Deep Learning Techniques for COVID-19 Diagnosis and Prognosis Based on Radiological Imaging
This literature review summarizes the current deep learning methods developed by the medical imaging AI research community that have been focused on resolving lung imaging problems related to coronavirus disease 2019 (COVID-19). COVID-19 shares many of the same imaging characteristics as other commo...
Saved in:
Published in | ACM computing surveys Vol. 55; no. 12; pp. 1 - 39 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
ACM
31.12.2023
Association for Computing Machinery |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This literature review summarizes the current deep learning methods developed by the medical imaging AI research community that have been focused on resolving lung imaging problems related to coronavirus disease 2019 (COVID-19). COVID-19 shares many of the same imaging characteristics as other common forms of bacterial and viral pneumonia. Differentiating COVID-19 from other common pulmonary infections is a non-trivial task. To help offset what commonly requires hours of tedious manual annotation, several innovative solutions have been published to help healthcare providers during the COVID-19 pandemic. However, the absence of a comprehensive survey on the subject makes it challenging to ascertain which approaches are promising and therefore deserve further investigation. In this survey, we present an in-depth review of deep learning techniques that have recently been applied to the task of discovering the diagnosis and prognosis of COVID-19 patients. We categorize existing approaches based on features such as dimensionality of radiological imaging, system purpose, and used deep learning techniques, underlying core issues, and challenges. We also address the merits and shortcomings of various approaches, and finally we discuss future directions for this research. |
---|---|
AbstractList | This literature review summarizes the current deep learning methods developed by the medical imaging AI research community that have been focused on resolving lung imaging problems related to coronavirus disease 2019 (COVID-19). COVID-19 shares many of the same imaging characteristics as other common forms of bacterial and viral pneumonia. Differentiating COVID-19 from other common pulmonary infections is a non-trivial task. To help offset what commonly requires hours of tedious manual annotation, several innovative solutions have been published to help healthcare providers during the COVID-19 pandemic. However, the absence of a comprehensive survey on the subject makes it challenging to ascertain which approaches are promising and therefore deserve further investigation. In this survey, we present an in-depth review of deep learning techniques that have recently been applied to the task of discovering the diagnosis and prognosis of COVID-19 patients. We categorize existing approaches based on features such as dimensionality of radiological imaging, system purpose, and used deep learning techniques, underlying core issues, and challenges. We also address the merits and shortcomings of various approaches, and finally we discuss future directions for this research. |
ArticleNumber | 260 |
Author | Benlamri, Rachid Hertel, Robert |
Author_xml | – sequence: 1 givenname: Robert orcidid: 0000-0003-4288-9939 surname: Hertel fullname: Hertel, Robert email: rhertel@lakeheadu.ca organization: Lakehead University, Ontario, Canada – sequence: 2 givenname: Rachid orcidid: 0000-0001-5146-2326 surname: Benlamri fullname: Benlamri, Rachid email: rachid.benlamri@udst.edu.qa organization: University of Doha for Science and Technology, Doha, Qatar |
BookMark | eNptkD1PwzAQhi1UJNqC2JksMTAF_JU4GaHlo1KlIlRYGKKLYwdXqV3sdODfk6qFATGd7u7Rc6d3hAbOO43QOSXXlIr0hqcyy4v8CA1pmspEckEHaEh4RhLCCTlBoxhXhBAmaDZE71OtN3iuITjrGrzU6sPZz62O2PiAJ4u32TShBZ5aaJyPNmJwNX4O_tDdQdQ19g6_QG196xuroMWzNTS97RQdG2ijPjvUMXp9uF9OnpL54nE2uZ0nwCTrEplXtABiKlGJTElaKUa0VEzLTGdCM8HqLK256SegwaRZqjgpjFCKCTCG8DG63Hs3we9e78qV3wbXnyxZQQRnRU5kT13tKRV8jEGbchPsGsJXSUm5S648JNeTyR9S2Q46610XwLb_8Bd7HtT6V_qz_AYlsHgj |
CitedBy_id | crossref_primary_10_3390_jimaging10080176 crossref_primary_10_3390_diagnostics13081397 crossref_primary_10_3934_electreng_2024004 crossref_primary_10_3390_diagnostics13172772 crossref_primary_10_1007_s00521_023_09194_5 crossref_primary_10_1007_s10489_023_05165_4 |
Cites_doi | 10.1016/B978-0-12-813087-2.00003-8 10.1109/ACCESS.2020.3016780 10.1016/j.compbiomed.2020.103792 10.1109/TMI.2020.3001810 10.1186/cc11321 10.1137/0907087 10.1109/CVPR.2019.00487 10.1109/TNNLS.2019.2892409 10.1007/s11547-020-01232-9 10.1259/dmfr.20150245 10.1186/1744-8603-6-18 10.21106/ijma.294 10.1007/3-540-07165-2_55 10.1007/978-3-319-46227-1_47 10.1109/CVPR.2017.690 10.2139/ssrn.3441821 10.1016/j.inffus.2021.02.013 10.1080/01621459.1958.10501452 10.1097/RTI.0000000000000404 10.1007/978-3-319-24574-4_28 10.1177/8756479309336240 10.1109/CVPR.2016.91 10.1109/ICCV.2017.74 10.1007/s13246-020-00865-4 10.1148/rg.2020200159 10.1007/978-3-030-01234-2_49 10.7326/M20-1495 10.2196/19569 10.1109/TMI.2020.3040950 10.1148/radiol.10090908 10.1016/j.inffus.2020.11.005 10.1109/TIFS.2016.2569061 10.1088/1361-6560/abe838 10.1007/978-3-030-00889-5_1 10.1111/j.2517-6161.1972.tb00899.x 10.1016/j.advengsoft.2017.07.002 10.1088/1361-6560/abbf9e 10.1148/radiol.2020200274 10.1109/TMI.2020.2994459 10.1109/JBHI.2019.2936151 10.1109/MSP.2010.939537 10.1109/ACCESS.2020.3003810 10.1109/ACCESS.2020.2994762 10.1016/j.patrec.2020.10.001 10.1016/j.inffus.2020.10.004 10.1183/09031936.01.00213501 10.1109/CVPR.2017.369 10.1109/CVPR.2017.243 10.1007/s00330-020-06823-8 10.1109/TMI.2020.2995965 10.1145/3341095 10.1016/j.compbiomed.2021.104994 10.1016/j.compbiomed.2021.105014 |
ContentType | Journal Article |
Copyright | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Copyright Association for Computing Machinery Dec 2023 |
Copyright_xml | – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from – notice: Copyright Association for Computing Machinery Dec 2023 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1145/3576898 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1557-7341 |
EndPage | 39 |
ExternalDocumentID | 10_1145_3576898 3576898 |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada |
GroupedDBID | --Z -DZ -~X .4S .DC 23M 4.4 5GY 5VS 6J9 85S 8US 8VB AAIKC AAKMM AALFJ AAMNW AAYFX ABPPZ ACGFO ACGOD ACM ACNCT ADBCU ADL ADMLS ADPZR AEBYY AEGXH AEMOZ AENEX AENSD AFWIH AFWXC AGHSJ AHQJS AIAGR AIKLT AKVCP ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BDXCO CCLIF CS3 EBE EBR EBU EDO EMK FEDTE GUFHI HGAVV H~9 IAO ICD IEA IGS IOF K1G LHSKQ N95 P1C P2P PQQKQ QWB RNS ROL RXW TAE TH9 U5U UKR UPT VQA W7O WH7 X6Y XH6 XSW XZL YXB Z5M ZCA ZL0 AAYXX AEFXT AEJOY AETEA AKRVB CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-a272t-78b19a0fb4b46c71bc20e7c2e76e64e242d65d3fc2eaeaf565c309f4cc24aff03 |
ISSN | 0360-0300 |
IngestDate | Tue Aug 12 16:40:56 EDT 2025 Thu Jul 03 08:21:45 EDT 2025 Thu Apr 24 23:03:50 EDT 2025 Fri Feb 21 01:26:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | infectious disease radiology Machine learning neural networks |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a272t-78b19a0fb4b46c71bc20e7c2e76e64e242d65d3fc2eaeaf565c309f4cc24aff03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4288-9939 0000-0001-5146-2326 |
PQID | 2904329807 |
PQPubID | 47570 |
PageCount | 39 |
ParticipantIDs | proquest_journals_2904329807 crossref_primary_10_1145_3576898 crossref_citationtrail_10_1145_3576898 acm_primary_3576898 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: Baltimore |
PublicationTitle | ACM computing surveys |
PublicationTitleAbbrev | ACM CSUR |
PublicationYear | 2023 |
Publisher | ACM Association for Computing Machinery |
Publisher_xml | – name: ACM – name: Association for Computing Machinery |
References | (Bib0031) 2020; 382 (Bib0058) 2019; 30 (Bib0020) 2013; 82 (Bib0036) 2020 (Bib0049) 2020 (Bib0057) 2020; 30 (Bib0117) 2018 (Bib0089) 2020 (Bib0086) 2020 (Bib0048) 2018; 172 (Bib0119) 1994 (Bib0064) 2010; 6 (Bib0098) 2011; 28 (Bib0069) 1974 (Bib0063) 2020 (Bib0065) 2020; 26 (Bib0021) 2020; 370 (Bib0013) 2018 (Bib0047) 1958; 53 (Bib0087) 2021; 66 (Bib0012) 2020; 296 (Bib0081) 2017 (Bib0019) 2018 (Bib0059) 2017 (Bib0079) 2017 (Bib0041) 2017 (Bib0077) 2020; 140 (Bib0073) 2020; 121 (Bib0104) 2021; 67 (Bib0006) 2021; 33 (Bib0023) 1972; 34 (Bib0093) 2015 (Bib0060) 2019 (Bib0067) 2017; 114 (Bib0105) 2021; 68 (Bib0024) 2020 (Bib0016) 2016; 18, 12 (Bib0113) 2020 (Bib0092) 2020; 9 (Bib0040) 2006; 1 (Bib0094) 2019 (Bib0037) 2021; 298 (Bib0050) 2020; 22 (Bib0027) 2001; 18 (Bib0030) 2020 (Bib0046) 2016; 150, 1 (Bib0108) 2017 (Bib0009) 2020 (Bib0112) 2020 (Bib0114) 2021; 40 (Bib0043) 2015 (Bib0001) 2021; 139 (Bib0052) 2012; 25 (Bib0071) 2017 (Bib0078) 2020; 8 (Bib0066) 2016 Bib0018 (Bib0100) 2020; 24 (Bib0110) 2018 (Bib0061) 2021; 11734 (Bib0004) 2021; 32 (Bib0085) 2016 (Bib0035) 2016 (Bib0088) 2014 (Bib0039) 2020; 395 (Bib0002) 2021; 139 (Bib0116) 2020; 39 (Bib0118) 2020 (Bib0042) 2016 (Bib0075) 1901; 2, 6 (Bib0074) 2020; 81 (Bib0082) 2015 (Bib0025) 2019 (Bib0055) 2020; 40 (Bib0106) 2020; 16 (Bib0083) 2020; 39 (Bib0090) 2020; 295 (Bib0101) 2020; 8 (Bib0096) 2005; 1 (Bib0015) 2020 (Bib0008) 2018 (Bib0032) 2020 (Bib0068) 2014 (Bib0070) 2021; 72 (Bib0107) 2020; 39 (Bib0109) 2019 (Bib0007) 2021 (Bib0102) 2020 (Bib0003) 2020; 296 (Bib0044) 2020 (Bib0076) 2020; 46, 5 (Bib0017) 2009; 91 (Bib0056) 2020; 296 (Bib0099) 2008; 9 (Bib0053) 2019; 34 (Bib0103) 2020 (Bib0080) 2016 (Bib0038) 2020; 8 (Bib0111) 2020; 296 (Bib0033) 2016; 11 (Bib0097) 2020; 27, 6 (Bib0014) 2009; 25 (Bib0028) 2012; 16 (Bib0054) 2020; 173 (Bib0072) 2020; 39 (Bib0034) 2019; 2349 (Bib0084) 1986 (Bib0095) 2021; 66 (Bib0115) 2021 (Bib0091) 2020 (Bib0005) 2020 (Bib0010) 2020 (Bib0045) 2020 (Bib0022) 2020 (Bib0029) 2014 (Bib0062) 2016; 45 (Bib0051) 2017 (Bib0026) 2020; 296 (Bib0011) 2010; 256 Altaf Fouzia (e_1_3_2_7_2) 2021; 33 Goodfellow Ian (e_1_3_2_30_2) 2014 Zhou Longxi (e_1_3_2_117_2) 2020; 39 Wang Xinggang (e_1_3_2_108_2) 2020; 39 Redmon Joseph (e_1_3_2_81_2) 2016 e_1_3_2_43_2 Huang Chaolin (e_1_3_2_40_2) 2020; 395 e_1_3_2_89_2 Mei Xueyan (e_1_3_2_66_2) 2020; 26 Cox David R. (e_1_3_2_24_2) 1972; 34 Jin Shuo (e_1_3_2_46_2) 2020 Liao Fangzhou (e_1_3_2_59_2) 2019; 30 Brooks Sharon L. (e_1_3_2_18_2) 2009; 91 e_1_3_2_16_2 Bourcier Jean-Eudes (e_1_3_2_17_2) 2016; 18 Zuiderveld Karel J. (e_1_3_2_120_2) 1994 Wong Ho Yuen Frank (e_1_3_2_112_2) 2020; 296 Kermany Daniel S. (e_1_3_2_49_2) 2018; 172 Haghighat Mohammad (e_1_3_2_34_2) 2016; 11 Waheed Abdul (e_1_3_2_102_2) 2020; 8 e_1_3_2_31_2 Ozturk Tulin (e_1_3_2_74_2) 2020; 121 Amyar Amine (e_1_3_2_10_2) 2020 e_1_3_2_50_2 Wang Shui-Hua (e_1_3_2_106_2) 2021; 68 Wang Shui-Hua (e_1_3_2_105_2) 2021; 67 Ko Hoon (e_1_3_2_51_2) 2020; 22 Jin Cheng (e_1_3_2_45_2) 2020 Kroft Lucia J. M. (e_1_3_2_54_2) 2019; 34 Oh Yujin (e_1_3_2_73_2) 2020; 39 Tang Zhenyu (e_1_3_2_96_2) 2021; 66 Muhammad Ghulam (e_1_3_2_71_2) 2021; 72 e_1_3_2_86_2 Li Lin (e_1_3_2_57_2) 2020; 296 Redmon Joseph (e_1_3_2_82_2) 2017 e_1_3_2_25_2 Mirjalili Seyedali (e_1_3_2_68_2) 2017; 114 Amatya Yogendra (e_1_3_2_9_2) 2018 Jones Brittany (e_1_3_2_47_2) 2016; 150 e_1_3_2_107_2 Bae Kyongtae T. (e_1_3_2_12_2) 2010; 256 e_1_3_2_6_2 Roy Subhankar (e_1_3_2_84_2) 2020; 39 Tosic Ivana (e_1_3_2_99_2) 2011; 28 Pan Yunbao (e_1_3_2_75_2) 2020; 81 Koonsanit Kitti (e_1_3_2_52_2) 2017 Zhou Zongwei (e_1_3_2_119_2) 2020 Song Fengxiang (e_1_3_2_91_2) 2020; 295 Krizhevsky Alex (e_1_3_2_53_2) 2012; 25 Huang Gao (e_1_3_2_42_2) 2017 e_1_3_2_70_2 e_1_3_2_111_2 Soares Eduardo (e_1_3_2_90_2) 2020 Rajaraman Sivaramakrishnan (e_1_3_2_79_2) 2020; 8 Kucirka Lauren M. (e_1_3_2_55_2) 2020; 173 Jaderberg Max (e_1_3_2_44_2) 2015 Ai Tao (e_1_3_2_4_2) 2020; 296 Szegedy Christian (e_1_3_2_94_2) 2015 Cleverley Joanne (e_1_3_2_22_2) 2020; 370 e_1_3_2_64_2 e_1_3_2_87_2 Maaten Laurens van der (e_1_3_2_100_2) 2008; 9 Alom Md. Zahangir (e_1_3_2_5_2) 2021; 32 Huang Fu Jie (e_1_3_2_41_2) 2006; 1 Kwee Thomas C. (e_1_3_2_56_2) 2020; 40 e_1_3_2_83_2 Kaplan E. L. (e_1_3_2_48_2) 1958; 53 Peng Qian-Yi (e_1_3_2_77_2) 2020; 46 Lin Tsung-Yi (e_1_3_2_60_2) 2017 Pearson K. (e_1_3_2_76_2) 1901; 2 Makdissi Jimmy (e_1_3_2_63_2) 2016; 45 Stewart Kelsey (e_1_3_2_93_2) 2020; 9 Bhairannawar Satish S. (e_1_3_2_14_2) 2018 Díaz Raúl (e_1_3_2_26_2) 2019 Christe Andreas (e_1_3_2_21_2) 2013; 82 e_1_3_2_37_2 Ganapathy Anusoumya (e_1_3_2_29_2) 2012; 16 Franquet T. (e_1_3_2_28_2) 2001; 18 e_1_3_2_33_2 Ahamed Khabir Uddin (e_1_3_2_2_2) 2021; 139 Fang Yicheng (e_1_3_2_27_2) 2020; 296 e_1_3_2_114_2 e_1_3_2_110_2 Santosa Fadil (e_1_3_2_85_2) 1986 Wang Xiaosong (e_1_3_2_109_2) 2017 Wang Linda (e_1_3_2_103_2) 2020 e_1_3_2_118_2 Zhang Jianpeng (e_1_3_2_115_2) 2021; 40 Melnikov Vitalik (e_1_3_2_67_2) 2016 Tizhoosh H. R. (e_1_3_2_97_2) 2005; 1 Song Ying (e_1_3_2_92_2) 2020 e_1_3_2_23_2 He Kaiming (e_1_3_2_36_2) 2016 e_1_3_2_69_2 Bierig S. (e_1_3_2_15_2) 2009; 25 e_1_3_2_61_2 Maghdid Halgurd S. (e_1_3_2_62_2) 2021 e_1_3_2_80_2 Han Miaofei (e_1_3_2_35_2) 2019; 2349 Zhang Yu-Dong (e_1_3_2_116_2) 2021 Horry Michael J. (e_1_3_2_39_2) 2020; 8 Liang Ting (e_1_3_2_58_2) 2020; 30 Shi Feng (e_1_3_2_88_2) 2021; 66 e_1_3_2_19_2 Maru Duncan (e_1_3_2_65_2) 2010; 6 Altaf Fouzia (e_1_3_2_8_2) 2021 Bai Harrison X. (e_1_3_2_13_2) 2020; 296 Tofighi Salar (e_1_3_2_98_2) 2020; 27 Homayounieh Fatemeh (e_1_3_2_38_2) 2021; 298 Polsinelli Matteo (e_1_3_2_78_2) 2020; 140 e_1_3_2_11_2 e_1_3_2_95_2 e_1_3_2_113_2 e_1_3_2_72_2 Guan Wei-Jie (e_1_3_2_32_2) 2020; 382 Ahmadian Sajad (e_1_3_2_3_2) 2021; 139 Sloun Ruud J. G. van (e_1_3_2_101_2) 2020; 24 Chen Liang-Chieh (e_1_3_2_20_2) 2018 Wang Shuo (e_1_3_2_104_2) 2020 |
References_xml | – start-page: 3462 year: 2017 end-page: 3471 ident: Bib0108 article-title: ChestX-Ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17) – year: 2020 ident: Bib0063 article-title: CovidAID: COVID-19 detection using chest x-ray – volume: 1 start-page: 695 year: 2005 end-page: 701 ident: Bib0096 article-title: Opposition-based learning: A new scheme for machine intelligence publication-title: Proceedings of the International Conference on Computational Intelligence for Modelling, Control, and Automation and the International Conference on Intelligent Agents, Web Technologies, and Internet Commerce (CIMCA-IAWTIC’06) – volume: 139 start-page: 104994 year: 2021 ident: Bib0002 article-title: A novel deep neuroevolution-based image classification method to diagnose coronavirus disease (COVID-19) publication-title: Computers in Biology and Medicine – volume: 8 start-page: 91916 year: 2020 end-page: 91923 ident: Bib0101 article-title: CovidGAN: Data augmentation using auxiliary classifier GAN for improved Covid-19 detection publication-title: IEEE Access – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: Bib0099 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – year: 2018 ident: Bib0117 article-title: UNet++: A nested U-net architecture for medical image segmentation – year: 2020 ident: Bib0103 article-title: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis publication-title: European Respiratory Journal – year: 2020 ident: Bib0022 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) – volume: 370 year: 2020 ident: Bib0021 article-title: The role of chest radiography in confirming Covid-19 pneumonia publication-title: BMJ – year: 2016 ident: Bib0085 article-title: Grad-CAM: Why did you say that? Visual explanations from deep networks via gradient-based localization – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: Bib0067 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – volume: 72 start-page: 80 year: 2021 end-page: 88 ident: Bib0070 article-title: COVID-19 and non-COVID-19 classification using multi-layers fusion from lung ultrasound images publication-title: Information Fusion – start-page: 833 year: 2018 end-page: 851 ident: Bib0019 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: Computer Vision—ECCV 2018 – volume: 256 start-page: 32 issue: 1 year: 2010 end-page: 61 ident: Bib0011 article-title: Intravenous contrast medium administration and scan timing at CT: Considerations and approaches publication-title: Radiology – volume: 28 start-page: 27 issue: 2 year: 2011 end-page: 38 ident: Bib0098 article-title: Dictionary learning publication-title: IEEE Signal Processing Magazine – volume: 2349 year: 2019 ident: Bib0034 article-title: Segmentation of CT thoracic organs by multi-resolution VB-nets publication-title: Proceedings of the 2019 Challenge on Segmentation of Thoracic Organs at Risk in CT Images, SegTHOR@ISBI 2019, April 8, 2019 (CEUR Workshop Proceedings) – volume: 82 start-page: e142–e150 issue: 3 year: 2013 ident: Bib0020 article-title: Accuracy of low-dose computed tomography (CT) for detecting and characterizing the most common CT-patterns of pulmonary disease publication-title: European Journal of Radiology – start-page: 1 year: 2017 end-page: 4 ident: Bib0051 article-title: Image enhancement on digital x-ray images using N-CLAHE publication-title: Proceedings of the 2017 10th Biomedical Engineering International Conference (BMEiCON’17) – volume: 39 start-page: 2615 issue: 8 year: 2020 end-page: 2625 ident: Bib0107 article-title: A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT publication-title: IEEE Transactions on Medical Imaging – year: 2020 ident: Bib0113 article-title: Handbook of COVID-19 Prevention and Treatment – year: 2018 ident: Bib0008 article-title: Diagnostic use of lung ultrasound compared to chest radiograph for suspected pneumonia in a resource-limited setting publication-title: International Journal of Emergency Medicine – volume: 18, 12 year: 2016 ident: Bib0016 article-title: Lung ultrasound will soon replace chest radiography in the diagnosis of acute community-acquired pneumonia publication-title: Current Infectious Disease Reports – volume: 172 start-page: 1122–1131.e9 issue: 5 year: 2018 ident: Bib0048 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell – volume: 139 start-page: 105014 year: 2021 ident: Bib0001 article-title: A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images publication-title: Computers in Biology and Medicine – volume: 25 start-page: 138 year: 2009 end-page: 144 ident: Bib0014 article-title: Accuracy and cost comparison of ultrasound versus alternative imaging modalities, including CT, MR, PET, and angiography publication-title: Journal of Diagnostic Medical Sonography – volume: 39 start-page: 2638 issue: 8 year: 2020 end-page: 2652 ident: Bib0116 article-title: A rapid, accurate and machine-agnostic segmentation and quantification method for CT-based COVID-19 diagnosis publication-title: IEEE Transactions on Medical Imaging – start-page: 770 year: 2016 end-page: 778 ident: Bib0035 article-title: Deep residual learning for image recognition publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16) – year: 2020 ident: Bib0049 article-title: Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest x-ray dataset – volume: 395 year: 2020 ident: Bib0039 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet – volume: 34 start-page: 187 issue: 2 year: 1972 end-page: 220 ident: Bib0023 article-title: Regression models and life-tables publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 32 year: 2021 ident: Bib0004 article-title: Inception recurrent convolutional neural network for object recognition publication-title: Machine Vision and Applications – volume: 382 year: 2020 ident: Bib0031 article-title: Clinical characteristics of coronavirus disease 2019 in China publication-title: New England Journal of Medicine – volume: 6 start-page: 18 year: 2010 ident: Bib0064 article-title: Turning a blind eye: The mobilization of radiology services in resource-poor regions publication-title: Globalization and Health – volume: 66 start-page: 065031 issue: 6 year: 2021 ident: Bib0087 article-title: Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification publication-title: Physics in Medicine & Biology – start-page: 756 year: 2016 end-page: 771 ident: Bib0066 article-title: Learning to aggregate using uninorms publication-title: Machine Learning and Knowledge Discovery in Databases – year: 2019 ident: Bib0109 article-title: A generalized deep learning approach for evaluating secondary pulmonary tuberculosis on chest computed tomography – volume: 30 start-page: 4865 issue: 9 year: 2020 end-page: 4873 ident: Bib0057 article-title: Evolution of CT findings in patients with mild COVID-19 pneumonia publication-title: European Radiology – year: 2014 ident: Bib0068 article-title: Conditional generative adversarial nets – year: 2020 ident: Bib0010 article-title: Covid-19: Automatic detection from x-ray images utilizing transfer learning with convolutional neural networks – volume: 39 start-page: 2676 issue: 8 year: 2020 end-page: 2687 ident: Bib0083 article-title: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound publication-title: IEEE Transactions on Medical Imaging – year: 2020 ident: Bib0030 article-title: RapidAI development cycle for the coronavirus (Covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis – start-page: 1 year: 2015 end-page: 9 ident: Bib0093 article-title: Going deeper with convolutions publication-title: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15) – start-page: 51 year: 2018 end-page: 60 ident: Bib0013 article-title: Efficient medical image enhancement technique using transform HSV space and adaptive histogram equalization publication-title: Soft Computing Based Medical Image Analysis – volume: 53 start-page: 457 issue: 282 year: 1958 end-page: 481 ident: Bib0047 article-title: Nonparametric estimation from incomplete observations publication-title: Journal of the American Statistical Association – volume: 2, 6 start-page: 559 year: 1901 end-page: 572 ident: Bib0075 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: Philosophical Magazine – volume: 8 start-page: 115041 year: 2020 end-page: 115050 ident: Bib0078 article-title: Iteratively pruned deep learning ensembles for COVID-19 detection in chest x-rays publication-title: IEEE Access – start-page: 779 year: 2016 end-page: 788 ident: Bib0080 article-title: You only look once: Unified, real-time object detection publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16) – start-page: 6517 year: 2017 end-page: 6525 ident: Bib0081 article-title: YOLO9000: Better, faster, stronger publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17) – year: 2014 ident: Bib0088 article-title: Very deep convolutional networks for large-scale image recognition – volume: 296 start-page: e115-e117 issue: 2 year: 2020 ident: Bib0026 article-title: Sensitivity of chest CT for COVID-19: Comparison to RT-PCR publication-title: Radiology – volume: 298 start-page: e141–e151 issue: 3 year: 2021 ident: Bib0037 article-title: Variations in CT utilization, protocols, and radiation doses in COVID-19 pneumonia: Results from 28 countries in the IAEA study publication-title: Radiology – volume: 25 year: 2012 ident: Bib0052 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances of Neural Information Processing Systems – year: 2015 ident: Bib0043 article-title: Spatial transformer networks publication-title: Advances in Neural Information Processing Systems 28 (NIPS’15). – volume: 26 start-page: 1 year: 2020 end-page: 5 ident: Bib0065 article-title: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19 publication-title: Nature Medicine – year: 2020 ident: Bib0118 article-title: UNet++: Redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Transactions on Medical Imaging – year: 2014 ident: Bib0029 article-title: Generative adversarial networks publication-title: Advances in Neural Information Processing Systems 27 (NIPS’14). – year: 2020 ident: Bib0045 article-title: AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks publication-title: medRxiv preprint – year: 2020 ident: Bib0015 article-title: POCOVID-Net: Automatic detection of COVID-19 from a new lung ultrasound imaging dataset (POCUS) – volume: 140 start-page: 95 year: 2020 end-page: 100 ident: Bib0077 article-title: A light CNN for detecting COVID-19 from CT scans of the chest publication-title: Pattern Recognition Letters – volume: 1 start-page: 284 year: 2006 end-page: 291 ident: Bib0040 article-title: Large-scale learning with SVM and convolutional for generic object categorization publication-title: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) – start-page: 936 year: 2017 end-page: 944 ident: Bib0059 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17) – volume: 39 issue: 8 year: 2020 ident: Bib0072 article-title: Deep learning COVID-19 features on CXR using limited training data sets publication-title: IEEE Transactions on Medical Imaging – volume: 16 start-page: 19 year: 2020 ident: Bib0106 article-title: DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification – year: 2020 ident: Bib0032 article-title: COVID-CXNet: Detecting COVID-19 in frontal chest x-ray images using deep learning – year: 2020 ident: Bib0086 article-title: Lung infection quantification of Covid-19 in CT images with deep learning – volume: 8 start-page: 149808 year: 2020 end-page: 149824 ident: Bib0038 article-title: COVID-19 detection through transfer learning using multimodal imaging data publication-title: IEEE Access – year: 2017 ident: Bib0079 article-title: CheXNet: Radiologist-level pneumonia detection on chest x-rays with deep learning – volume: 30 start-page: 3484 issue: 11 year: 2019 end-page: 3495 ident: Bib0058 article-title: Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-OR network publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 24 start-page: 957 issue: 4 year: 2020 end-page: 964 ident: Bib0100 article-title: Localizing B-lines in lung ultrasonography by weakly supervised deep learning, In-Vivo Results publication-title: IEEE Journal of Biomedical and Health Informatics – year: 2019 ident: Bib0094 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – year: 2016 ident: Bib0042 article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size – volume: 173 start-page: 262 issue: 4 year: 2020 end-page: 267 ident: Bib0054 article-title: Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure publication-title: Annals of Internal Medicine – year: 1994 ident: Bib0119 article-title: Contrast limited adaptive histogram equalization publication-title: Graphics Gems IV – volume: 46, 5 year: 2020 ident: Bib0076 article-title: Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic publication-title: Intensive Care Medicine – year: 2020 ident: Bib0112 article-title: COVID-CT-dataset: A CT scan dataset about COVID-19 – volume: 9 start-page: 103 year: 2020 end-page: 120 ident: Bib0092 article-title: Trends in ultrasound use in low and middle income countries: A systematic review publication-title: International Journal of MCH and AIDS – volume: 296 start-page: e72–e78 issue: 2 year: 2020 ident: Bib0111 article-title: Frequency and distribution of chest radiographic findings in patients positive for COVID-19 publication-title: Radiology – volume: 11734 start-page: 99 year: 2021 end-page: 110 ident: Bib0061 article-title: Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms publication-title: Multimodal Image Exploitation and Learning 2021 – year: 2017 ident: Bib0071 article-title: Conditional image synthesis with auxiliary classifier GANs – volume: 22 start-page: e19569 issue: 6 year: 2020 ident: Bib0050 article-title: COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: Model development and validation publication-title: Journal of Medical Internet Research – start-page: 4733 year: 2019 end-page: 4742 ident: Bib0025 article-title: Soft labels for ordinal regression publication-title: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’19) – year: 2020 ident: Bib0102 article-title: COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images publication-title: Scientific Reports – year: 2020 ident: Bib0044 article-title: Development and evaluation of an AI system for COVID-19 diagnosis publication-title: Nature Communications – volume: 34 start-page: 179 issue: 3 year: 2019 end-page: 186 ident: Bib0053 article-title: Added value of ultra-low-dose computed tomography, dose equivalent to chest x-ray radiography, for diagnosing chest pathology publication-title: Journal of Thoracic Imaging – volume: 81 start-page: e28–e32 issue: 1 year: 2020 ident: Bib0074 article-title: Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients publication-title: Journal of Infection – volume: 40 start-page: 879 issue: 3 year: 2021 end-page: 890 ident: Bib0114 article-title: Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection publication-title: IEEE Transactions on Medical Imaging – volume: 91 start-page: 54 issue: 2 year: 2009 end-page: 58 ident: Bib0017 article-title: A clinical trial of the Nomad portable x-ray unit publication-title: Journal of the Michigan Dental Association – year: 2020 ident: Bib0005 article-title: COVIDMTNet: COVID-19 detection with multitask deep learning approaches – year: 2020 ident: Bib0089 article-title: SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification publication-title: medRxiv preprint – start-page: 210 year: 2021 end-page: 214 ident: Bib0007 article-title: Boosting deep transfer learning for COVID-19 classification publication-title: Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP’21) – volume: 296 start-page: e156–e165 issue: 3 year: 2020 ident: Bib0012 article-title: Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT publication-title: Radiology – year: 1974 ident: Bib0069 article-title: On Bayesian methods for seeking the extremum – volume: 16 start-page: R68 year: 2012 ident: Bib0028 article-title: Routine chest x-rays in intensive care units: A systemic review and meta-analysis publication-title: Critical Care (London, England) – volume: 33 year: 2021 ident: Bib0006 article-title: A novel augmented deep transfer learning for classification of COVID-19 and other thoracic diseases from x-rays publication-title: Neural Computing and Applications – volume: 150, 1 year: 2016 ident: Bib0046 article-title: Feasibility and safety of substituting lung ultrasound for chest X-ray when diagnosing pneumonia in children: A randomized controlled trial publication-title: Chest – volume: 121 start-page: 103792 year: 2020 ident: Bib0073 article-title: Automated detection of COVID-19 cases using deep neural networks with x-ray images publication-title: Computers in Biology and Medicine – year: 1986 ident: Bib0084 article-title: Linear inversion of band-limited reflection seismograms publication-title: SIAM Journal on Scientific and Statistical Computing – year: 2019 ident: Bib0060 article-title: Do explanations reflect decisions? A machine-centric strategy to quantify the performance of explainability algorithms – volume: 68 start-page: 131 year: 2021 end-page: 148 ident: Bib0105 article-title: COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis publication-title: Information Fusion – year: 2021 ident: Bib0115 article-title: COVID-19 diagnosis via DenseNet and optimization of transfer learning setting publication-title: Cognitive Computation – year: 2018 ident: Bib0110 article-title: FermiNets: Learning generative machines to generate efficient neural networks via generative synthesis – volume: 40 start-page: 1848 issue: 7 year: 2020 end-page: 1865 ident: Bib0055 article-title: Chest CT in COVID-19: What the radiologist needs to know publication-title: RadioGraphics – volume: 45 start-page: 20150245 issue: 3 year: 2016 ident: Bib0062 article-title: The effects of device position on the operator’s radiation dose when using a handheld portable x-ray device publication-title: Dentomaxillofacial Radiology – volume: 67 start-page: 208 year: 2021 end-page: 229 ident: Bib0104 article-title: Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network publication-title: Information Fusion – volume: 295 start-page: 210 issue: 1 year: 2020 end-page: 217 ident: Bib0090 article-title: Emerging 2019 novel coronavirus (2019-nCoV) pneumonia publication-title: Radiology – volume: 11 start-page: 1984 issue: 9 year: 2016 end-page: 1996 ident: Bib0033 article-title: Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition publication-title: IEEE Transactions on Information Forensics and Security – year: 2020 ident: Bib0091 article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images publication-title: medRxiv preprint – volume: 66 start-page: 035015 issue: 3 year: 2021 ident: Bib0095 article-title: Severity assessment of COVID-19 using CT image features and laboratory indices publication-title: Physics in Medicine & Biology – ident: Bib0018 article-title: VESsel SEgmentation in the Lung 2012 – year: 2020 ident: Bib0009 article-title: Multi-task deep learning based CT imaging analysis for COVID-19: Classification and segmentation publication-title: Computers in Biology and Medicine – volume: 18 start-page: 196 year: 2001 end-page: 208 ident: Bib0027 article-title: Imaging of pneumonia: Trends and algorithms publication-title: European Respiratory Journal – year: 2020 ident: Bib0036 article-title: COVIDX-Net: A framework of deep learning classifiers to diagnose Covid-19 in x-ray images – volume: 27, 6 year: 2020 ident: Bib0097 article-title: Low-dose CT in COVID-19 outbreak: Radiation safety, image wisely, and image gently pledge publication-title: Emergency Radiology – year: 2020 ident: Bib0024 article-title: Chest x-ray in new coronavirus disease 2019 (COVID-19) infection: Findings and correlation with clinical outcome – year: 2015 ident: Bib0082 article-title: U-Net: Convolutional networks for biomedical image segmentation – volume: 296 start-page: e32–e40 issue: 2 year: 2020 ident: Bib0003 article-title: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases publication-title: Radiology – start-page: 2261 year: 2017 end-page: 2269 ident: Bib0041 article-title: Densely connected convolutional networks publication-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17) – volume: 296 start-page: e65–e71 issue: 2 year: 2020 ident: Bib0056 article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy publication-title: Radiology – start-page: 51 volume-title: Soft Computing Based Medical Image Analysis year: 2018 ident: e_1_3_2_14_2 doi: 10.1016/B978-0-12-813087-2.00003-8 – volume: 382 year: 2020 ident: e_1_3_2_32_2 article-title: Clinical characteristics of coronavirus disease 2019 in China publication-title: New England Journal of Medicine – volume: 82 start-page: e142–e150 issue: 3 year: 2013 ident: e_1_3_2_21_2 article-title: Accuracy of low-dose computed tomography (CT) for detecting and characterizing the most common CT-patterns of pulmonary disease publication-title: European Journal of Radiology – volume: 298 start-page: e141–e151 issue: 3 year: 2021 ident: e_1_3_2_38_2 article-title: Variations in CT utilization, protocols, and radiation doses in COVID-19 pneumonia: Results from 28 countries in the IAEA study publication-title: Radiology – volume: 2 start-page: 559 year: 1901 ident: e_1_3_2_76_2 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: Philosophical Magazine – volume: 8 start-page: 149808 year: 2020 ident: e_1_3_2_39_2 article-title: COVID-19 detection through transfer learning using multimodal imaging data publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016780 – volume: 121 start-page: 103792 year: 2020 ident: e_1_3_2_74_2 article-title: Automated detection of COVID-19 cases using deep neural networks with x-ray images publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.103792 – year: 2018 ident: e_1_3_2_9_2 article-title: Diagnostic use of lung ultrasound compared to chest radiograph for suspected pneumonia in a resource-limited setting publication-title: International Journal of Emergency Medicine – volume: 1 start-page: 695 volume-title: Proceedings of the International Conference on Computational Intelligence for Modelling, Control, and Automation and the International Conference on Intelligent Agents, Web Technologies, and Internet Commerce (CIMCA-IAWTIC’06) year: 2005 ident: e_1_3_2_97_2 – volume: 39 start-page: 2638 issue: 8 year: 2020 ident: e_1_3_2_117_2 article-title: A rapid, accurate and machine-agnostic segmentation and quantification method for CT-based COVID-19 diagnosis publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2020.3001810 – ident: e_1_3_2_50_2 – ident: e_1_3_2_95_2 – volume: 172 start-page: 1122–1131.e9 issue: 5 year: 2018 ident: e_1_3_2_49_2 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell – volume: 296 start-page: e156–e165 issue: 3 year: 2020 ident: e_1_3_2_13_2 article-title: Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT publication-title: Radiology – volume: 16 start-page: R68 year: 2012 ident: e_1_3_2_29_2 article-title: Routine chest x-rays in intensive care units: A systemic review and meta-analysis publication-title: Critical Care (London, England) doi: 10.1186/cc11321 – ident: e_1_3_2_33_2 – start-page: 770 volume-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16) year: 2016 ident: e_1_3_2_36_2 – year: 1986 ident: e_1_3_2_85_2 article-title: Linear inversion of band-limited reflection seismograms publication-title: SIAM Journal on Scientific and Statistical Computing doi: 10.1137/0907087 – volume: 395 year: 2020 ident: e_1_3_2_40_2 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet – start-page: 4733 volume-title: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’19) year: 2019 ident: e_1_3_2_26_2 doi: 10.1109/CVPR.2019.00487 – ident: e_1_3_2_113_2 – volume: 30 start-page: 3484 issue: 11 year: 2019 ident: e_1_3_2_59_2 article-title: Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-OR network publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2892409 – volume: 9 start-page: 2579 year: 2008 ident: e_1_3_2_100_2 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – ident: e_1_3_2_25_2 doi: 10.1007/s11547-020-01232-9 – volume: 45 start-page: 20150245 issue: 3 year: 2016 ident: e_1_3_2_63_2 article-title: The effects of device position on the operator’s radiation dose when using a handheld portable x-ray device publication-title: Dentomaxillofacial Radiology doi: 10.1259/dmfr.20150245 – volume: 6 start-page: 18 year: 2010 ident: e_1_3_2_65_2 article-title: Turning a blind eye: The mobilization of radiology services in resource-poor regions publication-title: Globalization and Health doi: 10.1186/1744-8603-6-18 – volume: 9 start-page: 103 year: 2020 ident: e_1_3_2_93_2 article-title: Trends in ultrasound use in low and middle income countries: A systematic review publication-title: International Journal of MCH and AIDS doi: 10.21106/ijma.294 – year: 2021 ident: e_1_3_2_116_2 article-title: COVID-19 diagnosis via DenseNet and optimization of transfer learning setting publication-title: Cognitive Computation – ident: e_1_3_2_70_2 doi: 10.1007/3-540-07165-2_55 – start-page: 756 volume-title: Machine Learning and Knowledge Discovery in Databases year: 2016 ident: e_1_3_2_67_2 doi: 10.1007/978-3-319-46227-1_47 – year: 2020 ident: e_1_3_2_119_2 article-title: UNet++: Redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Transactions on Medical Imaging – start-page: 6517 volume-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17) year: 2017 ident: e_1_3_2_82_2 doi: 10.1109/CVPR.2017.690 – ident: e_1_3_2_110_2 doi: 10.2139/ssrn.3441821 – volume: 72 start-page: 80 year: 2021 ident: e_1_3_2_71_2 article-title: COVID-19 and non-COVID-19 classification using multi-layers fusion from lung ultrasound images publication-title: Information Fusion doi: 10.1016/j.inffus.2021.02.013 – start-page: 1 volume-title: Proceedings of the 2017 10th Biomedical Engineering International Conference (BMEiCON’17) year: 2017 ident: e_1_3_2_52_2 – ident: e_1_3_2_31_2 – year: 2020 ident: e_1_3_2_46_2 article-title: AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks publication-title: medRxiv preprint – volume: 53 start-page: 457 issue: 282 year: 1958 ident: e_1_3_2_48_2 article-title: Nonparametric estimation from incomplete observations publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1958.10501452 – volume: 25 year: 2012 ident: e_1_3_2_53_2 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances of Neural Information Processing Systems – volume: 34 start-page: 179 issue: 3 year: 2019 ident: e_1_3_2_54_2 article-title: Added value of ultra-low-dose computed tomography, dose equivalent to chest x-ray radiography, for diagnosing chest pathology publication-title: Journal of Thoracic Imaging doi: 10.1097/RTI.0000000000000404 – ident: e_1_3_2_83_2 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_3_2_37_2 – start-page: 936 volume-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17) year: 2017 ident: e_1_3_2_60_2 – volume: 25 start-page: 138 year: 2009 ident: e_1_3_2_15_2 article-title: Accuracy and cost comparison of ultrasound versus alternative imaging modalities, including CT, MR, PET, and angiography publication-title: Journal of Diagnostic Medical Sonography doi: 10.1177/8756479309336240 – volume: 296 start-page: e65–e71 issue: 2 year: 2020 ident: e_1_3_2_57_2 article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy publication-title: Radiology – ident: e_1_3_2_72_2 – start-page: 779 volume-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16) year: 2016 ident: e_1_3_2_81_2 doi: 10.1109/CVPR.2016.91 – year: 2020 ident: e_1_3_2_103_2 article-title: COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images publication-title: Scientific Reports – volume: 33 year: 2021 ident: e_1_3_2_7_2 article-title: A novel augmented deep transfer learning for classification of COVID-19 and other thoracic diseases from x-rays publication-title: Neural Computing and Applications – ident: e_1_3_2_86_2 doi: 10.1109/ICCV.2017.74 – ident: e_1_3_2_111_2 – ident: e_1_3_2_11_2 doi: 10.1007/s13246-020-00865-4 – volume: 40 start-page: 1848 issue: 7 year: 2020 ident: e_1_3_2_56_2 article-title: Chest CT in COVID-19: What the radiologist needs to know publication-title: RadioGraphics doi: 10.1148/rg.2020200159 – year: 2014 ident: e_1_3_2_30_2 article-title: Generative adversarial networks publication-title: Advances in Neural Information Processing Systems 27 (NIPS’14). – ident: e_1_3_2_114_2 – start-page: 833 volume-title: Computer Vision—ECCV 2018 year: 2018 ident: e_1_3_2_20_2 doi: 10.1007/978-3-030-01234-2_49 – volume: 81 start-page: e28–e32 issue: 1 year: 2020 ident: e_1_3_2_75_2 article-title: Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients publication-title: Journal of Infection – volume: 370 year: 2020 ident: e_1_3_2_22_2 article-title: The role of chest radiography in confirming Covid-19 pneumonia publication-title: BMJ – volume: 173 start-page: 262 issue: 4 year: 2020 ident: e_1_3_2_55_2 article-title: Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure publication-title: Annals of Internal Medicine doi: 10.7326/M20-1495 – volume: 91 start-page: 54 issue: 2 year: 2009 ident: e_1_3_2_18_2 article-title: A clinical trial of the Nomad portable x-ray unit publication-title: Journal of the Michigan Dental Association – volume: 296 start-page: e32–e40 issue: 2 year: 2020 ident: e_1_3_2_4_2 article-title: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases publication-title: Radiology – ident: e_1_3_2_43_2 – volume: 22 start-page: e19569 issue: 6 year: 2020 ident: e_1_3_2_51_2 article-title: COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: Model development and validation publication-title: Journal of Medical Internet Research doi: 10.2196/19569 – volume: 296 start-page: e115-e117 issue: 2 year: 2020 ident: e_1_3_2_27_2 article-title: Sensitivity of chest CT for COVID-19: Comparison to RT-PCR publication-title: Radiology – volume: 18 year: 2016 ident: e_1_3_2_17_2 article-title: Lung ultrasound will soon replace chest radiography in the diagnosis of acute community-acquired pneumonia publication-title: Current Infectious Disease Reports – year: 2015 ident: e_1_3_2_44_2 article-title: Spatial transformer networks publication-title: Advances in Neural Information Processing Systems 28 (NIPS’15). – ident: e_1_3_2_6_2 – volume: 26 start-page: 1 year: 2020 ident: e_1_3_2_66_2 article-title: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19 publication-title: Nature Medicine – volume: 40 start-page: 879 issue: 3 year: 2021 ident: e_1_3_2_115_2 article-title: Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2020.3040950 – ident: e_1_3_2_87_2 – year: 2020 ident: e_1_3_2_92_2 article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images publication-title: medRxiv preprint – volume: 296 start-page: e72–e78 issue: 2 year: 2020 ident: e_1_3_2_112_2 article-title: Frequency and distribution of chest radiographic findings in patients positive for COVID-19 publication-title: Radiology – volume: 256 start-page: 32 issue: 1 year: 2010 ident: e_1_3_2_12_2 article-title: Intravenous contrast medium administration and scan timing at CT: Considerations and approaches publication-title: Radiology doi: 10.1148/radiol.10090908 – year: 2020 ident: e_1_3_2_45_2 article-title: Development and evaluation of an AI system for COVID-19 diagnosis publication-title: Nature Communications – volume: 68 start-page: 131 year: 2021 ident: e_1_3_2_106_2 article-title: COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis publication-title: Information Fusion doi: 10.1016/j.inffus.2020.11.005 – volume: 11 start-page: 1984 issue: 9 year: 2016 ident: e_1_3_2_34_2 article-title: Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2016.2569061 – volume: 66 start-page: 065031 issue: 6 year: 2021 ident: e_1_3_2_88_2 article-title: Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification publication-title: Physics in Medicine & Biology doi: 10.1088/1361-6560/abe838 – volume: 2349 volume-title: Proceedings of the 2019 Challenge on Segmentation of Thoracic Organs at Risk in CT Images, SegTHOR@ISBI 2019, April 8, 2019 (CEUR Workshop Proceedings) year: 2019 ident: e_1_3_2_35_2 – ident: e_1_3_2_118_2 doi: 10.1007/978-3-030-00889-5_1 – volume: 34 start-page: 187 issue: 2 year: 1972 ident: e_1_3_2_24_2 article-title: Regression models and life-tables publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 114 start-page: 163 year: 2017 ident: e_1_3_2_68_2 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – ident: e_1_3_2_69_2 – volume: 66 start-page: 035015 issue: 3 year: 2021 ident: e_1_3_2_96_2 article-title: Severity assessment of COVID-19 using CT image features and laboratory indices publication-title: Physics in Medicine & Biology doi: 10.1088/1361-6560/abbf9e – year: 2020 ident: e_1_3_2_90_2 article-title: SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification publication-title: medRxiv preprint – volume: 295 start-page: 210 issue: 1 year: 2020 ident: e_1_3_2_91_2 article-title: Emerging 2019 novel coronavirus (2019-nCoV) pneumonia publication-title: Radiology doi: 10.1148/radiol.2020200274 – volume: 39 start-page: 2676 issue: 8 year: 2020 ident: e_1_3_2_84_2 article-title: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2020.2994459 – volume: 150 year: 2016 ident: e_1_3_2_47_2 article-title: Feasibility and safety of substituting lung ultrasound for chest X-ray when diagnosing pneumonia in children: A randomized controlled trial publication-title: Chest – volume: 24 start-page: 957 issue: 4 year: 2020 ident: e_1_3_2_101_2 article-title: Localizing B-lines in lung ultrasonography by weakly supervised deep learning, In-Vivo Results publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2019.2936151 – start-page: 210 volume-title: Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP’21) year: 2021 ident: e_1_3_2_8_2 – volume: 28 start-page: 27 issue: 2 year: 2011 ident: e_1_3_2_99_2 article-title: Dictionary learning publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2010.939537 – ident: e_1_3_2_23_2 – volume: 46 year: 2020 ident: e_1_3_2_77_2 article-title: Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic publication-title: Intensive Care Medicine – volume: 8 start-page: 115041 year: 2020 ident: e_1_3_2_79_2 article-title: Iteratively pruned deep learning ensembles for COVID-19 detection in chest x-rays publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003810 – volume: 8 start-page: 91916 year: 2020 ident: e_1_3_2_102_2 article-title: CovidGAN: Data augmentation using auxiliary classifier GAN for improved Covid-19 detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994762 – volume: 140 start-page: 95 year: 2020 ident: e_1_3_2_78_2 article-title: A light CNN for detecting COVID-19 from CT scans of the chest publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2020.10.001 – volume: 67 start-page: 208 year: 2021 ident: e_1_3_2_105_2 article-title: Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network publication-title: Information Fusion doi: 10.1016/j.inffus.2020.10.004 – volume: 18 start-page: 196 year: 2001 ident: e_1_3_2_28_2 article-title: Imaging of pneumonia: Trends and algorithms publication-title: European Respiratory Journal doi: 10.1183/09031936.01.00213501 – ident: e_1_3_2_80_2 – volume-title: Graphics Gems IV year: 1994 ident: e_1_3_2_120_2 – start-page: 3462 volume-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17) year: 2017 ident: e_1_3_2_109_2 doi: 10.1109/CVPR.2017.369 – ident: e_1_3_2_61_2 – start-page: 2261 volume-title: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17) year: 2017 ident: e_1_3_2_42_2 doi: 10.1109/CVPR.2017.243 – volume: 30 start-page: 4865 issue: 9 year: 2020 ident: e_1_3_2_58_2 article-title: Evolution of CT findings in patients with mild COVID-19 pneumonia publication-title: European Radiology doi: 10.1007/s00330-020-06823-8 – ident: e_1_3_2_64_2 – start-page: 1 volume-title: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15) year: 2015 ident: e_1_3_2_94_2 – volume: 39 start-page: 2615 issue: 8 year: 2020 ident: e_1_3_2_108_2 article-title: A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2020.2995965 – ident: e_1_3_2_107_2 doi: 10.1145/3341095 – year: 2020 ident: e_1_3_2_10_2 article-title: Multi-task deep learning based CT imaging analysis for COVID-19: Classification and segmentation publication-title: Computers in Biology and Medicine – year: 2020 ident: e_1_3_2_104_2 article-title: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis publication-title: European Respiratory Journal – ident: e_1_3_2_89_2 – volume: 32 year: 2021 ident: e_1_3_2_5_2 article-title: Inception recurrent convolutional neural network for object recognition publication-title: Machine Vision and Applications – volume: 39 issue: 8 year: 2020 ident: e_1_3_2_73_2 article-title: Deep learning COVID-19 features on CXR using limited training data sets publication-title: IEEE Transactions on Medical Imaging – ident: e_1_3_2_19_2 – volume: 139 start-page: 104994 year: 2021 ident: e_1_3_2_3_2 article-title: A novel deep neuroevolution-based image classification method to diagnose coronavirus disease (COVID-19) publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104994 – start-page: 99 volume-title: Multimodal Image Exploitation and Learning 2021 year: 2021 ident: e_1_3_2_62_2 – volume: 27 year: 2020 ident: e_1_3_2_98_2 article-title: Low-dose CT in COVID-19 outbreak: Radiation safety, image wisely, and image gently pledge publication-title: Emergency Radiology – volume: 139 start-page: 105014 year: 2021 ident: e_1_3_2_2_2 article-title: A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.105014 – volume: 1 start-page: 284 volume-title: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) year: 2006 ident: e_1_3_2_41_2 – ident: e_1_3_2_16_2 |
SSID | ssj0002416 |
Score | 2.4634786 |
Snippet | This literature review summarizes the current deep learning methods developed by the medical imaging AI research community that have been focused on resolving... |
SourceID | proquest crossref acm |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Annotations Applied computing Computer science Computer vision Computing methodologies Coronaviruses COVID-19 Deep learning Diagnosis Health informatics Literature reviews Machine learning Medical imaging Prognosis Viral diseases |
SubjectTermsDisplay | Applied computing -- Health informatics Computing methodologies -- Computer vision Computing methodologies -- Machine learning |
Title | Deep Learning Techniques for COVID-19 Diagnosis and Prognosis Based on Radiological Imaging |
URI | https://dl.acm.org/doi/10.1145/3576898 https://www.proquest.com/docview/2904329807 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKduHCxgAxNpAPiAsKOHZ-Hku7aYN2k0aLKnGIbMeeJrFsalMO_PV7ju0k1aYJuESNY7mR35fn9-z3vofQ-5yWIVFlHHCdmZQc8FNECV5rpoUUTMlM8yZA9iw5mUdfF_FiMPjWi1pa1-KT_PNgXsn_SBXaQK4mS_YfJNsOCg3wG-QLV5AwXP9KxmOlbj1D6qXdJTd0rA3FwsfR-Y_TcRDmoNWaaLqrlc8McHdfYAErzWHBBS-vWh14et3ULeobrcPRtAk9Xzch0qv18jeIv9tEXdb2pN8Gabf-vaoAbDaP_cJEbJb9DQbKPI2hh0QHE_v27f9Nm3BPn7rtk7BIAHrDHrUop1PjNEiZ5bfyStdy83pw0Z4KDR9W7JHhwGDGO7JVqzeps8_Oi-P5ZFLMjhazJ2ibgs8ASm97OJ5OvrcLMxgr7ujavqPNoTZDf3YDGxNFXm-aKJsrdGN2zHbRM-cv4KEV_nM0UNUe2vG1OLBTzS_QT4MF7LGAOyxgmE3ssYBbLGDAAm6xgBss4JsK97GAHRZeovnx0Wx0ErjCGQGnKa2DNBNhzokWkYgSmYZCUqJSSVWaqCRSYJWVSVwyDS1ccQ02vWQk15GUNOJaE_YKbVU3lXqNMJGaZbTUOYdnicgz0PcJ4YpRGSsi2D7agxkrbi01SuHmcR998DNYSMc1b0qe_CpsHnzcdcRtRz_GvS6HXgSF-_ZWBc0NlWSekfTN448P0NMO04doq16u1VswI2vxzsHjDoIfdKo |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Techniques+for+COVID-19+Diagnosis+and+Prognosis+Based+on+Radiological+Imaging&rft.jtitle=ACM+computing+surveys&rft.au=Hertel%2C+Robert&rft.au=Benlamri%2C+Rachid&rft.date=2023-12-31&rft.pub=Association+for+Computing+Machinery&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=55&rft.issue=12&rft.spage=1&rft_id=info:doi/10.1145%2F3576898&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon |