Nanocellulose From Fundamentals to Advanced Materials
Saved in:
Main Authors | , , |
---|---|
Format | eBook |
Language | English German |
Published |
Newark
John Wiley & Sons, Incorporated
2019
|
Edition | 1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction to Nanocellulose -- 1.1 Introduction -- 1.2 Preparation of Nanocellulose -- 1.2.1 Cellulose Nanocrystals -- 1.2.2 Cellulose Nanofibers -- 1.2.3 Bacterial Nanocellulose -- 1.3 Surface Modification of Nanocellulose -- 1.3.1 Esterification -- 1.3.2 Oxidation -- 1.3.3 Etherification -- 1.3.4 Amidation -- 1.3.5 Other Chemical Methods -- 1.3.6 Physical Interaction -- 1.4 Nanocellulose‐Based Materials and Applications -- 1.5 Conclusions and Prospects -- References -- Chapter 2 Structure and Properties of Cellulose Nanocrystals -- 2.1 Introduction -- 2.2 Extraction of Cellulose Nanocrystals -- 2.2.1 Extraction of Cellulose Nanocrystals by Acid Hydrolysis -- 2.2.2 Pretreatments of Cellulose Before Acid Hydrolysis -- 2.2.3 Other Methods of Preparing Cellulose Nanocrystals -- 2.3 Structures and Properties of Cellulose Nanocrystals -- 2.3.1 Physical Properties of Cellulose Nanocrystals -- 2.3.2 Properties of Cellulose Nanocrystal Suspension -- References -- Chapter 3 Structure and Properties of Cellulose Nanofibrils -- 3.1 Production of CNF -- 3.1.1 Chemical Bleaching -- 3.1.2 Mechanical Disintegration -- 3.1.2.1 Homogenization -- 3.1.2.2 Grinding -- 3.1.2.3 Ball‐milling -- 3.1.2.4 Ultrasonication -- 3.1.2.5 Steam Explosion -- 3.1.2.6 Aqueous Counter Collision -- 3.1.2.7 Refining -- 3.1.2.8 Cryocrushing -- 3.1.2.9 Twin‐Screw Extrusion -- 3.1.2.10 Other Methods -- 3.1.3 Pretreatment -- 3.2 Features and Properties -- 3.2.1 Morphology of CNF -- 3.2.2 Rheology -- 3.2.3 CNF in Different Forms -- 3.3 Conclusion -- References -- Chapter 4 Synthesis, Structure, and Properties of Bacterial Cellulose -- 4.1 Introduction -- 4.2 Biogenesis of Bacterial Cellulose -- 4.2.1 Biochemistry of BC Synthesis -- 4.2.2 Biochemical Pathway of BC Production
- 9.6.2 Application of Optical Materials -- 9.6.2.1 Optical Application of CNC Films -- 9.6.2.2 Optical Application of CNC Composite Films -- 9.6.3 Sensors -- References -- Chapter 10 Potential Application Based on Colloidal Properties of Cellulose Nanocrystals -- 10.1 Colloidal Properties of CNC and Applications in Functional Materials -- 10.2 Nanocellulose for Paper and Packaging -- 10.2.1 Nanocellulose for Paper Coating -- 10.2.2 Microfibrillated Cellulose Coated Paper for Delivery System -- 10.2.3 Water‐Resistant Nanopaper Based on Modified Nanocellulose -- 10.2.4 Effect of Chemical Composition on Microfibrillar Cellulose Film -- 10.2.5 Antimicrobial Diffusion Films Based on Microfibrillated Cellulose -- 10.3 Nanocellulose for Wood Coatings -- References -- Chapter 11 Strategies to Explore Biomedical Application of Nanocellulose -- 11.1 Introduction -- 11.2 Research on Biological Toxicity of Nanocellulose -- 11.3 Application of Nanocellulose for Immobilization and Recognition of Biological Macromolecules -- 11.4 Application of Nanocellulose for Cell Imaging -- 11.5 Application of Nanocellulose for Cell Scaffolds -- 11.6 Application of Nanocellulose in Tissue Engineering -- 11.6.1 Tissue Repairing, Regeneration, and Healing -- 11.6.1.1 Skin Tissue Repairing -- 11.6.1.2 Bone Tissue Regeneration -- 11.6.2 Tissue Replacement -- 11.6.2.1 Artificial Blood Vessels -- 11.6.2.2 Soft Tissues, Meniscus, and Cartilage -- 11.6.2.3 Nucleus Pulposus Replacement -- 11.7 Application of Nanocellulose in Drug Carrier and Delivery -- 11.8 Application of Nanocellulose as Biomedical Materials -- 11.8.1 Antimicrobial Nanomaterials -- 11.8.1.1 Nanocellulose Incorporated with Inorganic Antimicrobial Agents -- 11.8.1.2 Nanocellulose Incorporated with Organic Antimicrobial Agents -- 11.8.2 Medical Composite Material -- 11.9 Summary -- References
- 4.2.3 Molecular Regulation of BC Synthesis -- 4.3 Structure and Exciting Features of Bacterial Cellulose -- 4.3.1 Chemical Structure and Properties -- 4.3.2 Physiological Features -- 4.3.3 Self‐assembly and Crystallization -- 4.3.4 Ultrafine Thin Fibrous Structure -- 4.3.5 Macrostructure Control and Orientation -- 4.3.6 Porosity and Materials Absorption Potential of BC for Composite Synthesis -- 4.3.7 Biocompatibility -- 4.3.8 Biodegradability -- 4.4 Production of Bacterial Cellulose: Synthesis Approaches -- 4.4.1 Static Fermentative Cultivation: Production of BC Membrane, Film, or Sheet -- 4.4.2 Shaking Fermentative Cultivation: Production of BC Pellets -- 4.4.3 Agitation Fermentative Cultivation: Production of BC Granules -- 4.4.3.1 Rotating Disk Reactor -- 4.4.3.2 Trickling Bed Reactor -- 4.5 Additives to Enhance BC Production -- 4.5.1 Carboxymethylcellulose -- 4.5.2 Organic Acids -- 4.5.3 Vitamin C -- 4.5.4 Sodium Alginate -- 4.5.5 Alcohols -- 4.5.6 SSGO -- 4.5.7 Lignosulfate -- 4.5.8 Agar and Xanthan -- 4.5.9 Thin Stillage -- 4.6 Strategies Toward Low‐Cost BC Production -- 4.6.1 Fruit Juices -- 4.6.2 Sugarcane Molasses -- 4.6.3 Agricultural and Industrial Wastes -- 4.6.4 Food Wastes -- 4.7 Conclusions and Future Prospects -- Acknowledgment -- References -- Chapter 5 Surface Chemistry of Nanocellulose -- 5.1 Brief Introduction to Nanocellulose Family -- 5.1.1 Cellulose Nanocrystals (CNCs) -- 5.1.2 Cellulose Nanofibrils (CNFs) -- 5.1.3 Bacterial Cellulose (BC) -- 5.2 Surface Modification of Nanocellulose -- 5.2.1 Physical Adsorption of Surfactants -- 5.2.2 Sulfonation -- 5.2.3 TEMPO‐oxidation -- 5.2.4 Esterification -- 5.2.5 Silylation -- 5.2.6 Grafting Onto -- 5.2.7 Grafting From -- 5.2.7.1 Ring‐Opening Polymerization (ROP) -- 5.2.7.2 Living Radical Polymerization (LRP) -- 5.2.8 Chemical Modification from End Hemiacetal
- Chapter 12 Application of Nanocellulose in Energy Materials and Devices
- 5.3 Advanced Functional Modifications -- 5.3.1 Fluorescent and Dye Molecules -- 5.3.2 Amino Acid and DNA -- 5.3.3 Self‐cross‐linking of Nanocrystals -- References -- Chapter 6 Current Status of Nanocellulose‐Based Nanocomposites -- 6.1 Introduction -- 6.2 Cellulose Nanocrystal‐Filled Nanocomposites -- 6.2.1 Polyolefin‐Based Nanocomposites -- 6.2.2 Rubber‐Based Nanocomposites -- 6.2.3 Polyester‐Based Nanocomposites -- 6.2.4 Polyurethane‐ and Waterborne Polyurethane‐Based Nanocomposites -- 6.2.5 Epoxy‐ and Waterborne Epoxy‐Based Nanocomposites -- 6.2.6 Natural Polymer‐Based Nanocomposites -- 6.3 Fibrillated Cellulose‐Filled Nanocomposites -- 6.3.1 Polyolefin‐Based Nanocomposites -- 6.3.2 Rubber‐Based Nanocomposites -- 6.3.3 Polyester‐Based Nanocomposites -- 6.3.4 Polyurethane‐ and Waterborne Polyurethane‐Based Nanocomposites -- 6.3.5 Natural Polymer‐Based Nanocomposites -- 6.3.6 Other Polymer Nanocomposites Filled with Fibrillated Cellulose -- 6.4 Conclusion and Prospect -- References -- Chapter 7 Reinforcing Mechanism of Cellulose Nanocrystals in Nanocomposites -- 7.1 Percolation Approach -- 7.1.1 Mean‐Field Theory -- 7.1.2 Percolation Model -- 7.1.3 Factors Influencing the Percolation Network Formation -- 7.2 Interfacial Behaviors Between Cellulose Nanocrystals and Matrix -- 7.2.1 Effect of Functional Groups on CNC Surface on Interfacial Interaction -- 7.2.2 Effect of Segmental Entanglement Mediated with Grafted Chains on CNC Surface -- 7.2.3 Role of Co‐continuous Structure Derived from Chemical Coupling of Filler/Matrix -- 7.2.3.1 Thiol−ene Coupling Process Modified Cellulose Nanocrystals (CNCs) and Matrix -- 7.2.3.2 Huisgen Cycloaddition Click Chemistry Between Modified CNCs and Matrices -- 7.2.3.3 Schiff's Base Reaction Between Cellulose Nanocrystals (CNCs) and Matrix -- 7.2.3.4 Esterification Reaction Between CNCs and The Matrix
- 7.2.3.5 Chemical Coupling Between Hydroxyl Groups of Matrix and Aldehyded CNCs or Modified CNCs -- 7.3 Conclusions -- References -- Chapter 8 Role of Cellulose Nanofibrils in Polymer Nanocomposites -- 8.1 Introduction -- 8.2 Characteristics of Cellulose Nanofibrils -- 8.3 Mechanical Properties of CNF Polymer Nanocomposites -- 8.3.1 Thermoset Resins -- 8.3.2 Thermoplastics -- 8.3.3 Waterborne Polymer Systems -- 8.4 Effects of Extrusion on Mechanical Properties of PE/CNF Nanocomposites -- 8.5 Effect of Fiber Size and Lignin Presence -- 8.6 Multifunctionality: Optical and Barrier Properties of CNF Nanocomposites -- 8.7 Outlooks in CNF Nanocomposites -- References -- Chapter 9 Advanced Materials Based on Self‐assembly of Cellulose Nanocrystals -- 9.1 Self‐assembly Structure of CNCs -- 9.1.1 Structure of CNC Liquid Crystals -- 9.1.2 Components of CNC Self‐assembly -- 9.1.3 Form of CNC Self‐assembly Products -- 9.2 Self‐assembly Methods and Materials -- 9.2.1 Casting Method and Spin Coating Method -- 9.2.2 Vacuum‐Assisted Self‐assembly -- 9.2.3 Evaporation‐Induced Self‐assembly -- 9.3 Structural Adjustment of CNC Self‐assembly -- 9.3.1 Cholesteric Structure of Neat CNC Films -- 9.3.2 Cholesteric Structure and Cross‐linking Structure in Gel -- 9.3.3 Cholesteric Structure in Bulk Materials of CNC Composite Self‐assembly -- 9.3.4 Nematic Structure -- 9.4 Modifying Surface Chemical Structure of CNC -- 9.5 Properties of CNC Self‐assembly -- 9.5.1 Mechanical Properties -- 9.5.1.1 Mechanical Properties of CNC Films -- 9.5.1.2 Mechanical Properties of CNC Composite Films -- 9.5.2 Iridescent Color -- 9.5.2.1 Iridescent Color Control of CNC Films -- 9.5.2.2 Iridescent Color Control of CNC Composite Materials -- 9.5.2.3 Optical Control of CNC Self‐assembly Gels -- 9.5.3 Plasmonic Properties of CNC -- 9.6 Potential Applications -- 9.6.1 Oil/Water Separation