Recent Advances in Thermochemical Conversion of Biomass
This book provides general information and data on one of the most promising renewable energy sources: biomass for its thermochemical conversion. During the last few years, there has been increasing focus on developing the processes and technologies for the conversion of biomass to liquid and gaseou...
Saved in:
Main Author | |
---|---|
Format | eBook |
Language | English |
Published |
Chantilly
Elsevier
2015
Elsevier Science |
Edition | 1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- Title Page Preface Table of Contents 1. Advances in Thermochemical Conversion of Biomass - Introduction 2. Feedstock Suitability for Thermochemical Processes 3. Analytical Techniques as a Tool to Understand the Reaction Mechanism 4. Catalysts for Thermochemical Conversion of Biomass 5. Artificial Neural Networks for Thermochemical Conversion of Biomass 6. Thermochemical Biorefinery 7. Fast Pyrolysis of Biomass: Recent Advances in Fast Pyrolysis Technology 8. Biomass Gasification to Produce Syngas 9. Hydrothermal Gasification of Biomass 10. Hydrothermal Liquefaction of Biomass 11. Carbonization of Biomass 12. Hydrothermal Carbonization of Biomass 13. Coprocessing of Bio-Oil in Fluid Catalytic Cracking 14. Biomass Gasification Integrated Fischer-Tropsch Synthesis: Perspectives, Opportunities and Challenges 15. Utilization of Supercritical Fluid for Catalytic Thermochemical Conversions of Woody-Biomass Related Compounds 16. Thermochemical Valorization of Lignin Index
- Hydropyrolysis -- Catalytic Fast Pyrolysis Conclusions -- 7.5. Future Research and Development Challenges -- References -- Chapter 8: Biomass Gasification to Produce Syngas -- 8.1. Introduction -- 8.2. Biomass Gasifiers for Syngas Production -- 8.2.1. Fixed Bed Gasifiers -- Downdraft Gasifier -- Multistage Fixed Bed Gasifiers -- 8.2.2. Fluidized Bed Gasifiers -- Bubbling Fluidized Bed Gasifier -- Dual Fluidized Bed Gasifier -- 8.2.3. Advantages and Technical Challenges of the Different Gasification Technologies -- 8.3. Secondary Syngas Cleaning and Conditioning -- 8.3.1. Tar Elimination -- 8.3.2. Inorganic Compounds Elimination -- 8.3.3. Water-Gas Shift Reactors -- 8.3.4. Hydrogen Purification -- 8.4. Recent Trends Toward Process Intensification -- 8.4.1. Incorporation of Cleaning Up Multifunctional Systems into Existing Fluidized Gasification Reactors -- 8.4.2. Implementation of Specific Highly Reactive Gasification Media -- 8.4.3. Advanced Catalyst Integration Strategies -- 8.5. Conclusions and Perspectives -- References -- Chapter 9: Hydrothermal Gasification of Biomass -- 9.1. Hydrothermal Treatment Technologies -- 9.2. History -- 9.3. Reactions -- 9.4. Feedstocks -- 9.5. Catalysts -- 9.6. Process Design -- 9.7. Research and Development Topics -- 9.8. Conclusions and Perspectives -- References -- Chapter 10: Hydrothermal Liquefaction of Biomass -- 10.1. Introduction -- 10.2. First-Generation Biofuels -- 10.3. Second-generation biofuels -- 10.3.1. Lignocellulosic Biomass -- Bonds Between Lignin and Carbohydrates: Lignin-Carbohydrate Complexes -- 10.4. Third-generation biofuels -- 10.5. Biomass Conversion Routes -- 10.5.1. Biochemical Conversion Routes -- 10.5.2. Acid Pretreatment versus HTU Pretreatment -- 10.5.3. Thermochemical Conversion Routes -- 10.6. Hydrothermal Liquefaction: Advantages Over Pyrolysis -- 10.7. Direct Liquefaction Processes
- Front Cover -- Recent Advances in Thermochemical Conversion of Biomass -- Copyright -- Contents -- Contributors -- Preface -- Part I: General -- Chapter 1: Advances in Thermochemical Conversion of Biomass-Introduction -- 1.1. World Energy Demand and Supply/Preamble -- 1.2. Biofuel Policies -- 1.2.1. Renewable Fuel Standards in the United States -- 1.2.2. EU Biofuels Policy -- 1.3. Biomass-an Opportunity -- 1.3.1. Generations of Biofuels -- 1.3.2. Components of Lignocellulosic Biomass -- 1.3.3. Agricultural Residues -- 1.3.4. Forest Residues -- 1.3.5. Energy Crops -- 1.3.6. Global Biomass Potential -- The United States of America -- European Union -- BRIC (Brazil, Russia, India, and China) -- Brazil -- Russia -- India -- China -- 1.4. Biomass Conversion Methods -- 1.5. Advantages of Thermochemical Conversion of Biomass -- 1.5.1. Thermochemical Methods of Conversion -- 1.5.2. Feedstock Handling Methods -- 1.5.3. Methods of Thermochemical Conversion -- 1.5.4. Syngas Platform -- 1.5.5. C6 and C6 /C5 Sugar Platforms -- 1.5.6. Lignin Platform -- 1.5.7. Pyrolysis Oil Platform -- 1.6. Concept of Biorefinery -- 1.7. Scientometric Analysis -- 1.8. Conclusion and Perspectives -- References -- Chapter 2: Feedstock Suitability for Thermochemical Processes -- 2.1. Introduction -- 2.1.1. Why Biofuel? -- 2.1.2. Biobased Society and Economy -- 2.2. Processes for the Conversion of Biomass into Various Products in a Biorefinery -- 2.3. Thermochemical Conversion -- Feedstocks for Thermochemical Conversion -- Feedstock Classification -- Compositional Analysis of the Feedstock -- 2.3.1. Diversity of Feedstock Types that Can Be Utilized for Thermochemical Conversion -- 2.4. Nonprocess Parameters Affecting the Conversion Process -- 2.4.1. Process Efficiencies as Affected by Feedstock Properties/Composition -- Combustion -- Gasification -- Pyrolysis
- 5.3.4. Proposed ANN Model for Bubbling Fluidized Bed Gasifiers -- Sensitivity Analysis -- 5.3.5. Comparison between the ANN Models and a Modified Equilibrium Model -- 5.4. Conclusions and Perspectives -- References -- Chapter 6: Thermochemical Biorefinery -- 6.1. Introduction -- 6.2. Biomass as a Sustainable Resource -- 6.3. Feedstocks for Thermochemical Biorefinery -- 6.4. Composition of Biomass -- 6.5. Biomass Conversion Methods -- 6.6. Existing Biorefinery Concepts -- 6.6.1. Comparison Between Petrorefinery and Biorefinery -- 6.6.2. Three-Phase Biorefinery -- Whole-Crop Biorefinery -- Green Biorefinery -- Lignocellulose Feedstock Biorefinery -- Integrated Biorefinery -- Hybrid Biorefinery -- 6.6.3. Thermochemical Biorefinery -- 6.7. Products from Thermochemical Biorefinery -- 6.7.1. Synthetic Gas Followed by Fischer-Tropsch Reaction -- 6.7.2. Bio-oil -- 6.7.3. Biochar -- 6.8. Conclusions and Perspectives -- Acknowledgments -- References -- Part II: Primary Processes -- Chapter 7. Fast Pyrolysis of Biomass -- Recent Advances in Fast Pyrolysis Technology -- 7.1. Introduction -- 7.2. Chemistry of Fast Pyrolysis of Biomass -- 7.2.1. Cellulose -- 7.2.2. Hemicellulose -- 7.2.3. Lignin -- 7.3. Pyrolysis Reactors -- 7.3.1. Fixed Bed Reactor -- 7.3.2. Fluidized Bed Reactor -- 7.3.3. Circulating Fluidized Bed Reactor -- 7.3.4. Rotating Cone Reactor -- 7.3.5. Ablative Pyrolysis -- 7.3.6. Entrained Flow Reactor -- 7.3.7. Auger Reactor -- 7.3.8. PyRos Reactor -- 7.3.9. Plasma Pyrolysis -- 7.4. Recent Advances in Fast Pyrolysis Technology -- 7.4.1. Conventional Fast Pyrolysis -- Production of Sugar-Rich Bio-oils via Fast Pyrolysis -- Commercial-Scale Fast Pyrolysis Units -- Conventional Fast Pyrolysis Conclusions -- 7.4.2. Catalytic Fast Pyrolysis -- Direct Catalytic Fast Pyrolysis -- Vapor Catalysis (Catalytic Treatment of Fast Pyrolysis Vapors)
- 2.4.2. Ways to Overcome Drawbacks of the Feedstock Composition-Necessity for Pretreatment -- Torrefaction as a Biomass Pretreatment for Improvement of Conversion Efficiency -- Leaching/Acid or Alkali Pretreatment -- 2.5. Conclusions and Perspectives -- References -- Chapter 3: Analytical Techniques as a Tool to Understand the Reaction Mechanism -- 3.1. Introduction -- 3.2. Composition of Lignocellulosic Biomass Samples -- 3.3. Thermal Analysis -- 3.3.1. Reaction Heat of the Biomass Decomposition -- 3.3.2. Thermogravimetric Analysis of Biomass -- 3.3.3. Thermal Decomposition Products as Measured by Thermogravimetry/Mass spectrometry -- 3.3.4. Reaction Kinetic Modeling Using Thermogravimetric Data -- 3.4. Analytical Pyrolysis -- 3.4.1. Pyrolysis Techniques -- 3.4.2. Pyrolysis of Macromolecular Biomass Constituents -- 3.4.3. Pyrolysis of Whole Biomass Samples -- 3.5. Reaction Mechanisms of the Thermal Decomposition -- 3.5.1. Cellulose Decomposition -- 3.5.2. Hemicellulose Decomposition -- 3.5.3. Lignin Decomposition -- 3.5.4. Mechanisms of Biomass Pyrolysis -- 3.6. Effect of Inorganic Materials on the Decomposition Mechanism -- 3.7. Effect of Torrefaction on the Composition and Decomposition Mechanisms -- Acknowledgments -- References -- Chapter 4: Catalysts for Thermochemical Conversion of Biomass -- 4.1. Introduction -- 4.2. Biomass and Biofuels -- 4.2.1. Biomass Conversion Methods -- 4.3. Properties of Catalysts -- 4.4. Types of Catalysts -- 4.4.1. Zeolites -- Three-Dimensional Zeolites -- Two-Dimensional Zeolites -- Hierarchical Zeolites -- Natural Zeolites -- 4.4.2. Biomass Conversion Residues as Catalyst/Support -- Biochar as a Catalyst Support -- Sulfonated Biochar as Catalyst -- Fly Ash -- Rice Husk Ash -- 4.5. Catalysts for the Conversion of Biomass -- 4.5.1. Catalysts for Holocellulose Conversion to Chemicals -- Cellulose Hydrolysis
- Cellulose Hydrolysis/Hydrogenation for Hexitols Production -- Cellulose Biphasic Catalytic Conversion into Furan-Based Biofuels -- Catalytic Conversion into Valeric Biofuels and Liquid Alkenes -- 4.5.2. Catalysts for Lignin Valorization -- 4.5.3. Catalysts for Gasification -- Dolomite Catalysts -- Nickel and Other Metal Catalysts -- Alkali Metal and Other Catalysts -- 4.5.4. Catalysts for Hydrothermal Gasification -- Activated Carbons -- Transition Metals -- Oxides -- 4.5.5. Catalysts for the Fischer-Tropsch Process -- 4.5.6. Catalysts for Hydrothermal Liquefaction -- 4.5.7. Catalysts for Pyrolysis -- Catalysts for Slow Pyrolysis -- Catalysts for Fast Pyrolysis -- Catalysts for Microwave Pyrolysis -- Catalytic Pyrolysis for Production of Aromatics -- 4.5.8. Catalysts for Upgradation of Bio-oil -- Zeolites for Hydrotreatment -- Metals in Hydrotreating Reactions -- Hydrodeoxygenation -- Catalytic Cracking of Bio-oil -- Catalysts for Py-GC/MS -- Catalysts for Ex Situ Bio-oil Upgradation -- Catalysts for Aqueous Phase Reforming (APR) -- Catalysts for Steam Reforming of Bio-oil -- 4.6. Catalysts for Hydropyrolysis of Biomass -- 4.7. Catalysts for Biochar Gasification -- 4.8. Conclusion and Perspectives -- Acknowledgments -- References -- Chapter 5: Artificial Neural Networks for Thermochemical Conversion of Biomass -- 5.1. Introduction -- 5.2. Modeling Using Artificial Neural Networks -- 5.2.1. Fundamental Concepts -- 5.2.2. Network Architectures -- 5.2.3. Training an Artificial Neural Network -- Least Mean Square Error Supervised Training -- Activation Function -- The Backpropagation Algorithm -- Levenberg-Marquardt Algorithm -- 5.3. Development of Artificial Neural Network Models -- 5.3.1. Experimental Data Selection -- 5.3.2. Artificial Neural Networks Topology -- 5.3.3. Proposed ANN Model for Circulating Fluidized Bed Gasifiers -- Sensitivity Analysis
- 10.8. Hydrothermal Upgradation