Deep Learning Techniques for COVID-19 Diagnosis and Prognosis Based on Radiological Imaging

This literature review summarizes the current deep learning methods developed by the medical imaging AI research community that have been focused on resolving lung imaging problems related to coronavirus disease 2019 (COVID-19). COVID-19 shares many of the same imaging characteristics as other commo...

Full description

Saved in:
Bibliographic Details
Published inACM computing surveys Vol. 55; no. 12; pp. 1 - 39
Main Authors Hertel, Robert, Benlamri, Rachid
Format Journal Article
LanguageEnglish
Published New York, NY ACM 31.12.2023
Association for Computing Machinery
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This literature review summarizes the current deep learning methods developed by the medical imaging AI research community that have been focused on resolving lung imaging problems related to coronavirus disease 2019 (COVID-19). COVID-19 shares many of the same imaging characteristics as other common forms of bacterial and viral pneumonia. Differentiating COVID-19 from other common pulmonary infections is a non-trivial task. To help offset what commonly requires hours of tedious manual annotation, several innovative solutions have been published to help healthcare providers during the COVID-19 pandemic. However, the absence of a comprehensive survey on the subject makes it challenging to ascertain which approaches are promising and therefore deserve further investigation. In this survey, we present an in-depth review of deep learning techniques that have recently been applied to the task of discovering the diagnosis and prognosis of COVID-19 patients. We categorize existing approaches based on features such as dimensionality of radiological imaging, system purpose, and used deep learning techniques, underlying core issues, and challenges. We also address the merits and shortcomings of various approaches, and finally we discuss future directions for this research.
AbstractList This literature review summarizes the current deep learning methods developed by the medical imaging AI research community that have been focused on resolving lung imaging problems related to coronavirus disease 2019 (COVID-19). COVID-19 shares many of the same imaging characteristics as other common forms of bacterial and viral pneumonia. Differentiating COVID-19 from other common pulmonary infections is a non-trivial task. To help offset what commonly requires hours of tedious manual annotation, several innovative solutions have been published to help healthcare providers during the COVID-19 pandemic. However, the absence of a comprehensive survey on the subject makes it challenging to ascertain which approaches are promising and therefore deserve further investigation. In this survey, we present an in-depth review of deep learning techniques that have recently been applied to the task of discovering the diagnosis and prognosis of COVID-19 patients. We categorize existing approaches based on features such as dimensionality of radiological imaging, system purpose, and used deep learning techniques, underlying core issues, and challenges. We also address the merits and shortcomings of various approaches, and finally we discuss future directions for this research.
ArticleNumber 260
Author Benlamri, Rachid
Hertel, Robert
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0003-4288-9939
  surname: Hertel
  fullname: Hertel, Robert
  email: rhertel@lakeheadu.ca
  organization: Lakehead University, Ontario, Canada
– sequence: 2
  givenname: Rachid
  orcidid: 0000-0001-5146-2326
  surname: Benlamri
  fullname: Benlamri, Rachid
  email: rachid.benlamri@udst.edu.qa
  organization: University of Doha for Science and Technology, Doha, Qatar
BookMark eNptkD1PwzAQhi1UJNqC2JksMTAF_JU4GaHlo1KlIlRYGKKLYwdXqV3sdODfk6qFATGd7u7Rc6d3hAbOO43QOSXXlIr0hqcyy4v8CA1pmspEckEHaEh4RhLCCTlBoxhXhBAmaDZE71OtN3iuITjrGrzU6sPZz62O2PiAJ4u32TShBZ5aaJyPNmJwNX4O_tDdQdQ19g6_QG196xuroMWzNTS97RQdG2ijPjvUMXp9uF9OnpL54nE2uZ0nwCTrEplXtABiKlGJTElaKUa0VEzLTGdCM8HqLK256SegwaRZqjgpjFCKCTCG8DG63Hs3we9e78qV3wbXnyxZQQRnRU5kT13tKRV8jEGbchPsGsJXSUm5S648JNeTyR9S2Q46610XwLb_8Bd7HtT6V_qz_AYlsHgj
CitedBy_id crossref_primary_10_3390_jimaging10080176
crossref_primary_10_3390_diagnostics13081397
crossref_primary_10_3934_electreng_2024004
crossref_primary_10_3390_diagnostics13172772
crossref_primary_10_1007_s00521_023_09194_5
crossref_primary_10_1007_s10489_023_05165_4
Cites_doi 10.1016/B978-0-12-813087-2.00003-8
10.1109/ACCESS.2020.3016780
10.1016/j.compbiomed.2020.103792
10.1109/TMI.2020.3001810
10.1186/cc11321
10.1137/0907087
10.1109/CVPR.2019.00487
10.1109/TNNLS.2019.2892409
10.1007/s11547-020-01232-9
10.1259/dmfr.20150245
10.1186/1744-8603-6-18
10.21106/ijma.294
10.1007/3-540-07165-2_55
10.1007/978-3-319-46227-1_47
10.1109/CVPR.2017.690
10.2139/ssrn.3441821
10.1016/j.inffus.2021.02.013
10.1080/01621459.1958.10501452
10.1097/RTI.0000000000000404
10.1007/978-3-319-24574-4_28
10.1177/8756479309336240
10.1109/CVPR.2016.91
10.1109/ICCV.2017.74
10.1007/s13246-020-00865-4
10.1148/rg.2020200159
10.1007/978-3-030-01234-2_49
10.7326/M20-1495
10.2196/19569
10.1109/TMI.2020.3040950
10.1148/radiol.10090908
10.1016/j.inffus.2020.11.005
10.1109/TIFS.2016.2569061
10.1088/1361-6560/abe838
10.1007/978-3-030-00889-5_1
10.1111/j.2517-6161.1972.tb00899.x
10.1016/j.advengsoft.2017.07.002
10.1088/1361-6560/abbf9e
10.1148/radiol.2020200274
10.1109/TMI.2020.2994459
10.1109/JBHI.2019.2936151
10.1109/MSP.2010.939537
10.1109/ACCESS.2020.3003810
10.1109/ACCESS.2020.2994762
10.1016/j.patrec.2020.10.001
10.1016/j.inffus.2020.10.004
10.1183/09031936.01.00213501
10.1109/CVPR.2017.369
10.1109/CVPR.2017.243
10.1007/s00330-020-06823-8
10.1109/TMI.2020.2995965
10.1145/3341095
10.1016/j.compbiomed.2021.104994
10.1016/j.compbiomed.2021.105014
ContentType Journal Article
Copyright Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Copyright Association for Computing Machinery Dec 2023
Copyright_xml – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
– notice: Copyright Association for Computing Machinery Dec 2023
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1145/3576898
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1557-7341
EndPage 39
ExternalDocumentID 10_1145_3576898
3576898
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID --Z
-DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
85S
8US
8VB
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ACNCT
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AEGXH
AEMOZ
AENEX
AENSD
AFWIH
AFWXC
AGHSJ
AHQJS
AIAGR
AIKLT
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
EBE
EBR
EBU
EDO
EMK
FEDTE
GUFHI
HGAVV
H~9
IAO
ICD
IEA
IGS
IOF
K1G
LHSKQ
N95
P1C
P2P
PQQKQ
QWB
RNS
ROL
RXW
TAE
TH9
U5U
UKR
UPT
VQA
W7O
WH7
X6Y
XH6
XSW
XZL
YXB
Z5M
ZCA
ZL0
AAYXX
AEFXT
AEJOY
AETEA
AKRVB
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-a272t-78b19a0fb4b46c71bc20e7c2e76e64e242d65d3fc2eaeaf565c309f4cc24aff03
ISSN 0360-0300
IngestDate Tue Aug 12 16:40:56 EDT 2025
Thu Jul 03 08:21:45 EDT 2025
Thu Apr 24 23:03:50 EDT 2025
Fri Feb 21 01:26:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords infectious disease
radiology
Machine learning
neural networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a272t-78b19a0fb4b46c71bc20e7c2e76e64e242d65d3fc2eaeaf565c309f4cc24aff03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4288-9939
0000-0001-5146-2326
PQID 2904329807
PQPubID 47570
PageCount 39
ParticipantIDs proquest_journals_2904329807
crossref_primary_10_1145_3576898
crossref_citationtrail_10_1145_3576898
acm_primary_3576898
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: Baltimore
PublicationTitle ACM computing surveys
PublicationTitleAbbrev ACM CSUR
PublicationYear 2023
Publisher ACM
Association for Computing Machinery
Publisher_xml – name: ACM
– name: Association for Computing Machinery
References (Bib0031) 2020; 382
(Bib0058) 2019; 30
(Bib0020) 2013; 82
(Bib0036) 2020
(Bib0049) 2020
(Bib0057) 2020; 30
(Bib0117) 2018
(Bib0089) 2020
(Bib0086) 2020
(Bib0048) 2018; 172
(Bib0119) 1994
(Bib0064) 2010; 6
(Bib0098) 2011; 28
(Bib0069) 1974
(Bib0063) 2020
(Bib0065) 2020; 26
(Bib0021) 2020; 370
(Bib0013) 2018
(Bib0047) 1958; 53
(Bib0087) 2021; 66
(Bib0012) 2020; 296
(Bib0081) 2017
(Bib0019) 2018
(Bib0059) 2017
(Bib0079) 2017
(Bib0041) 2017
(Bib0077) 2020; 140
(Bib0073) 2020; 121
(Bib0104) 2021; 67
(Bib0006) 2021; 33
(Bib0023) 1972; 34
(Bib0093) 2015
(Bib0060) 2019
(Bib0067) 2017; 114
(Bib0105) 2021; 68
(Bib0024) 2020
(Bib0016) 2016; 18, 12
(Bib0113) 2020
(Bib0092) 2020; 9
(Bib0040) 2006; 1
(Bib0094) 2019
(Bib0037) 2021; 298
(Bib0050) 2020; 22
(Bib0027) 2001; 18
(Bib0030) 2020
(Bib0046) 2016; 150, 1
(Bib0108) 2017
(Bib0009) 2020
(Bib0112) 2020
(Bib0114) 2021; 40
(Bib0043) 2015
(Bib0001) 2021; 139
(Bib0052) 2012; 25
(Bib0071) 2017
(Bib0078) 2020; 8
(Bib0066) 2016
Bib0018
(Bib0100) 2020; 24
(Bib0110) 2018
(Bib0061) 2021; 11734
(Bib0004) 2021; 32
(Bib0085) 2016
(Bib0035) 2016
(Bib0088) 2014
(Bib0039) 2020; 395
(Bib0002) 2021; 139
(Bib0116) 2020; 39
(Bib0118) 2020
(Bib0042) 2016
(Bib0075) 1901; 2, 6
(Bib0074) 2020; 81
(Bib0082) 2015
(Bib0025) 2019
(Bib0055) 2020; 40
(Bib0106) 2020; 16
(Bib0083) 2020; 39
(Bib0090) 2020; 295
(Bib0101) 2020; 8
(Bib0096) 2005; 1
(Bib0015) 2020
(Bib0008) 2018
(Bib0032) 2020
(Bib0068) 2014
(Bib0070) 2021; 72
(Bib0107) 2020; 39
(Bib0109) 2019
(Bib0007) 2021
(Bib0102) 2020
(Bib0003) 2020; 296
(Bib0044) 2020
(Bib0076) 2020; 46, 5
(Bib0017) 2009; 91
(Bib0056) 2020; 296
(Bib0099) 2008; 9
(Bib0053) 2019; 34
(Bib0103) 2020
(Bib0080) 2016
(Bib0038) 2020; 8
(Bib0111) 2020; 296
(Bib0033) 2016; 11
(Bib0097) 2020; 27, 6
(Bib0014) 2009; 25
(Bib0028) 2012; 16
(Bib0054) 2020; 173
(Bib0072) 2020; 39
(Bib0034) 2019; 2349
(Bib0084) 1986
(Bib0095) 2021; 66
(Bib0115) 2021
(Bib0091) 2020
(Bib0005) 2020
(Bib0010) 2020
(Bib0045) 2020
(Bib0022) 2020
(Bib0029) 2014
(Bib0062) 2016; 45
(Bib0051) 2017
(Bib0026) 2020; 296
(Bib0011) 2010; 256
Altaf Fouzia (e_1_3_2_7_2) 2021; 33
Goodfellow Ian (e_1_3_2_30_2) 2014
Zhou Longxi (e_1_3_2_117_2) 2020; 39
Wang Xinggang (e_1_3_2_108_2) 2020; 39
Redmon Joseph (e_1_3_2_81_2) 2016
e_1_3_2_43_2
Huang Chaolin (e_1_3_2_40_2) 2020; 395
e_1_3_2_89_2
Mei Xueyan (e_1_3_2_66_2) 2020; 26
Cox David R. (e_1_3_2_24_2) 1972; 34
Jin Shuo (e_1_3_2_46_2) 2020
Liao Fangzhou (e_1_3_2_59_2) 2019; 30
Brooks Sharon L. (e_1_3_2_18_2) 2009; 91
e_1_3_2_16_2
Bourcier Jean-Eudes (e_1_3_2_17_2) 2016; 18
Zuiderveld Karel J. (e_1_3_2_120_2) 1994
Wong Ho Yuen Frank (e_1_3_2_112_2) 2020; 296
Kermany Daniel S. (e_1_3_2_49_2) 2018; 172
Haghighat Mohammad (e_1_3_2_34_2) 2016; 11
Waheed Abdul (e_1_3_2_102_2) 2020; 8
e_1_3_2_31_2
Ozturk Tulin (e_1_3_2_74_2) 2020; 121
Amyar Amine (e_1_3_2_10_2) 2020
e_1_3_2_50_2
Wang Shui-Hua (e_1_3_2_106_2) 2021; 68
Wang Shui-Hua (e_1_3_2_105_2) 2021; 67
Ko Hoon (e_1_3_2_51_2) 2020; 22
Jin Cheng (e_1_3_2_45_2) 2020
Kroft Lucia J. M. (e_1_3_2_54_2) 2019; 34
Oh Yujin (e_1_3_2_73_2) 2020; 39
Tang Zhenyu (e_1_3_2_96_2) 2021; 66
Muhammad Ghulam (e_1_3_2_71_2) 2021; 72
e_1_3_2_86_2
Li Lin (e_1_3_2_57_2) 2020; 296
Redmon Joseph (e_1_3_2_82_2) 2017
e_1_3_2_25_2
Mirjalili Seyedali (e_1_3_2_68_2) 2017; 114
Amatya Yogendra (e_1_3_2_9_2) 2018
Jones Brittany (e_1_3_2_47_2) 2016; 150
e_1_3_2_107_2
Bae Kyongtae T. (e_1_3_2_12_2) 2010; 256
e_1_3_2_6_2
Roy Subhankar (e_1_3_2_84_2) 2020; 39
Tosic Ivana (e_1_3_2_99_2) 2011; 28
Pan Yunbao (e_1_3_2_75_2) 2020; 81
Koonsanit Kitti (e_1_3_2_52_2) 2017
Zhou Zongwei (e_1_3_2_119_2) 2020
Song Fengxiang (e_1_3_2_91_2) 2020; 295
Krizhevsky Alex (e_1_3_2_53_2) 2012; 25
Huang Gao (e_1_3_2_42_2) 2017
e_1_3_2_70_2
e_1_3_2_111_2
Soares Eduardo (e_1_3_2_90_2) 2020
Rajaraman Sivaramakrishnan (e_1_3_2_79_2) 2020; 8
Kucirka Lauren M. (e_1_3_2_55_2) 2020; 173
Jaderberg Max (e_1_3_2_44_2) 2015
Ai Tao (e_1_3_2_4_2) 2020; 296
Szegedy Christian (e_1_3_2_94_2) 2015
Cleverley Joanne (e_1_3_2_22_2) 2020; 370
e_1_3_2_64_2
e_1_3_2_87_2
Maaten Laurens van der (e_1_3_2_100_2) 2008; 9
Alom Md. Zahangir (e_1_3_2_5_2) 2021; 32
Huang Fu Jie (e_1_3_2_41_2) 2006; 1
Kwee Thomas C. (e_1_3_2_56_2) 2020; 40
e_1_3_2_83_2
Kaplan E. L. (e_1_3_2_48_2) 1958; 53
Peng Qian-Yi (e_1_3_2_77_2) 2020; 46
Lin Tsung-Yi (e_1_3_2_60_2) 2017
Pearson K. (e_1_3_2_76_2) 1901; 2
Makdissi Jimmy (e_1_3_2_63_2) 2016; 45
Stewart Kelsey (e_1_3_2_93_2) 2020; 9
Bhairannawar Satish S. (e_1_3_2_14_2) 2018
Díaz Raúl (e_1_3_2_26_2) 2019
Christe Andreas (e_1_3_2_21_2) 2013; 82
e_1_3_2_37_2
Ganapathy Anusoumya (e_1_3_2_29_2) 2012; 16
Franquet T. (e_1_3_2_28_2) 2001; 18
e_1_3_2_33_2
Ahamed Khabir Uddin (e_1_3_2_2_2) 2021; 139
Fang Yicheng (e_1_3_2_27_2) 2020; 296
e_1_3_2_114_2
e_1_3_2_110_2
Santosa Fadil (e_1_3_2_85_2) 1986
Wang Xiaosong (e_1_3_2_109_2) 2017
Wang Linda (e_1_3_2_103_2) 2020
e_1_3_2_118_2
Zhang Jianpeng (e_1_3_2_115_2) 2021; 40
Melnikov Vitalik (e_1_3_2_67_2) 2016
Tizhoosh H. R. (e_1_3_2_97_2) 2005; 1
Song Ying (e_1_3_2_92_2) 2020
e_1_3_2_23_2
He Kaiming (e_1_3_2_36_2) 2016
e_1_3_2_69_2
Bierig S. (e_1_3_2_15_2) 2009; 25
e_1_3_2_61_2
Maghdid Halgurd S. (e_1_3_2_62_2) 2021
e_1_3_2_80_2
Han Miaofei (e_1_3_2_35_2) 2019; 2349
Zhang Yu-Dong (e_1_3_2_116_2) 2021
Horry Michael J. (e_1_3_2_39_2) 2020; 8
Liang Ting (e_1_3_2_58_2) 2020; 30
Shi Feng (e_1_3_2_88_2) 2021; 66
e_1_3_2_19_2
Maru Duncan (e_1_3_2_65_2) 2010; 6
Altaf Fouzia (e_1_3_2_8_2) 2021
Bai Harrison X. (e_1_3_2_13_2) 2020; 296
Tofighi Salar (e_1_3_2_98_2) 2020; 27
Homayounieh Fatemeh (e_1_3_2_38_2) 2021; 298
Polsinelli Matteo (e_1_3_2_78_2) 2020; 140
e_1_3_2_11_2
e_1_3_2_95_2
e_1_3_2_113_2
e_1_3_2_72_2
Guan Wei-Jie (e_1_3_2_32_2) 2020; 382
Ahmadian Sajad (e_1_3_2_3_2) 2021; 139
Sloun Ruud J. G. van (e_1_3_2_101_2) 2020; 24
Chen Liang-Chieh (e_1_3_2_20_2) 2018
Wang Shuo (e_1_3_2_104_2) 2020
References_xml – start-page: 3462
  year: 2017
  end-page: 3471
  ident: Bib0108
  article-title: ChestX-Ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
  publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17)
– year: 2020
  ident: Bib0063
  article-title: CovidAID: COVID-19 detection using chest x-ray
– volume: 1
  start-page: 695
  year: 2005
  end-page: 701
  ident: Bib0096
  article-title: Opposition-based learning: A new scheme for machine intelligence
  publication-title: Proceedings of the International Conference on Computational Intelligence for Modelling, Control, and Automation and the International Conference on Intelligent Agents, Web Technologies, and Internet Commerce (CIMCA-IAWTIC’06)
– volume: 139
  start-page: 104994
  year: 2021
  ident: Bib0002
  article-title: A novel deep neuroevolution-based image classification method to diagnose coronavirus disease (COVID-19)
  publication-title: Computers in Biology and Medicine
– volume: 8
  start-page: 91916
  year: 2020
  end-page: 91923
  ident: Bib0101
  article-title: CovidGAN: Data augmentation using auxiliary classifier GAN for improved Covid-19 detection
  publication-title: IEEE Access
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: Bib0099
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– year: 2018
  ident: Bib0117
  article-title: UNet++: A nested U-net architecture for medical image segmentation
– year: 2020
  ident: Bib0103
  article-title: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis
  publication-title: European Respiratory Journal
– year: 2020
  ident: Bib0022
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
– volume: 370
  year: 2020
  ident: Bib0021
  article-title: The role of chest radiography in confirming Covid-19 pneumonia
  publication-title: BMJ
– year: 2016
  ident: Bib0085
  article-title: Grad-CAM: Why did you say that? Visual explanations from deep networks via gradient-based localization
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: Bib0067
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– volume: 72
  start-page: 80
  year: 2021
  end-page: 88
  ident: Bib0070
  article-title: COVID-19 and non-COVID-19 classification using multi-layers fusion from lung ultrasound images
  publication-title: Information Fusion
– start-page: 833
  year: 2018
  end-page: 851
  ident: Bib0019
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Computer Vision—ECCV 2018
– volume: 256
  start-page: 32
  issue: 1
  year: 2010
  end-page: 61
  ident: Bib0011
  article-title: Intravenous contrast medium administration and scan timing at CT: Considerations and approaches
  publication-title: Radiology
– volume: 28
  start-page: 27
  issue: 2
  year: 2011
  end-page: 38
  ident: Bib0098
  article-title: Dictionary learning
  publication-title: IEEE Signal Processing Magazine
– volume: 2349
  year: 2019
  ident: Bib0034
  article-title: Segmentation of CT thoracic organs by multi-resolution VB-nets
  publication-title: Proceedings of the 2019 Challenge on Segmentation of Thoracic Organs at Risk in CT Images, SegTHOR@ISBI 2019, April 8, 2019 (CEUR Workshop Proceedings)
– volume: 82
  start-page: e142–e150
  issue: 3
  year: 2013
  ident: Bib0020
  article-title: Accuracy of low-dose computed tomography (CT) for detecting and characterizing the most common CT-patterns of pulmonary disease
  publication-title: European Journal of Radiology
– start-page: 1
  year: 2017
  end-page: 4
  ident: Bib0051
  article-title: Image enhancement on digital x-ray images using N-CLAHE
  publication-title: Proceedings of the 2017 10th Biomedical Engineering International Conference (BMEiCON’17)
– volume: 39
  start-page: 2615
  issue: 8
  year: 2020
  end-page: 2625
  ident: Bib0107
  article-title: A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT
  publication-title: IEEE Transactions on Medical Imaging
– year: 2020
  ident: Bib0113
  article-title: Handbook of COVID-19 Prevention and Treatment
– year: 2018
  ident: Bib0008
  article-title: Diagnostic use of lung ultrasound compared to chest radiograph for suspected pneumonia in a resource-limited setting
  publication-title: International Journal of Emergency Medicine
– volume: 18, 12
  year: 2016
  ident: Bib0016
  article-title: Lung ultrasound will soon replace chest radiography in the diagnosis of acute community-acquired pneumonia
  publication-title: Current Infectious Disease Reports
– volume: 172
  start-page: 1122–1131.e9
  issue: 5
  year: 2018
  ident: Bib0048
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
– volume: 139
  start-page: 105014
  year: 2021
  ident: Bib0001
  article-title: A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images
  publication-title: Computers in Biology and Medicine
– volume: 25
  start-page: 138
  year: 2009
  end-page: 144
  ident: Bib0014
  article-title: Accuracy and cost comparison of ultrasound versus alternative imaging modalities, including CT, MR, PET, and angiography
  publication-title: Journal of Diagnostic Medical Sonography
– volume: 39
  start-page: 2638
  issue: 8
  year: 2020
  end-page: 2652
  ident: Bib0116
  article-title: A rapid, accurate and machine-agnostic segmentation and quantification method for CT-based COVID-19 diagnosis
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 770
  year: 2016
  end-page: 778
  ident: Bib0035
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16)
– year: 2020
  ident: Bib0049
  article-title: Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest x-ray dataset
– volume: 395
  year: 2020
  ident: Bib0039
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  end-page: 220
  ident: Bib0023
  article-title: Regression models and life-tables
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 32
  year: 2021
  ident: Bib0004
  article-title: Inception recurrent convolutional neural network for object recognition
  publication-title: Machine Vision and Applications
– volume: 382
  year: 2020
  ident: Bib0031
  article-title: Clinical characteristics of coronavirus disease 2019 in China
  publication-title: New England Journal of Medicine
– volume: 6
  start-page: 18
  year: 2010
  ident: Bib0064
  article-title: Turning a blind eye: The mobilization of radiology services in resource-poor regions
  publication-title: Globalization and Health
– volume: 66
  start-page: 065031
  issue: 6
  year: 2021
  ident: Bib0087
  article-title: Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification
  publication-title: Physics in Medicine & Biology
– start-page: 756
  year: 2016
  end-page: 771
  ident: Bib0066
  article-title: Learning to aggregate using uninorms
  publication-title: Machine Learning and Knowledge Discovery in Databases
– year: 2019
  ident: Bib0109
  article-title: A generalized deep learning approach for evaluating secondary pulmonary tuberculosis on chest computed tomography
– volume: 30
  start-page: 4865
  issue: 9
  year: 2020
  end-page: 4873
  ident: Bib0057
  article-title: Evolution of CT findings in patients with mild COVID-19 pneumonia
  publication-title: European Radiology
– year: 2014
  ident: Bib0068
  article-title: Conditional generative adversarial nets
– year: 2020
  ident: Bib0010
  article-title: Covid-19: Automatic detection from x-ray images utilizing transfer learning with convolutional neural networks
– volume: 39
  start-page: 2676
  issue: 8
  year: 2020
  end-page: 2687
  ident: Bib0083
  article-title: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound
  publication-title: IEEE Transactions on Medical Imaging
– year: 2020
  ident: Bib0030
  article-title: RapidAI development cycle for the coronavirus (Covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis
– start-page: 1
  year: 2015
  end-page: 9
  ident: Bib0093
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15)
– start-page: 51
  year: 2018
  end-page: 60
  ident: Bib0013
  article-title: Efficient medical image enhancement technique using transform HSV space and adaptive histogram equalization
  publication-title: Soft Computing Based Medical Image Analysis
– volume: 53
  start-page: 457
  issue: 282
  year: 1958
  end-page: 481
  ident: Bib0047
  article-title: Nonparametric estimation from incomplete observations
  publication-title: Journal of the American Statistical Association
– volume: 2, 6
  start-page: 559
  year: 1901
  end-page: 572
  ident: Bib0075
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: Philosophical Magazine
– volume: 8
  start-page: 115041
  year: 2020
  end-page: 115050
  ident: Bib0078
  article-title: Iteratively pruned deep learning ensembles for COVID-19 detection in chest x-rays
  publication-title: IEEE Access
– start-page: 779
  year: 2016
  end-page: 788
  ident: Bib0080
  article-title: You only look once: Unified, real-time object detection
  publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16)
– start-page: 6517
  year: 2017
  end-page: 6525
  ident: Bib0081
  article-title: YOLO9000: Better, faster, stronger
  publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17)
– year: 2014
  ident: Bib0088
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 296
  start-page: e115-e117
  issue: 2
  year: 2020
  ident: Bib0026
  article-title: Sensitivity of chest CT for COVID-19: Comparison to RT-PCR
  publication-title: Radiology
– volume: 298
  start-page: e141–e151
  issue: 3
  year: 2021
  ident: Bib0037
  article-title: Variations in CT utilization, protocols, and radiation doses in COVID-19 pneumonia: Results from 28 countries in the IAEA study
  publication-title: Radiology
– volume: 25
  year: 2012
  ident: Bib0052
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances of Neural Information Processing Systems
– year: 2015
  ident: Bib0043
  article-title: Spatial transformer networks
  publication-title: Advances in Neural Information Processing Systems 28 (NIPS’15).
– volume: 26
  start-page: 1
  year: 2020
  end-page: 5
  ident: Bib0065
  article-title: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19
  publication-title: Nature Medicine
– year: 2020
  ident: Bib0118
  article-title: UNet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Transactions on Medical Imaging
– year: 2014
  ident: Bib0029
  article-title: Generative adversarial networks
  publication-title: Advances in Neural Information Processing Systems 27 (NIPS’14).
– year: 2020
  ident: Bib0045
  article-title: AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks
  publication-title: medRxiv preprint
– year: 2020
  ident: Bib0015
  article-title: POCOVID-Net: Automatic detection of COVID-19 from a new lung ultrasound imaging dataset (POCUS)
– volume: 140
  start-page: 95
  year: 2020
  end-page: 100
  ident: Bib0077
  article-title: A light CNN for detecting COVID-19 from CT scans of the chest
  publication-title: Pattern Recognition Letters
– volume: 1
  start-page: 284
  year: 2006
  end-page: 291
  ident: Bib0040
  article-title: Large-scale learning with SVM and convolutional for generic object categorization
  publication-title: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
– start-page: 936
  year: 2017
  end-page: 944
  ident: Bib0059
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17)
– volume: 39
  issue: 8
  year: 2020
  ident: Bib0072
  article-title: Deep learning COVID-19 features on CXR using limited training data sets
  publication-title: IEEE Transactions on Medical Imaging
– volume: 16
  start-page: 19
  year: 2020
  ident: Bib0106
  article-title: DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification
– year: 2020
  ident: Bib0032
  article-title: COVID-CXNet: Detecting COVID-19 in frontal chest x-ray images using deep learning
– year: 2020
  ident: Bib0086
  article-title: Lung infection quantification of Covid-19 in CT images with deep learning
– volume: 8
  start-page: 149808
  year: 2020
  end-page: 149824
  ident: Bib0038
  article-title: COVID-19 detection through transfer learning using multimodal imaging data
  publication-title: IEEE Access
– year: 2017
  ident: Bib0079
  article-title: CheXNet: Radiologist-level pneumonia detection on chest x-rays with deep learning
– volume: 30
  start-page: 3484
  issue: 11
  year: 2019
  end-page: 3495
  ident: Bib0058
  article-title: Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-OR network
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 24
  start-page: 957
  issue: 4
  year: 2020
  end-page: 964
  ident: Bib0100
  article-title: Localizing B-lines in lung ultrasonography by weakly supervised deep learning, In-Vivo Results
  publication-title: IEEE Journal of Biomedical and Health Informatics
– year: 2019
  ident: Bib0094
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– year: 2016
  ident: Bib0042
  article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size
– volume: 173
  start-page: 262
  issue: 4
  year: 2020
  end-page: 267
  ident: Bib0054
  article-title: Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure
  publication-title: Annals of Internal Medicine
– year: 1994
  ident: Bib0119
  article-title: Contrast limited adaptive histogram equalization
  publication-title: Graphics Gems IV
– volume: 46, 5
  year: 2020
  ident: Bib0076
  article-title: Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic
  publication-title: Intensive Care Medicine
– year: 2020
  ident: Bib0112
  article-title: COVID-CT-dataset: A CT scan dataset about COVID-19
– volume: 9
  start-page: 103
  year: 2020
  end-page: 120
  ident: Bib0092
  article-title: Trends in ultrasound use in low and middle income countries: A systematic review
  publication-title: International Journal of MCH and AIDS
– volume: 296
  start-page: e72–e78
  issue: 2
  year: 2020
  ident: Bib0111
  article-title: Frequency and distribution of chest radiographic findings in patients positive for COVID-19
  publication-title: Radiology
– volume: 11734
  start-page: 99
  year: 2021
  end-page: 110
  ident: Bib0061
  article-title: Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms
  publication-title: Multimodal Image Exploitation and Learning 2021
– year: 2017
  ident: Bib0071
  article-title: Conditional image synthesis with auxiliary classifier GANs
– volume: 22
  start-page: e19569
  issue: 6
  year: 2020
  ident: Bib0050
  article-title: COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: Model development and validation
  publication-title: Journal of Medical Internet Research
– start-page: 4733
  year: 2019
  end-page: 4742
  ident: Bib0025
  article-title: Soft labels for ordinal regression
  publication-title: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’19)
– year: 2020
  ident: Bib0102
  article-title: COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images
  publication-title: Scientific Reports
– year: 2020
  ident: Bib0044
  article-title: Development and evaluation of an AI system for COVID-19 diagnosis
  publication-title: Nature Communications
– volume: 34
  start-page: 179
  issue: 3
  year: 2019
  end-page: 186
  ident: Bib0053
  article-title: Added value of ultra-low-dose computed tomography, dose equivalent to chest x-ray radiography, for diagnosing chest pathology
  publication-title: Journal of Thoracic Imaging
– volume: 81
  start-page: e28–e32
  issue: 1
  year: 2020
  ident: Bib0074
  article-title: Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients
  publication-title: Journal of Infection
– volume: 40
  start-page: 879
  issue: 3
  year: 2021
  end-page: 890
  ident: Bib0114
  article-title: Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection
  publication-title: IEEE Transactions on Medical Imaging
– volume: 91
  start-page: 54
  issue: 2
  year: 2009
  end-page: 58
  ident: Bib0017
  article-title: A clinical trial of the Nomad portable x-ray unit
  publication-title: Journal of the Michigan Dental Association
– year: 2020
  ident: Bib0005
  article-title: COVIDMTNet: COVID-19 detection with multitask deep learning approaches
– year: 2020
  ident: Bib0089
  article-title: SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification
  publication-title: medRxiv preprint
– start-page: 210
  year: 2021
  end-page: 214
  ident: Bib0007
  article-title: Boosting deep transfer learning for COVID-19 classification
  publication-title: Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP’21)
– volume: 296
  start-page: e156–e165
  issue: 3
  year: 2020
  ident: Bib0012
  article-title: Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT
  publication-title: Radiology
– year: 1974
  ident: Bib0069
  article-title: On Bayesian methods for seeking the extremum
– volume: 16
  start-page: R68
  year: 2012
  ident: Bib0028
  article-title: Routine chest x-rays in intensive care units: A systemic review and meta-analysis
  publication-title: Critical Care (London, England)
– volume: 33
  year: 2021
  ident: Bib0006
  article-title: A novel augmented deep transfer learning for classification of COVID-19 and other thoracic diseases from x-rays
  publication-title: Neural Computing and Applications
– volume: 150, 1
  year: 2016
  ident: Bib0046
  article-title: Feasibility and safety of substituting lung ultrasound for chest X-ray when diagnosing pneumonia in children: A randomized controlled trial
  publication-title: Chest
– volume: 121
  start-page: 103792
  year: 2020
  ident: Bib0073
  article-title: Automated detection of COVID-19 cases using deep neural networks with x-ray images
  publication-title: Computers in Biology and Medicine
– year: 1986
  ident: Bib0084
  article-title: Linear inversion of band-limited reflection seismograms
  publication-title: SIAM Journal on Scientific and Statistical Computing
– year: 2019
  ident: Bib0060
  article-title: Do explanations reflect decisions? A machine-centric strategy to quantify the performance of explainability algorithms
– volume: 68
  start-page: 131
  year: 2021
  end-page: 148
  ident: Bib0105
  article-title: COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis
  publication-title: Information Fusion
– year: 2021
  ident: Bib0115
  article-title: COVID-19 diagnosis via DenseNet and optimization of transfer learning setting
  publication-title: Cognitive Computation
– year: 2018
  ident: Bib0110
  article-title: FermiNets: Learning generative machines to generate efficient neural networks via generative synthesis
– volume: 40
  start-page: 1848
  issue: 7
  year: 2020
  end-page: 1865
  ident: Bib0055
  article-title: Chest CT in COVID-19: What the radiologist needs to know
  publication-title: RadioGraphics
– volume: 45
  start-page: 20150245
  issue: 3
  year: 2016
  ident: Bib0062
  article-title: The effects of device position on the operator’s radiation dose when using a handheld portable x-ray device
  publication-title: Dentomaxillofacial Radiology
– volume: 67
  start-page: 208
  year: 2021
  end-page: 229
  ident: Bib0104
  article-title: Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
  publication-title: Information Fusion
– volume: 295
  start-page: 210
  issue: 1
  year: 2020
  end-page: 217
  ident: Bib0090
  article-title: Emerging 2019 novel coronavirus (2019-nCoV) pneumonia
  publication-title: Radiology
– volume: 11
  start-page: 1984
  issue: 9
  year: 2016
  end-page: 1996
  ident: Bib0033
  article-title: Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition
  publication-title: IEEE Transactions on Information Forensics and Security
– year: 2020
  ident: Bib0091
  article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images
  publication-title: medRxiv preprint
– volume: 66
  start-page: 035015
  issue: 3
  year: 2021
  ident: Bib0095
  article-title: Severity assessment of COVID-19 using CT image features and laboratory indices
  publication-title: Physics in Medicine & Biology
– ident: Bib0018
  article-title: VESsel SEgmentation in the Lung 2012
– year: 2020
  ident: Bib0009
  article-title: Multi-task deep learning based CT imaging analysis for COVID-19: Classification and segmentation
  publication-title: Computers in Biology and Medicine
– volume: 18
  start-page: 196
  year: 2001
  end-page: 208
  ident: Bib0027
  article-title: Imaging of pneumonia: Trends and algorithms
  publication-title: European Respiratory Journal
– year: 2020
  ident: Bib0036
  article-title: COVIDX-Net: A framework of deep learning classifiers to diagnose Covid-19 in x-ray images
– volume: 27, 6
  year: 2020
  ident: Bib0097
  article-title: Low-dose CT in COVID-19 outbreak: Radiation safety, image wisely, and image gently pledge
  publication-title: Emergency Radiology
– year: 2020
  ident: Bib0024
  article-title: Chest x-ray in new coronavirus disease 2019 (COVID-19) infection: Findings and correlation with clinical outcome
– year: 2015
  ident: Bib0082
  article-title: U-Net: Convolutional networks for biomedical image segmentation
– volume: 296
  start-page: e32–e40
  issue: 2
  year: 2020
  ident: Bib0003
  article-title: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases
  publication-title: Radiology
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: Bib0041
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17)
– volume: 296
  start-page: e65–e71
  issue: 2
  year: 2020
  ident: Bib0056
  article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy
  publication-title: Radiology
– start-page: 51
  volume-title: Soft Computing Based Medical Image Analysis
  year: 2018
  ident: e_1_3_2_14_2
  doi: 10.1016/B978-0-12-813087-2.00003-8
– volume: 382
  year: 2020
  ident: e_1_3_2_32_2
  article-title: Clinical characteristics of coronavirus disease 2019 in China
  publication-title: New England Journal of Medicine
– volume: 82
  start-page: e142–e150
  issue: 3
  year: 2013
  ident: e_1_3_2_21_2
  article-title: Accuracy of low-dose computed tomography (CT) for detecting and characterizing the most common CT-patterns of pulmonary disease
  publication-title: European Journal of Radiology
– volume: 298
  start-page: e141–e151
  issue: 3
  year: 2021
  ident: e_1_3_2_38_2
  article-title: Variations in CT utilization, protocols, and radiation doses in COVID-19 pneumonia: Results from 28 countries in the IAEA study
  publication-title: Radiology
– volume: 2
  start-page: 559
  year: 1901
  ident: e_1_3_2_76_2
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: Philosophical Magazine
– volume: 8
  start-page: 149808
  year: 2020
  ident: e_1_3_2_39_2
  article-title: COVID-19 detection through transfer learning using multimodal imaging data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016780
– volume: 121
  start-page: 103792
  year: 2020
  ident: e_1_3_2_74_2
  article-title: Automated detection of COVID-19 cases using deep neural networks with x-ray images
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103792
– year: 2018
  ident: e_1_3_2_9_2
  article-title: Diagnostic use of lung ultrasound compared to chest radiograph for suspected pneumonia in a resource-limited setting
  publication-title: International Journal of Emergency Medicine
– volume: 1
  start-page: 695
  volume-title: Proceedings of the International Conference on Computational Intelligence for Modelling, Control, and Automation and the International Conference on Intelligent Agents, Web Technologies, and Internet Commerce (CIMCA-IAWTIC’06)
  year: 2005
  ident: e_1_3_2_97_2
– volume: 39
  start-page: 2638
  issue: 8
  year: 2020
  ident: e_1_3_2_117_2
  article-title: A rapid, accurate and machine-agnostic segmentation and quantification method for CT-based COVID-19 diagnosis
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.3001810
– ident: e_1_3_2_50_2
– ident: e_1_3_2_95_2
– volume: 172
  start-page: 1122–1131.e9
  issue: 5
  year: 2018
  ident: e_1_3_2_49_2
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
– volume: 296
  start-page: e156–e165
  issue: 3
  year: 2020
  ident: e_1_3_2_13_2
  article-title: Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT
  publication-title: Radiology
– volume: 16
  start-page: R68
  year: 2012
  ident: e_1_3_2_29_2
  article-title: Routine chest x-rays in intensive care units: A systemic review and meta-analysis
  publication-title: Critical Care (London, England)
  doi: 10.1186/cc11321
– ident: e_1_3_2_33_2
– start-page: 770
  volume-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16)
  year: 2016
  ident: e_1_3_2_36_2
– year: 1986
  ident: e_1_3_2_85_2
  article-title: Linear inversion of band-limited reflection seismograms
  publication-title: SIAM Journal on Scientific and Statistical Computing
  doi: 10.1137/0907087
– volume: 395
  year: 2020
  ident: e_1_3_2_40_2
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– start-page: 4733
  volume-title: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’19)
  year: 2019
  ident: e_1_3_2_26_2
  doi: 10.1109/CVPR.2019.00487
– ident: e_1_3_2_113_2
– volume: 30
  start-page: 3484
  issue: 11
  year: 2019
  ident: e_1_3_2_59_2
  article-title: Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-OR network
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2892409
– volume: 9
  start-page: 2579
  year: 2008
  ident: e_1_3_2_100_2
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_2_25_2
  doi: 10.1007/s11547-020-01232-9
– volume: 45
  start-page: 20150245
  issue: 3
  year: 2016
  ident: e_1_3_2_63_2
  article-title: The effects of device position on the operator’s radiation dose when using a handheld portable x-ray device
  publication-title: Dentomaxillofacial Radiology
  doi: 10.1259/dmfr.20150245
– volume: 6
  start-page: 18
  year: 2010
  ident: e_1_3_2_65_2
  article-title: Turning a blind eye: The mobilization of radiology services in resource-poor regions
  publication-title: Globalization and Health
  doi: 10.1186/1744-8603-6-18
– volume: 9
  start-page: 103
  year: 2020
  ident: e_1_3_2_93_2
  article-title: Trends in ultrasound use in low and middle income countries: A systematic review
  publication-title: International Journal of MCH and AIDS
  doi: 10.21106/ijma.294
– year: 2021
  ident: e_1_3_2_116_2
  article-title: COVID-19 diagnosis via DenseNet and optimization of transfer learning setting
  publication-title: Cognitive Computation
– ident: e_1_3_2_70_2
  doi: 10.1007/3-540-07165-2_55
– start-page: 756
  volume-title: Machine Learning and Knowledge Discovery in Databases
  year: 2016
  ident: e_1_3_2_67_2
  doi: 10.1007/978-3-319-46227-1_47
– year: 2020
  ident: e_1_3_2_119_2
  article-title: UNet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 6517
  volume-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17)
  year: 2017
  ident: e_1_3_2_82_2
  doi: 10.1109/CVPR.2017.690
– ident: e_1_3_2_110_2
  doi: 10.2139/ssrn.3441821
– volume: 72
  start-page: 80
  year: 2021
  ident: e_1_3_2_71_2
  article-title: COVID-19 and non-COVID-19 classification using multi-layers fusion from lung ultrasound images
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.02.013
– start-page: 1
  volume-title: Proceedings of the 2017 10th Biomedical Engineering International Conference (BMEiCON’17)
  year: 2017
  ident: e_1_3_2_52_2
– ident: e_1_3_2_31_2
– year: 2020
  ident: e_1_3_2_46_2
  article-title: AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks
  publication-title: medRxiv preprint
– volume: 53
  start-page: 457
  issue: 282
  year: 1958
  ident: e_1_3_2_48_2
  article-title: Nonparametric estimation from incomplete observations
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1958.10501452
– volume: 25
  year: 2012
  ident: e_1_3_2_53_2
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances of Neural Information Processing Systems
– volume: 34
  start-page: 179
  issue: 3
  year: 2019
  ident: e_1_3_2_54_2
  article-title: Added value of ultra-low-dose computed tomography, dose equivalent to chest x-ray radiography, for diagnosing chest pathology
  publication-title: Journal of Thoracic Imaging
  doi: 10.1097/RTI.0000000000000404
– ident: e_1_3_2_83_2
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_3_2_37_2
– start-page: 936
  volume-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17)
  year: 2017
  ident: e_1_3_2_60_2
– volume: 25
  start-page: 138
  year: 2009
  ident: e_1_3_2_15_2
  article-title: Accuracy and cost comparison of ultrasound versus alternative imaging modalities, including CT, MR, PET, and angiography
  publication-title: Journal of Diagnostic Medical Sonography
  doi: 10.1177/8756479309336240
– volume: 296
  start-page: e65–e71
  issue: 2
  year: 2020
  ident: e_1_3_2_57_2
  article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy
  publication-title: Radiology
– ident: e_1_3_2_72_2
– start-page: 779
  volume-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16)
  year: 2016
  ident: e_1_3_2_81_2
  doi: 10.1109/CVPR.2016.91
– year: 2020
  ident: e_1_3_2_103_2
  article-title: COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images
  publication-title: Scientific Reports
– volume: 33
  year: 2021
  ident: e_1_3_2_7_2
  article-title: A novel augmented deep transfer learning for classification of COVID-19 and other thoracic diseases from x-rays
  publication-title: Neural Computing and Applications
– ident: e_1_3_2_86_2
  doi: 10.1109/ICCV.2017.74
– ident: e_1_3_2_111_2
– ident: e_1_3_2_11_2
  doi: 10.1007/s13246-020-00865-4
– volume: 40
  start-page: 1848
  issue: 7
  year: 2020
  ident: e_1_3_2_56_2
  article-title: Chest CT in COVID-19: What the radiologist needs to know
  publication-title: RadioGraphics
  doi: 10.1148/rg.2020200159
– year: 2014
  ident: e_1_3_2_30_2
  article-title: Generative adversarial networks
  publication-title: Advances in Neural Information Processing Systems 27 (NIPS’14).
– ident: e_1_3_2_114_2
– start-page: 833
  volume-title: Computer Vision—ECCV 2018
  year: 2018
  ident: e_1_3_2_20_2
  doi: 10.1007/978-3-030-01234-2_49
– volume: 81
  start-page: e28–e32
  issue: 1
  year: 2020
  ident: e_1_3_2_75_2
  article-title: Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients
  publication-title: Journal of Infection
– volume: 370
  year: 2020
  ident: e_1_3_2_22_2
  article-title: The role of chest radiography in confirming Covid-19 pneumonia
  publication-title: BMJ
– volume: 173
  start-page: 262
  issue: 4
  year: 2020
  ident: e_1_3_2_55_2
  article-title: Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure
  publication-title: Annals of Internal Medicine
  doi: 10.7326/M20-1495
– volume: 91
  start-page: 54
  issue: 2
  year: 2009
  ident: e_1_3_2_18_2
  article-title: A clinical trial of the Nomad portable x-ray unit
  publication-title: Journal of the Michigan Dental Association
– volume: 296
  start-page: e32–e40
  issue: 2
  year: 2020
  ident: e_1_3_2_4_2
  article-title: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases
  publication-title: Radiology
– ident: e_1_3_2_43_2
– volume: 22
  start-page: e19569
  issue: 6
  year: 2020
  ident: e_1_3_2_51_2
  article-title: COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: Model development and validation
  publication-title: Journal of Medical Internet Research
  doi: 10.2196/19569
– volume: 296
  start-page: e115-e117
  issue: 2
  year: 2020
  ident: e_1_3_2_27_2
  article-title: Sensitivity of chest CT for COVID-19: Comparison to RT-PCR
  publication-title: Radiology
– volume: 18
  year: 2016
  ident: e_1_3_2_17_2
  article-title: Lung ultrasound will soon replace chest radiography in the diagnosis of acute community-acquired pneumonia
  publication-title: Current Infectious Disease Reports
– year: 2015
  ident: e_1_3_2_44_2
  article-title: Spatial transformer networks
  publication-title: Advances in Neural Information Processing Systems 28 (NIPS’15).
– ident: e_1_3_2_6_2
– volume: 26
  start-page: 1
  year: 2020
  ident: e_1_3_2_66_2
  article-title: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19
  publication-title: Nature Medicine
– volume: 40
  start-page: 879
  issue: 3
  year: 2021
  ident: e_1_3_2_115_2
  article-title: Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.3040950
– ident: e_1_3_2_87_2
– year: 2020
  ident: e_1_3_2_92_2
  article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images
  publication-title: medRxiv preprint
– volume: 296
  start-page: e72–e78
  issue: 2
  year: 2020
  ident: e_1_3_2_112_2
  article-title: Frequency and distribution of chest radiographic findings in patients positive for COVID-19
  publication-title: Radiology
– volume: 256
  start-page: 32
  issue: 1
  year: 2010
  ident: e_1_3_2_12_2
  article-title: Intravenous contrast medium administration and scan timing at CT: Considerations and approaches
  publication-title: Radiology
  doi: 10.1148/radiol.10090908
– year: 2020
  ident: e_1_3_2_45_2
  article-title: Development and evaluation of an AI system for COVID-19 diagnosis
  publication-title: Nature Communications
– volume: 68
  start-page: 131
  year: 2021
  ident: e_1_3_2_106_2
  article-title: COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.11.005
– volume: 11
  start-page: 1984
  issue: 9
  year: 2016
  ident: e_1_3_2_34_2
  article-title: Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2016.2569061
– volume: 66
  start-page: 065031
  issue: 6
  year: 2021
  ident: e_1_3_2_88_2
  article-title: Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/1361-6560/abe838
– volume: 2349
  volume-title: Proceedings of the 2019 Challenge on Segmentation of Thoracic Organs at Risk in CT Images, SegTHOR@ISBI 2019, April 8, 2019 (CEUR Workshop Proceedings)
  year: 2019
  ident: e_1_3_2_35_2
– ident: e_1_3_2_118_2
  doi: 10.1007/978-3-030-00889-5_1
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: e_1_3_2_24_2
  article-title: Regression models and life-tables
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 114
  start-page: 163
  year: 2017
  ident: e_1_3_2_68_2
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: e_1_3_2_69_2
– volume: 66
  start-page: 035015
  issue: 3
  year: 2021
  ident: e_1_3_2_96_2
  article-title: Severity assessment of COVID-19 using CT image features and laboratory indices
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/1361-6560/abbf9e
– year: 2020
  ident: e_1_3_2_90_2
  article-title: SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification
  publication-title: medRxiv preprint
– volume: 295
  start-page: 210
  issue: 1
  year: 2020
  ident: e_1_3_2_91_2
  article-title: Emerging 2019 novel coronavirus (2019-nCoV) pneumonia
  publication-title: Radiology
  doi: 10.1148/radiol.2020200274
– volume: 39
  start-page: 2676
  issue: 8
  year: 2020
  ident: e_1_3_2_84_2
  article-title: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.2994459
– volume: 150
  year: 2016
  ident: e_1_3_2_47_2
  article-title: Feasibility and safety of substituting lung ultrasound for chest X-ray when diagnosing pneumonia in children: A randomized controlled trial
  publication-title: Chest
– volume: 24
  start-page: 957
  issue: 4
  year: 2020
  ident: e_1_3_2_101_2
  article-title: Localizing B-lines in lung ultrasonography by weakly supervised deep learning, In-Vivo Results
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2019.2936151
– start-page: 210
  volume-title: Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP’21)
  year: 2021
  ident: e_1_3_2_8_2
– volume: 28
  start-page: 27
  issue: 2
  year: 2011
  ident: e_1_3_2_99_2
  article-title: Dictionary learning
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2010.939537
– ident: e_1_3_2_23_2
– volume: 46
  year: 2020
  ident: e_1_3_2_77_2
  article-title: Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic
  publication-title: Intensive Care Medicine
– volume: 8
  start-page: 115041
  year: 2020
  ident: e_1_3_2_79_2
  article-title: Iteratively pruned deep learning ensembles for COVID-19 detection in chest x-rays
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003810
– volume: 8
  start-page: 91916
  year: 2020
  ident: e_1_3_2_102_2
  article-title: CovidGAN: Data augmentation using auxiliary classifier GAN for improved Covid-19 detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994762
– volume: 140
  start-page: 95
  year: 2020
  ident: e_1_3_2_78_2
  article-title: A light CNN for detecting COVID-19 from CT scans of the chest
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2020.10.001
– volume: 67
  start-page: 208
  year: 2021
  ident: e_1_3_2_105_2
  article-title: Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.10.004
– volume: 18
  start-page: 196
  year: 2001
  ident: e_1_3_2_28_2
  article-title: Imaging of pneumonia: Trends and algorithms
  publication-title: European Respiratory Journal
  doi: 10.1183/09031936.01.00213501
– ident: e_1_3_2_80_2
– volume-title: Graphics Gems IV
  year: 1994
  ident: e_1_3_2_120_2
– start-page: 3462
  volume-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17)
  year: 2017
  ident: e_1_3_2_109_2
  doi: 10.1109/CVPR.2017.369
– ident: e_1_3_2_61_2
– start-page: 2261
  volume-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17)
  year: 2017
  ident: e_1_3_2_42_2
  doi: 10.1109/CVPR.2017.243
– volume: 30
  start-page: 4865
  issue: 9
  year: 2020
  ident: e_1_3_2_58_2
  article-title: Evolution of CT findings in patients with mild COVID-19 pneumonia
  publication-title: European Radiology
  doi: 10.1007/s00330-020-06823-8
– ident: e_1_3_2_64_2
– start-page: 1
  volume-title: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15)
  year: 2015
  ident: e_1_3_2_94_2
– volume: 39
  start-page: 2615
  issue: 8
  year: 2020
  ident: e_1_3_2_108_2
  article-title: A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.2995965
– ident: e_1_3_2_107_2
  doi: 10.1145/3341095
– year: 2020
  ident: e_1_3_2_10_2
  article-title: Multi-task deep learning based CT imaging analysis for COVID-19: Classification and segmentation
  publication-title: Computers in Biology and Medicine
– year: 2020
  ident: e_1_3_2_104_2
  article-title: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis
  publication-title: European Respiratory Journal
– ident: e_1_3_2_89_2
– volume: 32
  year: 2021
  ident: e_1_3_2_5_2
  article-title: Inception recurrent convolutional neural network for object recognition
  publication-title: Machine Vision and Applications
– volume: 39
  issue: 8
  year: 2020
  ident: e_1_3_2_73_2
  article-title: Deep learning COVID-19 features on CXR using limited training data sets
  publication-title: IEEE Transactions on Medical Imaging
– ident: e_1_3_2_19_2
– volume: 139
  start-page: 104994
  year: 2021
  ident: e_1_3_2_3_2
  article-title: A novel deep neuroevolution-based image classification method to diagnose coronavirus disease (COVID-19)
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104994
– start-page: 99
  volume-title: Multimodal Image Exploitation and Learning 2021
  year: 2021
  ident: e_1_3_2_62_2
– volume: 27
  year: 2020
  ident: e_1_3_2_98_2
  article-title: Low-dose CT in COVID-19 outbreak: Radiation safety, image wisely, and image gently pledge
  publication-title: Emergency Radiology
– volume: 139
  start-page: 105014
  year: 2021
  ident: e_1_3_2_2_2
  article-title: A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.105014
– volume: 1
  start-page: 284
  volume-title: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
  year: 2006
  ident: e_1_3_2_41_2
– ident: e_1_3_2_16_2
SSID ssj0002416
Score 2.4634786
Snippet This literature review summarizes the current deep learning methods developed by the medical imaging AI research community that have been focused on resolving...
SourceID proquest
crossref
acm
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Annotations
Applied computing
Computer science
Computer vision
Computing methodologies
Coronaviruses
COVID-19
Deep learning
Diagnosis
Health informatics
Literature reviews
Machine learning
Medical imaging
Prognosis
Viral diseases
SubjectTermsDisplay Applied computing -- Health informatics
Computing methodologies -- Computer vision
Computing methodologies -- Machine learning
Title Deep Learning Techniques for COVID-19 Diagnosis and Prognosis Based on Radiological Imaging
URI https://dl.acm.org/doi/10.1145/3576898
https://www.proquest.com/docview/2904329807
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKduHCxgAxNpAPiAsKOHZ-Hku7aYN2k0aLKnGIbMeeJrFsalMO_PV7ju0k1aYJuESNY7mR35fn9-z3vofQ-5yWIVFlHHCdmZQc8FNECV5rpoUUTMlM8yZA9iw5mUdfF_FiMPjWi1pa1-KT_PNgXsn_SBXaQK4mS_YfJNsOCg3wG-QLV5AwXP9KxmOlbj1D6qXdJTd0rA3FwsfR-Y_TcRDmoNWaaLqrlc8McHdfYAErzWHBBS-vWh14et3ULeobrcPRtAk9Xzch0qv18jeIv9tEXdb2pN8Gabf-vaoAbDaP_cJEbJb9DQbKPI2hh0QHE_v27f9Nm3BPn7rtk7BIAHrDHrUop1PjNEiZ5bfyStdy83pw0Z4KDR9W7JHhwGDGO7JVqzeps8_Oi-P5ZFLMjhazJ2ibgs8ASm97OJ5OvrcLMxgr7ujavqPNoTZDf3YDGxNFXm-aKJsrdGN2zHbRM-cv4KEV_nM0UNUe2vG1OLBTzS_QT4MF7LGAOyxgmE3ssYBbLGDAAm6xgBss4JsK97GAHRZeovnx0Wx0ErjCGQGnKa2DNBNhzokWkYgSmYZCUqJSSVWaqCRSYJWVSVwyDS1ccQ02vWQk15GUNOJaE_YKbVU3lXqNMJGaZbTUOYdnicgz0PcJ4YpRGSsi2D7agxkrbi01SuHmcR998DNYSMc1b0qe_CpsHnzcdcRtRz_GvS6HXgSF-_ZWBc0NlWSekfTN448P0NMO04doq16u1VswI2vxzsHjDoIfdKo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Techniques+for+COVID-19+Diagnosis+and+Prognosis+Based+on+Radiological+Imaging&rft.jtitle=ACM+computing+surveys&rft.au=Hertel%2C+Robert&rft.au=Benlamri%2C+Rachid&rft.date=2023-12-31&rft.pub=Association+for+Computing+Machinery&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=55&rft.issue=12&rft.spage=1&rft_id=info:doi/10.1145%2F3576898&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon