ビシンコニニック酸でグルカンの還元末端数を測定することによってデンプン枝作り酵素の活性を定量的に測定する方法
植物はデンプンを合成するために進化の過程で異なる機能を持つ酵素アイソザイムを分化させてきた.デンプン枝作り酵素(BE)はα-グルカンのα-1,6グルコシド結合を形成する唯一の酵素であり,アミロペクチンのタンデムクラスター構造の形成に必須である.アミロペクチン分子の分岐結合の位置と数に認められる高度の規則性はBE反応により制御されており,アミロペクチン構造のバリエーションはデンプンの性質を決定する重要な因子である.したがってデンプン構造の生合成調節メカニズムを解明する上でBEの特性に関する理解は不可欠であるが,BEの反応メカニズムは依然ほとんど不明である.BE特性解明の第一歩は酵素動力学的解析で...
Saved in:
Published in | Journal of Applied Glycoscience Vol. 56; no. 3; pp. 215 - 222 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Japanese |
Published |
日本応用糖質科学会
2009
|
Online Access | Get full text |
ISSN | 1344-7882 1880-7291 |
DOI | 10.5458/jag.56.215 |
Cover
Abstract | 植物はデンプンを合成するために進化の過程で異なる機能を持つ酵素アイソザイムを分化させてきた.デンプン枝作り酵素(BE)はα-グルカンのα-1,6グルコシド結合を形成する唯一の酵素であり,アミロペクチンのタンデムクラスター構造の形成に必須である.アミロペクチン分子の分岐結合の位置と数に認められる高度の規則性はBE反応により制御されており,アミロペクチン構造のバリエーションはデンプンの性質を決定する重要な因子である.したがってデンプン構造の生合成調節メカニズムを解明する上でBEの特性に関する理解は不可欠であるが,BEの反応メカニズムは依然ほとんど不明である.BE特性解明の第一歩は酵素動力学的解析であるが,再現性良く活性を定量し,しかも多数のサンプルを簡便に分析できる方法がなかった.本研究では,BE枝作り反応の結果,生ずるα-1,6グルコシド結合を枝切り処理後,増加する還元末端数を定量することによって活性を直接測定する方法を確立することを目的とした.まず,還元末端数を定量できる銅-ビシンコニニック酸法(BCA法)の基本特性を調べた.その結果,1)BCA法では,560 nmの吸光度をマイクロプレートリーダーで測定することにより,測定液150 μLあたり0-3.75 nmol(0-25 μM相当)のマルトースを定量することができ,その吸光度は呈色反応終了後10時間まで安定であった.2)グルコースからグルコース数平均重合度(DPn)1658の酵素合成アミロースに対して,分子数あたりの還元糖量は一定で,DP値の影響を受けなかった.3)大腸菌に発現させたイネリコンビナントBEIIb(rOsBEIIb)の活性と特性を調べた結果,酵素合成アミロースやアミロペクチンに対して信頼性の高いKm値やVmax値を求めることができた.結論として,BCA法は従来法に比べて,BE活性を定量するための優れた方法であることが明らかになった. |
---|---|
AbstractList | 植物はデンプンを合成するために進化の過程で異なる機能を持つ酵素アイソザイムを分化させてきた。デンプン枝作り酵素(BE)はα-グルカンのα-1、6グルコシド結合を形成する唯一の酵素であり、アミロペクチンのタンデムクラスター構造の形成に必須である。アミロペクチン分子の分岐結合の位置と数に認められる高度の規則性はBE反応により制御されており、アミロペクチン構造のバリエーションはデンプンの性質を決定する重要な因子である。したがってデンプン構造の生合成調節メカニズムを解明する上でBEの特性に関する理解は不可欠であるが、BEの反応メカニズムは依然ほとんど不明である。BE特性解明の第一歩は酵素動力学的解析であるが、再現性良く活性を定量し、しかも多数のサンプルを簡便に分析できる方法がなかった。本研究では、BE枝作り反応の結果、生ずるα-1、6グルコシド結合を枝切り処理後、増加する還元末端数を定量することによって活性を直接測定する方法を確立することを目的とした。まず、還元末端数を定量できる銅-ビシンコニニック酸法(BCA法)の基本特性を調べた。その結果、1)BCA法では、560nmの吸光度をマイクロプレートリーダーで測定することにより、測定液150μLあたり0-3.75nmol(0-25μM相当)のマルトースを定量することができ、その吸光度は呈色反応終了後10時間まで安定であった。2)グルコースからグルコース数平均重合度(DPn)1658の酵素合成アミロースに対して、分子数あたりの還元糖量は一定で、DP値の影響を受けなかった。3)大腸菌に発現させたイネリコンビナントBEIIb(rOsBEIIb)の活性と特性を調べた結果、酵素合成アミロースやアミロペクチンに対して信頼性の高いKm値やVmax値を求めることができた。結論として、BCA法は従来法に比べて、BE活性を定量するための優れた方法であることが明らかになった。 植物はデンプンを合成するために進化の過程で異なる機能を持つ酵素アイソザイムを分化させてきた.デンプン枝作り酵素(BE)はα-グルカンのα-1,6グルコシド結合を形成する唯一の酵素であり,アミロペクチンのタンデムクラスター構造の形成に必須である.アミロペクチン分子の分岐結合の位置と数に認められる高度の規則性はBE反応により制御されており,アミロペクチン構造のバリエーションはデンプンの性質を決定する重要な因子である.したがってデンプン構造の生合成調節メカニズムを解明する上でBEの特性に関する理解は不可欠であるが,BEの反応メカニズムは依然ほとんど不明である.BE特性解明の第一歩は酵素動力学的解析であるが,再現性良く活性を定量し,しかも多数のサンプルを簡便に分析できる方法がなかった.本研究では,BE枝作り反応の結果,生ずるα-1,6グルコシド結合を枝切り処理後,増加する還元末端数を定量することによって活性を直接測定する方法を確立することを目的とした.まず,還元末端数を定量できる銅-ビシンコニニック酸法(BCA法)の基本特性を調べた.その結果,1)BCA法では,560 nmの吸光度をマイクロプレートリーダーで測定することにより,測定液150 μLあたり0-3.75 nmol(0-25 μM相当)のマルトースを定量することができ,その吸光度は呈色反応終了後10時間まで安定であった.2)グルコースからグルコース数平均重合度(DPn)1658の酵素合成アミロースに対して,分子数あたりの還元糖量は一定で,DP値の影響を受けなかった.3)大腸菌に発現させたイネリコンビナントBEIIb(rOsBEIIb)の活性と特性を調べた結果,酵素合成アミロースやアミロペクチンに対して信頼性の高いKm値やVmax値を求めることができた.結論として,BCA法は従来法に比べて,BE活性を定量するための優れた方法であることが明らかになった. |
Author | 中村, 保典 吉田, 真由美 Francisco, Perigio B., Jr 内海, 好規 澤田, 隆行 北村, 進一 |
Author_xml | – sequence: 1 fullname: Francisco, Perigio B., Jr organization: 秋田県立大学生物資源科学部 – sequence: 1 fullname: 澤田, 隆行 organization: 秋田県立大学生物資源科学部 – sequence: 1 fullname: 吉田, 真由美 organization: 秋田県立大学生物資源科学部 – sequence: 1 fullname: 北村, 進一 organization: 大阪府立大学大学院生命環境科学研究科 – sequence: 1 fullname: 中村, 保典 organization: 秋田県立大学生物資源科学部 – sequence: 1 fullname: 内海, 好規 organization: 秋田県立大学生物資源科学部 |
BackLink | https://agriknowledge.affrc.go.jp/RN/2010780974$$DView record in AgriKnowledge |
BookMark | eNpNUVtLG0EUHopCvb30f2w8s7fZfSpF6gUEX3wfxt2ZuGmayCYgfXNnDYo-CIqKoiIKrRBRIYpK6a85dUP-RSeNiHD4zoHvcuCcUTJUq9ckIZ8olDzXCyYrolzy_JJNvQ9khAYBWMwO6ZCZHde1WBDYH8lEo5EsAXgh0NCmI-QC8z3Uj5h3UHcw3_5fOerbXusJs1-o7zBvo273BdlNT6-_tPLipN1t3xb7d6h3i6frl5tjzI5Qb2O2h9kVZka_idklZj8x3-gb80ODxdnp3z8nqLd6rYfu_blJK-5_F2tmxa5J6G3sdI_Xjfd9YHHwXHT2x8mwEtWGnHjtY2Rx-uvi1Kw1vzAzN_Vl3hI2o2BJ34FIKUoVdRUAxEy4EDu2F4aukCCcMAporCCKKbMlCwFsoaRQLvNdFlNnjLBBrFAqTZpclNPkW62-WpVxWfK6SHifiHi5zisrHCg3V_R9CoFxfh44K42mMNqVNPku0h9cpM0kqkpu_sI9nzsDMO95Y6JlkRra-QdpKsMk |
ContentType | Journal Article |
Copyright | 2009 by The Japanese Society of Applied Glycoscience |
Copyright_xml | – notice: 2009 by The Japanese Society of Applied Glycoscience |
DBID | N5S |
DOI | 10.5458/jag.56.215 |
DatabaseName | AgriKnowledge(アグリナレッジ)AGROLib |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1880-7291 |
EndPage | 222 |
ExternalDocumentID | oai_affrc_go_jp_01_00566108 article_jag_56_3_56_3_215_article_char_ja |
GroupedDBID | 2WC ACIWK ACPRK AFRAH ALMA_UNASSIGNED_HOLDINGS B.T DU5 JSF JSH KQ8 N5S OK1 PGMZT RJT RPM RZJ TKC |
ID | FETCH-LOGICAL-a2710-e630cff11f14f000d7a40d325994ae0a39c81df0cd172e79002afeaf47647d13 |
ISSN | 1344-7882 |
IngestDate | Fri Aug 15 12:23:35 EDT 2025 Wed Sep 03 06:23:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a2710-e630cff11f14f000d7a40d325994ae0a39c81df0cd172e79002afeaf47647d13 |
Notes | 780974 ZZ20010553 |
OpenAccessLink | https://agriknowledge.affrc.go.jp/RN/2010780974 |
PageCount | 8 |
ParticipantIDs | affrit_agriknowledge_oai_affrc_go_jp_01_00566108 jstage_primary_article_jag_56_3_56_3_215_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20090000 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – year: 2009 text: 20090000 |
PublicationDecade | 2000 |
PublicationTitle | Journal of Applied Glycoscience |
PublicationTitleAlternate | J. Appl. Glycosci. |
PublicationYear | 2009 |
Publisher | 日本応用糖質科学会 |
Publisher_xml | – name: 日本応用糖質科学会 |
References | 15)H. Satoh, A. Nishi, K. Yamashita, Y. Takemoto, Y. Tanaka, Y. Hosaka, A. Sakurai, N. Fujita and Y. Nakamura: Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol., 133, 1111-1121 (2003). 2)S. Hizukuri: Starch: Analytical aspects. in Carbohydrates in Food, A.C. Eliasson, ed., Marcel Dekker, Inc., New York, pp. 347-428 (1996). 39)S. Kitamura, K. Kobayashi, H. Tanahashi, T. Ozeki and T. Kuge: On the Mark-Houwink-Sakurada equation for amylose in aqueous solvents. J. Jpn. Soc. Starch Sci., 36, 257-264 (1989). 13)Y. Han, E. Bendik, F. Sun, K. Gasic and S.S. Korban: Genomic isolation of genes encoding starch branching enzyme II (SBEII) in apple: toward characterization of evolutionary disparity in SbeII genes between monocots and eudicots. Planta, 226, 1265-1276 (2007). 21)S. Hamada, K. Nozaki, H. Ito, Y. Yoshimoto, H. Yoshida, S. Hiraga, S. Onodera, M. Honma, Y. Takeda and H. Matsui: Two starch-branching-enzyme isoforms occur in different fractions of developing seeds of kidney bean. Biochem. J., 359, 23-34 (2001). 29)I. Hanashiro, H. Shinohara and Y. Takeda: Application of fluorescent labeling/HPSEC method to structural characterization of the product from amylose by starch branching enzyme. J. Appl. Glycosci., 50, 487-491 (2003). 27)M. Somogyi: Notes on sugar determination. J. Biol. Chem., 195, 19-23 (1952). 40)Y. Nakanishi, T. Norisuye, A. Teramoto and S. Kitamura: Conformation of amylose in dimethyl-sulfoxide. Macromolecules., 26, 4220-4225 (1993). 38)S. Kitamura, H. Yunokawa, S. Mitsuie and T. Kuge: Study on polysaccharides by the fluorescence method. II. Micro-Brownian motion and conformational change of amylose in aqueous solution. Polym. J., 14, 93-99 (1982). 11)K. Mizuno, T. Kawasaki, H. Shimada, H. Satoh, E. Kobayashi, S. Okumura, Y. Arai and T. Baba: Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J. Biol. Chem., 268, 19084-19091 (1993). 19)H.P. Guan, T. Baba and J. Preiss: Expression of branching enzyme I of maize endosperm in Escherichia coli. Plant Physiol., 104, 1449-1453 (1994). 22)K. Mizuno, E. Kobayashi, M. Tachibana, T. Kawasaki, T. Fujimura, K. Funane, M. Kobayashi and T. Baba: Characterization of an isoform of rice starch branching enzyme, RBE4, in developing seeds. Plant Cell Physiol., 42, 349-357 (2001). 41)Y. Takeda, S. Hizukuri and B.O. Juliano: Purification and structure of amylose from rice starch. Carbohydr. Res., 148, 299-308 (1986). 34)P.J.A. Meeuwsen, J-P. Vincken, G. Beldman and A.G.J. Voragen: A universal assay for screening expression libraries for carbohydrases. J. Biosci. Bioenginer., 89, 107-109 (2000). 6)Y. Nakamura, J. Takahashi, A. Sakurai, Y. Inaba, E. Suzuki, S. Nihei, S. Fujiwara, M. Tsuzuki, H. Miyashita, H. Ikemoto, M. Kawachi, H. Sekiguchi and N. Kurano: Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant Cell Physiol., 46, 539-545 (2005). 42)D. Borovsky, E.E. Smith and W.J. Whelan: On the mechanism of amylose branching by potato Q-enzyme. Eur. J. Biochem., 16, 307-312 (1976). 26)N. Nelson: A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem., 153, 375-380 (1944). 31)S. Waffenschmidt and L. Jaenicke: Assay of reducing sugars in the nanomole range with 2,2´-bicinchoninate. Anal. Biochem., 165, 337-340 (1987). 20)H.P. Guan, P. Li, J.I. Radosevich, J. Preiss and P. Keeling: Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. Arch. Biochem. Biophys., 342, 92-98 (1997). 32)J.D. Fox and J.F. Robyt: Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal. Biochem., 195, 93-96 (1991). 5)D.B. Thompson: On the non-random nature of amylopectin branching. Carbohydr. Polym., 43, 223-239 (2000). 24)J.S. Hawker, J.L. Ozbun, H. Ozaki, E. Greenberg and J. Preiss: Interaction of spinach leaf adenosine diphosphate glucose α-1,4 glucan α-4-glucosyl transferase and α-1,4 glucan, α-1,4 glucan-6-glycosyl transferase in synthesis of branched α-glucan. Arch. Biochem. Biophys., 160, 530-551 (1974). 3)M.J. Gidley and P.V. Bulpin: Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices. Carbohydr. Res., 161, 291-300 (1987). 16)C.D. Boyer and J. Preiss: Multiple forms of (1,4)-α-D-glucan, (1,4)-α-D-glucan-6-glycosyl transferase from developing Zea mays L. kernels. Carbohydr. Res., 61, 321-334 (1978). 1)K. Kainuma and D. French: Naegeli amylodextrin and its relationship to starch granule structure. II. Role of water in crystallization of B-starch. Biopolymer, 11, 2241-2250 (1972). 12)D.K. Fisher, M. Gao, K.-N. Kim, C.D. Boyer and M.J. Guiltinan: Allelic analysis of the maize amylose-extender locus suggests that independent genes encode starch-branching enzymes IIa and IIb. Plant Physiol., 110, 611-619 (1996). 4)S. Hizukuri: Polymodal distribution of chain lengths of amylopectins, and its significance. Carbohydr. Res., 147, 342-347 (1986). 8)Y. Nakamura: Towards a better understanding of the metabolic system for amylopectin biosynthesis in plant: rice endosperm as a model tissue. Plant Cell Physiol., 43, 718-725 (2002). 10)H. Yamanouchi and Y. Nakamura: Organ specificity of isoforms of starch branching enzyme (Q-enzyme) in rice. Plant Cell Physiol., 33, 985-991 (1992). 23)U. Rydberg, L. Andersson, R. Andersson, P. Åman and H. Larsson: Comparison of starch branching enzyme I and II from potato. Eur. J. Biochem., 268, 6140-6145 (2001). 36)Y. Utsumi and Y. Nakamura: Structural and enzymatic characterization of the isoamylase1 homo-oligomer and the isoamylase1-isoamylase2 hetero-oligomer from rice endosperm. Planta, 225, 75-87 (2006). 33)L.W. Doner and P.L. Irwin: Assay of reducing end-groups in oligosaccharide homologues with 2,2´-bicinchoninate. Anal. Biochem., 202, 50-53 (1992). 30)E.M. Gindler: Nomogram for calculation of concentration for colorimetric systems in which absorbance decreases linearly as concentration increases. Clin. Chem., 16, 350-351 (1970). 37)D.B. Johnston, S.P. Shoemaker, G.M. Smith and J.R. Whitaker: Kineteic measurements of cellulase activity on insoluble substratesusing disodium 2,2´ bicinchoninate. J. Food. Biochem., 22, 301-319 (1998). 17)Y. Takeda, H.P. Guan and J. Preiss: Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydr. Res., 240, 253-263 (1993). 14)A. Nishi, Y. Nakamura, N. Tanaka and H. Satoh: Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol., 127, 459-472 (2001). 18)H.P. Guan and J. Preiss: Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol., 102, 1269-1273 (1993). 7)P. Deschamps, C. Colleoni, Y. Nakamura, E. Suzuki, J.L. Putaux, A. Buléon, S. Haebel, G. Ritte, M. Steup, L.I. Falcón, D. Moreira, W. Loffelhardt, J.N. Raj, C. Plancke, C. d’Hulst, D. Dauvillée and S. Ball: Metabolic symbiosis and the birth of the plant kingdom. Mol. Biol. Evol., 25, 536-548 (2008). 35)H. Hussain, A. Mant, R. Seale, S. Zeeman, E. Hinchliffe, A. Edwards, C. Hylton, S. Bornemann, A.M. Smith, C. Martin and R. Bustos: Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell, 15, 133-149 (2003). 9)S.G. Ball and M.K. Morell: From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol., 54, 207-233 (2003). 28)S. Hizukuri, Y. Takeda and M. Yasuda: Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr. Res., 94, 205-213 (1981). 25)D. Borovsky, E.C. Smith and W.J. Whelan: Purification and properties of potato 1,4-α-D-glucan: 6-α-(1,4-α-glucano)-transferase: evidence against a dual catalytic function in amylose-branching enzyme. Eur. J. Biochem., 59, 615-625 (1975). |
References_xml | – reference: 23)U. Rydberg, L. Andersson, R. Andersson, P. Åman and H. Larsson: Comparison of starch branching enzyme I and II from potato. Eur. J. Biochem., 268, 6140-6145 (2001). – reference: 7)P. Deschamps, C. Colleoni, Y. Nakamura, E. Suzuki, J.L. Putaux, A. Buléon, S. Haebel, G. Ritte, M. Steup, L.I. Falcón, D. Moreira, W. Loffelhardt, J.N. Raj, C. Plancke, C. d’Hulst, D. Dauvillée and S. Ball: Metabolic symbiosis and the birth of the plant kingdom. Mol. Biol. Evol., 25, 536-548 (2008). – reference: 22)K. Mizuno, E. Kobayashi, M. Tachibana, T. Kawasaki, T. Fujimura, K. Funane, M. Kobayashi and T. Baba: Characterization of an isoform of rice starch branching enzyme, RBE4, in developing seeds. Plant Cell Physiol., 42, 349-357 (2001). – reference: 40)Y. Nakanishi, T. Norisuye, A. Teramoto and S. Kitamura: Conformation of amylose in dimethyl-sulfoxide. Macromolecules., 26, 4220-4225 (1993). – reference: 8)Y. Nakamura: Towards a better understanding of the metabolic system for amylopectin biosynthesis in plant: rice endosperm as a model tissue. Plant Cell Physiol., 43, 718-725 (2002). – reference: 27)M. Somogyi: Notes on sugar determination. J. Biol. Chem., 195, 19-23 (1952). – reference: 38)S. Kitamura, H. Yunokawa, S. Mitsuie and T. Kuge: Study on polysaccharides by the fluorescence method. II. Micro-Brownian motion and conformational change of amylose in aqueous solution. Polym. J., 14, 93-99 (1982). – reference: 4)S. Hizukuri: Polymodal distribution of chain lengths of amylopectins, and its significance. Carbohydr. Res., 147, 342-347 (1986). – reference: 37)D.B. Johnston, S.P. Shoemaker, G.M. Smith and J.R. Whitaker: Kineteic measurements of cellulase activity on insoluble substratesusing disodium 2,2´ bicinchoninate. J. Food. Biochem., 22, 301-319 (1998). – reference: 41)Y. Takeda, S. Hizukuri and B.O. Juliano: Purification and structure of amylose from rice starch. Carbohydr. Res., 148, 299-308 (1986). – reference: 33)L.W. Doner and P.L. Irwin: Assay of reducing end-groups in oligosaccharide homologues with 2,2´-bicinchoninate. Anal. Biochem., 202, 50-53 (1992). – reference: 28)S. Hizukuri, Y. Takeda and M. Yasuda: Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr. Res., 94, 205-213 (1981). – reference: 13)Y. Han, E. Bendik, F. Sun, K. Gasic and S.S. Korban: Genomic isolation of genes encoding starch branching enzyme II (SBEII) in apple: toward characterization of evolutionary disparity in SbeII genes between monocots and eudicots. Planta, 226, 1265-1276 (2007). – reference: 16)C.D. Boyer and J. Preiss: Multiple forms of (1,4)-α-D-glucan, (1,4)-α-D-glucan-6-glycosyl transferase from developing Zea mays L. kernels. Carbohydr. Res., 61, 321-334 (1978). – reference: 31)S. Waffenschmidt and L. Jaenicke: Assay of reducing sugars in the nanomole range with 2,2´-bicinchoninate. Anal. Biochem., 165, 337-340 (1987). – reference: 30)E.M. Gindler: Nomogram for calculation of concentration for colorimetric systems in which absorbance decreases linearly as concentration increases. Clin. Chem., 16, 350-351 (1970). – reference: 21)S. Hamada, K. Nozaki, H. Ito, Y. Yoshimoto, H. Yoshida, S. Hiraga, S. Onodera, M. Honma, Y. Takeda and H. Matsui: Two starch-branching-enzyme isoforms occur in different fractions of developing seeds of kidney bean. Biochem. J., 359, 23-34 (2001). – reference: 2)S. Hizukuri: Starch: Analytical aspects. in Carbohydrates in Food, A.C. Eliasson, ed., Marcel Dekker, Inc., New York, pp. 347-428 (1996). – reference: 20)H.P. Guan, P. Li, J.I. Radosevich, J. Preiss and P. Keeling: Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. Arch. Biochem. Biophys., 342, 92-98 (1997). – reference: 25)D. Borovsky, E.C. Smith and W.J. Whelan: Purification and properties of potato 1,4-α-D-glucan: 6-α-(1,4-α-glucano)-transferase: evidence against a dual catalytic function in amylose-branching enzyme. Eur. J. Biochem., 59, 615-625 (1975). – reference: 12)D.K. Fisher, M. Gao, K.-N. Kim, C.D. Boyer and M.J. Guiltinan: Allelic analysis of the maize amylose-extender locus suggests that independent genes encode starch-branching enzymes IIa and IIb. Plant Physiol., 110, 611-619 (1996). – reference: 19)H.P. Guan, T. Baba and J. Preiss: Expression of branching enzyme I of maize endosperm in Escherichia coli. Plant Physiol., 104, 1449-1453 (1994). – reference: 1)K. Kainuma and D. French: Naegeli amylodextrin and its relationship to starch granule structure. II. Role of water in crystallization of B-starch. Biopolymer, 11, 2241-2250 (1972). – reference: 9)S.G. Ball and M.K. Morell: From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol., 54, 207-233 (2003). – reference: 14)A. Nishi, Y. Nakamura, N. Tanaka and H. Satoh: Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol., 127, 459-472 (2001). – reference: 17)Y. Takeda, H.P. Guan and J. Preiss: Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydr. Res., 240, 253-263 (1993). – reference: 6)Y. Nakamura, J. Takahashi, A. Sakurai, Y. Inaba, E. Suzuki, S. Nihei, S. Fujiwara, M. Tsuzuki, H. Miyashita, H. Ikemoto, M. Kawachi, H. Sekiguchi and N. Kurano: Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant Cell Physiol., 46, 539-545 (2005). – reference: 15)H. Satoh, A. Nishi, K. Yamashita, Y. Takemoto, Y. Tanaka, Y. Hosaka, A. Sakurai, N. Fujita and Y. Nakamura: Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol., 133, 1111-1121 (2003). – reference: 5)D.B. Thompson: On the non-random nature of amylopectin branching. Carbohydr. Polym., 43, 223-239 (2000). – reference: 34)P.J.A. Meeuwsen, J-P. Vincken, G. Beldman and A.G.J. Voragen: A universal assay for screening expression libraries for carbohydrases. J. Biosci. Bioenginer., 89, 107-109 (2000). – reference: 39)S. Kitamura, K. Kobayashi, H. Tanahashi, T. Ozeki and T. Kuge: On the Mark-Houwink-Sakurada equation for amylose in aqueous solvents. J. Jpn. Soc. Starch Sci., 36, 257-264 (1989). – reference: 3)M.J. Gidley and P.V. Bulpin: Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices. Carbohydr. Res., 161, 291-300 (1987). – reference: 10)H. Yamanouchi and Y. Nakamura: Organ specificity of isoforms of starch branching enzyme (Q-enzyme) in rice. Plant Cell Physiol., 33, 985-991 (1992). – reference: 18)H.P. Guan and J. Preiss: Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol., 102, 1269-1273 (1993). – reference: 36)Y. Utsumi and Y. Nakamura: Structural and enzymatic characterization of the isoamylase1 homo-oligomer and the isoamylase1-isoamylase2 hetero-oligomer from rice endosperm. Planta, 225, 75-87 (2006). – reference: 42)D. Borovsky, E.E. Smith and W.J. Whelan: On the mechanism of amylose branching by potato Q-enzyme. Eur. J. Biochem., 16, 307-312 (1976). – reference: 26)N. Nelson: A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem., 153, 375-380 (1944). – reference: 35)H. Hussain, A. Mant, R. Seale, S. Zeeman, E. Hinchliffe, A. Edwards, C. Hylton, S. Bornemann, A.M. Smith, C. Martin and R. Bustos: Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell, 15, 133-149 (2003). – reference: 29)I. Hanashiro, H. Shinohara and Y. Takeda: Application of fluorescent labeling/HPSEC method to structural characterization of the product from amylose by starch branching enzyme. J. Appl. Glycosci., 50, 487-491 (2003). – reference: 32)J.D. Fox and J.F. Robyt: Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal. Biochem., 195, 93-96 (1991). – reference: 24)J.S. Hawker, J.L. Ozbun, H. Ozaki, E. Greenberg and J. Preiss: Interaction of spinach leaf adenosine diphosphate glucose α-1,4 glucan α-4-glucosyl transferase and α-1,4 glucan, α-1,4 glucan-6-glycosyl transferase in synthesis of branched α-glucan. Arch. Biochem. Biophys., 160, 530-551 (1974). – reference: 11)K. Mizuno, T. Kawasaki, H. Shimada, H. Satoh, E. Kobayashi, S. Okumura, Y. Arai and T. Baba: Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J. Biol. Chem., 268, 19084-19091 (1993). |
SSID | ssib005901921 ssj0046186 |
Score | 1.7547128 |
Snippet | ... |
SourceID | affrit jstage |
SourceType | Open Access Repository Publisher |
StartPage | 215 |
Title | ビシンコニニック酸でグルカンの還元末端数を測定することによってデンプン枝作り酵素の活性を定量的に測定する方法 |
URI | https://www.jstage.jst.go.jp/article/jag/56/3/56_3_215/_article/-char/ja https://agriknowledge.affrc.go.jp/RN/2010780974 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Applied Glycoscience, 2009, Vol.56(3), pp.215-222 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANGi9eBE_8Zs9OF5kaz4mycwx2WYVRUGo4C1k81Es2pWyPdSTm22p6EFQVBQVUVBhpRWqqIg3_8nolv0Xvjf52LQK1kIZpi_va96b7MzLzLxRlBM8gFloFPE6Z2ZYpy14pVqMqxjz6EYctWBMwbPDFy5aZy_Tc1fMK9vGflR2Lc11WuPhzb-eK9mKVwEGfsVTsv_h2ZIpAKAO_oUSPAzlpnxMPIMwg3BDVnTi2jnELSFGDmHuH5UCx2kSjxNmEpdJiEYcuyBXc2THLZDd9SIA2ZPkOmGUeCbyQc4W4Q2JbGOJIgBiFgx1wnWEgESngVTAhDs5Q85znFxVrWggyCo1LPRhJaTEsYoGbrAGGKoKAX1A6ATxKHEnUNucoVNYw0TlXUoctdJSCyGuixWmjgyFzSlbwVE0ayI5_ItmKXXeTJNBMUDjEhl0Nv8RP5y5Nh_mGUnLlzS_LiVsZ1uw8fKz9ilXDgTnyt3YUoBHHCoVpegbeI7qo9ZgRdBUI6wxwjcJVwnjG_BtNB5vFlBNms0jzKsSsoa0voUW51ohCEzo6tIDjGRXbZVfoEYjnKSCbmQWvUqaz21Kn0mZ2C1saSypNVQcR_Y8G2WhrSdktwA5oIZTGYgNSnGnazZSxxkMxhq8elmrjt5ZWvr8V8pYNxSblVmdnp1-3zhhwGVjeVHF1LhpjZck6xKw56-3D0i-aflGVgCuXzzBA5LweLuyQ7dtDTcWn79USZLH1SzpYDY_pHhDhfwMlLcwS5qMmpwe6QET4iBJZq9iuDsNcWKxx1ROeyd3K7vy_lZzMh32KNumg73KPmcm6LSvz9dO1uQOcrk0t095JXoPRPpZ9FZFuip6d-VfT6Qrw8UvovtWpB9Ery_SPiJ0l4fpwq_F3uBZf62_Mnj4QaT3B1_e_1p-KrpPRHpXdB-I7jvRBfzbovtadN-I3hIS9h5DOXjx_Of3ZyK9M1z8tPbxJXAbfPw2uAUi7gOH4dK9tacLQFtlOHj0dbD6cL8y2fQmG2fr-R0w9UCH4KceW4YaJommJRpNYPoW2QFVI0M3OadBrAYGDyHiTtQwgkgstjlM8IIkDhJqW9SONOOAMjbTnokPKrUIooEkikIzoQGNItaKrABiP0a1kNt6YB9S1MzifjA1O1rR8GX-fXgQ-lNtf_qGr2o-5k-GsJMdUljmG_9GlhrI33RfObx10iPKzmxJG78DH1XGOrNz8TGIjDqt47Lj_Qb7gkNq |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%83%93%E3%82%B7%E3%83%B3%E3%82%B3%E3%83%8B%E3%83%8B%E3%83%83%E3%82%AF%E9%85%B8%E3%81%A7%E3%82%B0%E3%83%AB%E3%82%AB%E3%83%B3%E3%81%AE%E9%82%84%E5%85%83%E6%9C%AB%E7%AB%AF%E6%95%B0%E3%82%92%E6%B8%AC%E5%AE%9A%E3%81%99%E3%82%8B%E3%81%93%E3%81%A8%E3%81%AB%E3%82%88%E3%81%A3%E3%81%A6%E3%83%87%E3%83%B3%E3%83%97%E3%83%B3%E6%9E%9D%E4%BD%9C%E3%82%8A%E9%85%B5%E7%B4%A0%E3%81%AE%E6%B4%BB%E6%80%A7%E3%82%92%E5%AE%9A%E9%87%8F%E7%9A%84%E3%81%AB%E6%B8%AC%E5%AE%9A%E3%81%99%E3%82%8B%E6%96%B9%E6%B3%95&rft.jtitle=Journal+of+Applied+Glycoscience&rft.au=Francisco%2C+Perigio+B.%2C+Jr&rft.au=%E6%BE%A4%E7%94%B0%2C+%E9%9A%86%E8%A1%8C&rft.au=%E5%90%89%E7%94%B0%2C+%E7%9C%9F%E7%94%B1%E7%BE%8E&rft.au=%E5%8C%97%E6%9D%91%2C+%E9%80%B2%E4%B8%80&rft.date=2009&rft.pub=%E6%97%A5%E6%9C%AC%E5%BF%9C%E7%94%A8%E7%B3%96%E8%B3%AA%E7%A7%91%E5%AD%A6%E4%BC%9A&rft.issn=1344-7882&rft.eissn=1880-7291&rft.volume=56&rft.issue=3&rft.spage=215&rft.epage=222&rft_id=info:doi/10.5458%2Fjag.56.215&rft.externalDocID=article_jag_56_3_56_3_215_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-7882&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-7882&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-7882&client=summon |