Conical Intersections in Solution with Polarizable Embedding: Integral-Exact Direct Reaction Field

A common strategy to exploring the properties and reactivity of complex systems is to use quantum mechanics/molecular mechanics (QM/MM) embedding, wherein a QM region is defined and treated with electronic structure theory, and the remainder of the system is treated with a force field. Important to...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 18; no. 11; pp. 6826 - 6839
Main Authors Liu, Xiao, Humeniuk, Alexander, Glover, William J.
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 08.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A common strategy to exploring the properties and reactivity of complex systems is to use quantum mechanics/molecular mechanics (QM/MM) embedding, wherein a QM region is defined and treated with electronic structure theory, and the remainder of the system is treated with a force field. Important to the description of electronic excited states, especially those of charge-transfer character, is the treatment of the coupling between the QM and MM subsystems. The state of the art is to use a polarizable force field for the MM region and mutually couple the QM wavefunction and MM induced dipoles, in addition to the usual electrostatic embedding, yielding a polarizable embedding (QM/MM-Pol) approach. However, we showed previously that current popular QM/MM-Pol approaches exhibit issues of root flipping and/or incorrect descriptions of electronic crossings in multistate calculations [J. Chem. Theory Comput. 14, 2137 (2018)]. Here, we demonstrate a solution to these problems with an integral-exact reformulation of the direct reaction field approach of Thole and Van Duijnen (QM/MM-IEDRF). The resulting embedding potential includes one- and two-electron operators and many-body dipole-induced dipole interactions and thus includes a natural description of the screening of electron–electron interactions by the MM induced dipoles. Pauli repulsion from the environment is mimicked by effective core potentials on the MM atoms. Inherent to the DRF approach is the assumption that MM dipoles respond instantaneously to the positions of the QM electrons; therefore, dispersion interactions are captured approximately. All electronic states are eigenfunctions of the same Hamiltonian, while the polarization induced in the environment and the associated energetic stabilization are unique to each state. This allows for a consistent definition of transition properties and state crossings. We demonstrate QM/MM-IEDRF by exploring the influence of a (polarizable) inert xenon matrix environment on the conical intersection underlying the photoisomerization of ethylene.
AbstractList A common strategy to exploring the properties and reactivity of complex systems is to use quantum mechanics/molecular mechanics (QM/MM) embedding, wherein a QM region is defined and treated with electronic structure theory, and the remainder of the system is treated with a force field. Important to the description of electronic excited states, especially those of charge-transfer character, is the treatment of the coupling between the QM and MM subsystems. The state of the art is to use a polarizable force field for the MM region and mutually couple the QM wavefunction and MM induced dipoles, in addition to the usual electrostatic embedding, yielding a polarizable embedding (QM/MM-Pol) approach. However, we showed previously that current popular QM/MM-Pol approaches exhibit issues of root flipping and/or incorrect descriptions of electronic crossings in multistate calculations [J. Chem. Theory Comput. 14, 2137 (2018)]. Here, we demonstrate a solution to these problems with an integral-exact reformulation of the direct reaction field approach of Thole and Van Duijnen (QM/MM-IEDRF). The resulting embedding potential includes one- and two-electron operators and many-body dipole-induced dipole interactions and thus includes a natural description of the screening of electron–electron interactions by the MM induced dipoles. Pauli repulsion from the environment is mimicked by effective core potentials on the MM atoms. Inherent to the DRF approach is the assumption that MM dipoles respond instantaneously to the positions of the QM electrons; therefore, dispersion interactions are captured approximately. All electronic states are eigenfunctions of the same Hamiltonian, while the polarization induced in the environment and the associated energetic stabilization are unique to each state. This allows for a consistent definition of transition properties and state crossings. We demonstrate QM/MM-IEDRF by exploring the influence of a (polarizable) inert xenon matrix environment on the conical intersection underlying the photoisomerization of ethylene.
Author Glover, William J.
Liu, Xiao
Humeniuk, Alexander
AuthorAffiliation NYU Shanghai
Department of Chemistry
New York University
NYU-ECNU Center for Computational Chemistry at NYU Shanghai
AuthorAffiliation_xml – name: Department of Chemistry
– name: New York University
– name: NYU-ECNU Center for Computational Chemistry at NYU Shanghai
– name: NYU Shanghai
Author_xml – sequence: 1
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  organization: NYU Shanghai
– sequence: 2
  givenname: Alexander
  surname: Humeniuk
  fullname: Humeniuk, Alexander
  organization: NYU-ECNU Center for Computational Chemistry at NYU Shanghai
– sequence: 3
  givenname: William J.
  orcidid: 0000-0002-2908-5680
  surname: Glover
  fullname: Glover, William J.
  email: william.glover@nyu.edu
  organization: New York University
BookMark eNp1kMtPAyEQxompiW317pHEiwe3AstC8WZqq02aaHycNywLlYZChW18_PVuH3ow8TQzmd_3ZebrgY4PXgNwitEAI4IvpUqDhWrUgCiEGCMHoIsLKjLBCOv89nh4BHopLRDKc0ryLqhGwVslHZz6RsekVWODT9B6-BTcejPAd9u8wofgZLRfsnIajpeVrmvr51db1TxKl40_pGrgjY2tA3zUcusDJ1a7-hgcGumSPtnXPniZjJ9Hd9ns_nY6up5lknDcZAyziiheEMlozbjSjFXGSEqEUgwNEda1oKYQspLCYEFMTYmhgouKM0YNz_vgfOe7iuFtrVNTLm1S2jnpdVinknBSUIp5-3sfnP1BF2EdfXtdS-UFKVCOREuhHaViSClqU66iXcr4WWJUbkIv29DLTejlPvRWcrGTbDc_nv_i39eRhz4
CitedBy_id crossref_primary_10_1021_acs_jpca_4c00249
crossref_primary_10_1021_acs_jpclett_4c00362
crossref_primary_10_1063_5_0131689
Cites_doi 10.1103/physrev.181.1297
10.1016/0022-2836(76)90311-9
10.1063/1.4936357
10.1080/00268976.2018.1535143
10.1063/1.448975
10.1142/9789812830586_0005
10.1063/1.4769286
10.1021/acs.jctc.9b01162
10.1021/acs.jpca.7b05875
10.1063/1.4931734
10.1038/258526a0
10.1021/cr1002613
10.1038/s41557-022-01012-0
10.1016/s0009-2614(98)00252-8
10.1063/1.472933
10.1063/1.447083
10.1063/1.4921956
10.1021/acs.jctc.9b00980
10.1021/ct800116e
10.1021/jp2097185
10.1063/1.1394921
10.1021/acs.jctc.7b00912
10.1017/9781108333511
10.1021/acs.jpca.2c02468
10.1021/jp101797a
10.1063/1.2183309
10.1002/jcc.21759
10.1021/jp002955+
10.1021/acs.jctc.9b00468
10.1002/jcc.21224
10.1063/5.0085855
10.1002/jcc.21155
10.1021/jacs.0c08526
10.1103/physreva.1.1397
10.1063/1.435637
10.1063/1.2222364
10.1021/acs.jctc.5b00679
10.1021/ct3005062
10.1016/0301-0104(81)85176-2
10.1007/bf00549429
10.26434/chemrxiv-2022-j8rgj
10.1063/1.1622924
10.1021/jp051096s
10.1016/s0301-0104(00)00194-4
10.1021/acs.jctc.8b00064
10.1063/1.3697760
10.1063/1.1677030
10.1063/1.437773
10.1021/j100017a017
10.1021/acs.jpclett.8b01412
10.1002/qua.560350617
10.1063/1.1491399
10.1021/jp994174i
10.1021/ct800526s
10.1021/acs.jctc.0c00644
10.1016/s0009-2614(02)01639-1
10.1103/physreva.37.2834
10.1021/ja00764a010
10.1063/1.4811835
10.1063/1.457987
10.1007/978-1-4020-8270-2_3
10.1021/acs.jctc.7b00776
10.1016/0263-7855(96)00018-5
10.1002/anie.197505751
10.1021/acs.jctc.6b00385
10.1016/s0009-2614(98)01115-4
10.1063/1.1537718
10.1016/0301-0104(82)87020-1
10.1039/d0cp02119a
10.1016/j.cpc.2022.108467
10.1063/1.4894482
10.1063/1.4922844
10.1063/1.465990
10.1021/jp709656z
10.26434/chemrxiv-2022-mkfzd
10.1063/1.1567253
10.1007/s00214-010-0764-0
10.1002/9780470758472
10.1002/wcms.1494
10.1002/wcms.82
10.1080/00268970500417762
10.1039/c8fd00123e
10.1016/0009-2614(90)80116-u
10.1021/ja00496a005
10.1063/5.0058673
10.1063/1.478522
10.1021/acs.jctc.8b00171
10.1063/1.476878
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright American Chemical Society Nov 8, 2022
Copyright_xml – notice: 2022 American Chemical Society
– notice: Copyright American Chemical Society Nov 8, 2022
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jctc.2c00662
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 6839
ExternalDocumentID 10_1021_acs_jctc_2c00662
a823733351
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABJNI
BAANH
CITATION
CUPRZ
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a271t-616b2c752a64d67ce66bffa429cc60801ed94f59aba9f192fd42f4979b7664f73
IEDL.DBID ACS
ISSN 1549-9618
IngestDate Fri Aug 16 22:24:38 EDT 2024
Fri Sep 13 08:50:43 EDT 2024
Fri Aug 23 02:39:08 EDT 2024
Thu Nov 10 03:35:31 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a271t-616b2c752a64d67ce66bffa429cc60801ed94f59aba9f192fd42f4979b7664f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2908-5680
PQID 2735250309
PQPubID 2048741
PageCount 14
ParticipantIDs proquest_miscellaneous_2725441700
proquest_journals_2735250309
crossref_primary_10_1021_acs_jctc_2c00662
acs_journals_10_1021_acs_jctc_2c00662
PublicationCentury 2000
PublicationDate 20221108
PublicationDateYYYYMMDD 2022-11-08
PublicationDate_xml – month: 11
  year: 2022
  text: 20221108
  day: 08
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref81/cit81
Blankenship R. E. (ref3/cit3) 2002
ref63/cit63
ref16/cit16
ref92/cit92
ref52/cit52
ref23/cit23
Humeniuk A. K. (ref56/cit56) 2022; 37
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref91/cit91
ref26/cit26
ref55/cit55
Griffiths D. J. (ref1/cit1) 2017
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref75/cit75
  doi: 10.1103/physrev.181.1297
– ident: ref16/cit16
  doi: 10.1016/0022-2836(76)90311-9
– ident: ref31/cit31
  doi: 10.1063/1.4936357
– ident: ref64/cit64
  doi: 10.1080/00268976.2018.1535143
– ident: ref80/cit80
  doi: 10.1063/1.448975
– ident: ref21/cit21
  doi: 10.1142/9789812830586_0005
– ident: ref63/cit63
  doi: 10.1063/1.4769286
– ident: ref44/cit44
  doi: 10.1021/acs.jctc.9b01162
– ident: ref34/cit34
  doi: 10.1021/acs.jpca.7b05875
– ident: ref42/cit42
  doi: 10.1063/1.4931734
– ident: ref6/cit6
  doi: 10.1038/258526a0
– ident: ref4/cit4
  doi: 10.1021/cr1002613
– ident: ref27/cit27
  doi: 10.1038/s41557-022-01012-0
– ident: ref48/cit48
  doi: 10.1016/s0009-2614(98)00252-8
– ident: ref77/cit77
  doi: 10.1063/1.472933
– ident: ref51/cit51
  doi: 10.1063/1.447083
– ident: ref60/cit60
  doi: 10.1063/1.4921956
– ident: ref14/cit14
  doi: 10.1021/acs.jctc.9b00980
– ident: ref47/cit47
  doi: 10.1021/ct800116e
– ident: ref71/cit71
  doi: 10.1021/jp2097185
– ident: ref18/cit18
  doi: 10.1063/1.1394921
– ident: ref37/cit37
  doi: 10.1021/acs.jctc.7b00912
– volume-title: Introduction to Electrodynamics
  year: 2017
  ident: ref1/cit1
  doi: 10.1017/9781108333511
  contributor:
    fullname: Griffiths D. J.
– ident: ref73/cit73
  doi: 10.1021/acs.jpca.2c02468
– ident: ref30/cit30
  doi: 10.1021/jp101797a
– ident: ref32/cit32
  doi: 10.1063/1.2183309
– ident: ref79/cit79
  doi: 10.1002/jcc.21759
– ident: ref74/cit74
  doi: 10.1021/jp002955+
– ident: ref43/cit43
  doi: 10.1021/acs.jctc.9b00468
– ident: ref76/cit76
  doi: 10.1002/jcc.21224
– ident: ref28/cit28
  doi: 10.1063/5.0085855
– ident: ref88/cit88
  doi: 10.1002/jcc.21155
– ident: ref12/cit12
  doi: 10.1021/jacs.0c08526
– ident: ref50/cit50
  doi: 10.1103/physreva.1.1397
– ident: ref82/cit82
  doi: 10.1063/1.435637
– ident: ref24/cit24
  doi: 10.1063/1.2222364
– ident: ref22/cit22
  doi: 10.1021/acs.jctc.5b00679
– ident: ref19/cit19
  doi: 10.1021/ct3005062
– ident: ref45/cit45
  doi: 10.1016/0301-0104(81)85176-2
– ident: ref38/cit38
  doi: 10.1007/bf00549429
– ident: ref92/cit92
  doi: 10.26434/chemrxiv-2022-j8rgj
– ident: ref62/cit62
  doi: 10.1063/1.1622924
– ident: ref86/cit86
  doi: 10.1021/jp051096s
– ident: ref90/cit90
  doi: 10.1016/s0301-0104(00)00194-4
– ident: ref25/cit25
  doi: 10.1021/acs.jctc.8b00064
– ident: ref72/cit72
  doi: 10.1063/1.3697760
– ident: ref89/cit89
  doi: 10.1063/1.1677030
– ident: ref87/cit87
  doi: 10.1063/1.437773
– ident: ref29/cit29
  doi: 10.1021/j100017a017
– ident: ref36/cit36
  doi: 10.1021/acs.jpclett.8b01412
– ident: ref83/cit83
  doi: 10.1002/qua.560350617
– ident: ref53/cit53
  doi: 10.1063/1.1491399
– ident: ref70/cit70
  doi: 10.1021/jp994174i
– ident: ref59/cit59
  doi: 10.1021/ct800526s
– ident: ref91/cit91
  doi: 10.1021/acs.jctc.0c00644
– ident: ref9/cit9
  doi: 10.1016/s0009-2614(02)01639-1
– ident: ref67/cit67
– ident: ref52/cit52
  doi: 10.1103/physreva.37.2834
– ident: ref49/cit49
  doi: 10.1021/ja00764a010
– ident: ref20/cit20
  doi: 10.1063/1.4811835
– ident: ref84/cit84
  doi: 10.1063/1.457987
– ident: ref40/cit40
  doi: 10.1007/978-1-4020-8270-2_3
– ident: ref35/cit35
  doi: 10.1021/acs.jctc.7b00776
– ident: ref81/cit81
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref7/cit7
  doi: 10.1002/anie.197505751
– ident: ref33/cit33
  doi: 10.1021/acs.jctc.6b00385
– ident: ref69/cit69
  doi: 10.1016/s0009-2614(98)01115-4
– ident: ref10/cit10
  doi: 10.1063/1.1537718
– ident: ref39/cit39
  doi: 10.1016/0301-0104(82)87020-1
– ident: ref17/cit17
  doi: 10.1039/d0cp02119a
– ident: ref55/cit55
  doi: 10.1016/j.cpc.2022.108467
– ident: ref85/cit85
  doi: 10.1063/1.4894482
– ident: ref57/cit57
  doi: 10.1063/1.4922844
– ident: ref65/cit65
  doi: 10.1063/1.465990
– ident: ref2/cit2
  doi: 10.1021/jp709656z
– ident: ref13/cit13
  doi: 10.26434/chemrxiv-2022-mkfzd
– ident: ref54/cit54
  doi: 10.1063/1.1567253
– ident: ref61/cit61
  doi: 10.1007/s00214-010-0764-0
– volume-title: Molecular Mechanisms of Photosynthesis
  year: 2002
  ident: ref3/cit3
  doi: 10.1002/9780470758472
  contributor:
    fullname: Blankenship R. E.
– ident: ref58/cit58
  doi: 10.1002/wcms.1494
– ident: ref66/cit66
  doi: 10.1002/wcms.82
– ident: ref23/cit23
  doi: 10.1080/00268970500417762
– ident: ref26/cit26
  doi: 10.1039/c8fd00123e
– ident: ref68/cit68
  doi: 10.1016/0009-2614(90)80116-u
– ident: ref8/cit8
  doi: 10.1021/ja00496a005
– ident: ref15/cit15
  doi: 10.1063/5.0058673
– ident: ref78/cit78
  doi: 10.1063/1.478522
– volume: 37
  start-page: 2834
  year: 2022
  ident: ref56/cit56
  publication-title: Phys. Rev. A
  contributor:
    fullname: Humeniuk A. K.
– ident: ref11/cit11
  doi: 10.1021/acs.jctc.8b00171
– ident: ref41/cit41
  doi: 10.1063/1.476878
SSID ssj0033423
Score 2.442439
Snippet A common strategy to exploring the properties and reactivity of complex systems is to use quantum mechanics/molecular mechanics (QM/MM) embedding, wherein a QM...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Publisher
StartPage 6826
SubjectTerms Charge transfer
Complex systems
Dipole interactions
Eigenvectors
Electron states
Electronic structure
Electrons
Embedding
Intersections
Operators (mathematics)
Quantum mechanics
Spectroscopy and Excited States
Subsystems
Wave functions
Xenon
Title Conical Intersections in Solution with Polarizable Embedding: Integral-Exact Direct Reaction Field
URI http://dx.doi.org/10.1021/acs.jctc.2c00662
https://www.proquest.com/docview/2735250309/abstract/
https://search.proquest.com/docview/2725441700
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3rxW5xOiaAHD51tkqWtNxkbQ1BEHexWkjQRvzqxHYh_vXlp65iK7NqmIbyX5v3yPn4PoeMookrFinqBor69oFDmScpSj0oLN0jEU0agdvjqmg-G7HLUGU1pcn5G8ElwJlTeflJAN6gcXfkiWiKQQAgwqHtXn7oUmOwcNyoDxskgqkKSf80Ahkjls4Zo9hx2xqW_VnYpyh0nIeSUPLcnhWyrz9-MjXOsex2tVhgTX5SbYgMt6GwTLXfr1m5bSHbHrhwSO39g7rKxshw_Zrj2kmHwz-IbuPdC2teLxr1XqVMwdOfuq4d38eL1PoQqcHlq4ltd1kjgPiTFbaNhv3ffHXhVswVPWHEW9grJJVFhhwjOUh4qzbk0RlhzpRS3sDLQacxMJxZSxMbCQmO1aFgcxjLknJmQ7qBGNs70LsK-JoFWXHNCUqYDLSOShsZngoU8DYVpohMrnKT6WfLExcFJkLiHVmJJJbEmOq01lLyV3Bv_jG3VKpxObKEZRG2pHzfR0fdrK2sIiohMjycwhrg2bL6_N-ey9tEKgRoI51tuoUbxPtEHFpkU8tBtyS9wZt4A
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9icGAXBmwT3fjwJDjsEBZ_1E64oapVYW2FGEjcItuxEVtJpyaVpv312G7SqhNC7Ook1tOz4_d7Xz8DHCcJ1TrVNMKaxs5BoSxSlOURVQ5ukITnjPje4eGI92_Z5V37bg1w0wvjhCjdTGVI4i_ZBfA3P_ZTe9ZBHVjL38BGWzh33KOhzo_m8KWe0C5QpDJPPImTOjP53AzeHuly1R6tHsfBxvTewfVCulBa8ut0VqlT_fcf4sb_En8btmrEic7nW2QH1kyxC5ud5qK396A6k9AciUJ0sAy1WUWJHgrUxMyQj9aiK-8F-yKwsUHdR2Vyb_bOwlf3UzmOun-krtD8DEXXZt4xgXq-RO4D3Pa6N51-VF-9EEkicOUcSq6IFm0iOcu50IZzZa10xktr7kAmNnnKbDuVSqbWgUTr1tSyVKRKcM6soB9hvZgUZg9QbAg2mhtOSM4MNiohubAxk0zwXEjbghOnnKz-dcosZMUJzsKg01hWa6wFX5uFyn7PmTheeHe_WcnlxA6o-RwujdMWfFk8drr2KRJZmMnMv0PCpWxx_OmVYh3BZv9mOMgGF6Pvn-Et8d0RIeq8D-vVdGYOHGap1GHYpU--8uZr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFH6iILVcWugihgI1UnvoITSxHTvpDU1nRNmE2lJxi7witgwiGanqr6-fJ6ECVahcE8dynpf3-S3fA3hfFMyY0rAkMywNFxTGE824TZgOcIMWwnKKucMHh2LnmO-e5CdzkPe5MGEQTeipiU583NXX1ncMA9knfH5ukHnQRObyJ7CQY_1uRETD7_0BzJDULtKkciSfzIrOO_mvHlAnmeauTrp7JEc9M34BP29HGMNLLramrd4yv--RNz76F5bgeYc8yfZsqSzDnKtfwrNhX_DtFejhJCZJkmglbGKMVt2Qs5r0tjOCVltyhLdhDAa7dGR0pZ1F9fc5fnV6oy6T0S9lWjI7S8k3N8ucIGMMlXsNx-PRj-FO0pVgSBSVWRsulkJTI3OqBLdCGieE9l4FJWaMCGAzc7bkPi-VVqUPYNGHufW8lKWWQnAv2RuYrye1WwGSOpo5I5yg1HKXOV1QK33KFZfCSuUH8CEIp-q2UFNF7zjNqvgwSKzqJDaAj_1kVdczRo4H2q71s_m34wDY0JfL0nIAm7evg6zRVaJqN5liGxqLs6Xp6n8O6x08Pfoyrva_Hu69hUWKSRLR-LwG8-3N1K0H6NLqjbhQ_wAurejl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conical+Intersections+in+Solution+with+Polarizable+Embedding%3A+Integral-Exact+Direct+Reaction+Field&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Liu%2C+Xiao&rft.au=Humeniuk%2C+Alexander&rft.au=Glover%2C+William+J.&rft.date=2022-11-08&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=18&rft.issue=11&rft.spage=6826&rft.epage=6839&rft_id=info:doi/10.1021%2Facs.jctc.2c00662&rft.externalDocID=a823733351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon