 125(167) (1984), no. 1(9), 117–127 (Russian). MR 760416 (86f:41002) – reference: Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423 (86a:30072), DOI 10.1007/978-3-662-02414-0 – reference: A. Martínez-Finkelshtein and E. A. Rakhmanov, Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials, Comm. Math. Phys. 302 (2011), no. 1, 53–111. MR 2770010 (2012c:42062), DOI 10.1007/s00220-010-1177-6 – reference: A. Martines-Finkel′shteĭn, E. A. Rakhmanov, and S. P. Suetin, A variation of the equilibrium measure and the SS-property of a stationary compact set, Uspekhi Mat. Nauk 66 (2011), no. 1(397), 183–184 (Russian); English transl., Russian Math. Surveys 66 (2011), no. 1, 176–178. MR 2841691, DOI 10.1070/RM2011v066n01ABEH004733 – reference: J. Nuttall, Asymptotics of generalized Jacobi polynomials, Constr. Approx. 2 (1986), no. 1, 59–77. MR 891770 (88h:41029), DOI 10.1007/BF01893417 – reference: A. A. Gonchar and E. A. Rakhmanov, On the convergence of simultaneous Padé approximants for systems of functions of Markov type, Trudy Mat. Inst. Steklov. 157 (1981), 31–48, 234 (Russian). Number theory, mathematical analysis and their applications. MR 651757 (84d:41028) – reference: Walter Van Assche and Els Coussement, Some classical multiple orthogonal polynomials, J. Comput. Appl. Math. 127 (2001), no. 1-2, 317–347. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR 1808581 (2001i:33012), DOI 10.1016/S0377-0427(00)00503-3 – reference: E. A. Rakhmanov, On the asymptotics of Hermite-Padé polynomials for two Markov functions, Mat. Sb. 202 (2011), no. 1, 133–140 (Russian, with Russian summary); English transl., Sb. Math. 202 (2011), no. 1-2, 127–134. MR 2796829 (2012d:41012), DOI 10.1070/SM2011v202n01ABEH004140 – reference: V. I. Buslaev, Convergence of multipoint Padé approximants of piecewise-analytic functions, Mat. Sb. 204 (2013), no. 2, 39–72 (Russian, with Russian summary); English transl., Sb. Math. 204 (2013), no. 1-2, 190–222. MR 3087097, DOI 10.1070/SM2013v204n02ABEH004297 – reference: Georg Friedrich Bernhard Riemann, Œuvres mathématiques de Riemann, Traduites de l’allemand par L. Laugel, avec une préface de C. Hermite et un discours de Félix Klein. Nouveau tirage, Librairie Scientifique et Technique Albert Blanchard, Paris, 1968 (French). MR 0221900 (36 \#4952) – reference: G. V. Chudnovsky, Padé approximation and the Riemann monodromy problem, Bifurcation phenomena in mathematical physics and related topics (Proc. NATO Advanced Study Inst., Cargèse, 1979) NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., vol. 54, Reidel, Dordrecht-Boston, Mass., 1980, pp. 449–510. MR 580307 (82h:10047) – reference: Walter Van Assche, Padé and Hermite-Padé approximation and orthogonality, Surv. Approx. Theory 2 (2006), 61–91. MR 2247778 (2007c:41011) – reference: A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkel′shteĭn, and S. P. Suetin, Padé approximants, continued fractions, and orthogonal polynomials, Uspekhi Mat. Nauk 66 (2011), no. 6(402), 37–122 (Russian, with Russian summary); English transl., Russian Math. Surveys 66 (2011), no. 6, 1049–1131. MR 2963451, DOI 10.1070/RM2011v066n06ABEH004770 – reference: Herbert Stahl, Asymptotics of Hermite-Padé polynomials and related convergence results—a summary of results, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., vol. 43, Reidel, Dordrecht, 1988, pp. 23–53. MR 1005350 (90h:30088) – reference: Boris Shapiro, Algebro-geometric aspects of Heine-Stieltjes theory, J. Lond. Math. Soc. (2) 83 (2011), no. 1, 36–56. MR 2763943 (2011m:34031), DOI 10.1112/jlms/jdq061 – reference: A. A. Gonchar and E. A. Rakhmanov, The equilibrium problem for vector potentials, Uspekhi Mat. Nauk 40 (1985), no. 4(244), 155–156 (Russian). MR 807734 |
SSID | ssj0000402451 ssj0001648940 ssib056838744 |
Score | 1.9139898 |
Snippet | Type I Hermite–Padé polynomials for a set of functions
We discuss in more detail the case when
From methodological considerations and in order to make the... |
SourceID | proquest ams |
SourceType | Publisher |
StartPage | 199 |
Title | Asymptotics of Type I Hermite–Padé Polynomials for Semiclassical Functions |
URI | https://www.ams.org/conm/661/13283/ http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4901790&ppg=210 |
Volume | 661 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBbt9tLm0l-a_qFCb6m7siRL1rENuySFlEITCL0YWZahlOwWvBSSU9-hT9Hn6Jv0SToj2fI66SW9GGOEGeYbSaPRzDeEvGKNkc7pPLMNRquMV_DG6swy41xjC69zLHA--qAOTuT70-J0bKsYqks29Rt38c-6kv9BFb4Brlglew1k00_hA7wDvvAEhOF5yfmdhlljh6HYxWxMasXem5EN9rvfW8J-FaBNxfcxkPLlzK7814gqzu3P2zbztjs_-7ZZB-ZmcCLxjLp3CDsTFv37IS1CfASrCNfrmDx3jmXNSMGM6YqfMNMe3fGA_CDCJLKQX44sjFdGiUAWCUrWiaEkHUNzqXHui0i8NKyrKrKsX1mjmcGkRjjtg8EvYRDGDgSP7WymhNi8z3idEmIv3u1LgwsJq3RZcayvu6lLOSO3YCdfpFhNoUqRuP1DxE3J0kgWqvt6ecVA-jXIn2g92RwFnIN48yBcIOLtrmzYwQs5vkt2sDKFYskISHqP3PCr--TOqLfuATnagpCuW4oQ0kPaQ_jnx08A7_cvugUcBeDoBDiagHtITpaL4_2DrO-YkVmu-SbzIm9tmWsVglNN4ZTQtm2VaTn4ckqwWnJrvBWw8iqnVePbovaiKXntm5xb8YjMVuuVf0yo40xa8GRgIuOZ1RujfQNnU8udhB_lu-QlKKQKV_pdFVMZWIVKq0BpVVDaLnk9qCsO7BOOXdRTV01xfHK94U_J7dFqn5EZzDD_HDzETf2iN4W_g_NkFA |
linkProvider | ProQuest Ebooks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Modern+Trends+in+Constructive+Function+Theory&rft.au=Simanek%2C+Brian+Z&rft.atitle=Asymptotics+of+Type+I+Hermite%E2%80%93Pad%C3%A9+Polynomials+for+Semiclassical+Functions&rft.date=2016-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470425340&rft.volume=661&rft_id=info:doi/10.1090%2Fconm%2F661%2F13283&rft.externalDBID=210&rft.externalDocID=EBC4901790_78_210 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4901790-l.jpg |