Machine tool metrology : an industrial handbook

Maximizing reader insights into the key scientific disciplines of Machine Tool Metrology, this text will prove useful for the industrial-practitioner and those interested in the operation of machine tools. Within this current level of industrial-content, this book incorporates significant usage of t...

Full description

Saved in:
Bibliographic Details
Main Author Smith, Graham T.
Format eBook Book
LanguageEnglish
Published Cham Springer 2016
Springer International Publishing AG
Springer International Publishing
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • Intro -- Publishing History -- Preface -- Acknowledgements -- Contents -- 1 Measurement and Machine Tools-An Introduction -- 1.1 Why the Need for Accurate and Precise Machine Tools-a Brief History -- 1.2 The Early Historical Development of a Linear Measurements -- 1.2.1 The Historical Development of the Metre and the International Bureau of Weights and Measures (BIPM) -- 1.2.2 Optical and Laser Length Measurement -- 1.3 International Standards Laboratories-Why They Are Essential -- 1.3.1 What Is Traceability and Why Is It Necessary? -- 1.3.2 Auditing Metrology: Artefacts, Instrumentation and Equipment -- 1.3.3 National Metrological Research and Calibration Laboratories -- 1.4 Machine Tool's Machining Capabilities -- 1.5 Metrology Equipment Utilised for Basic Machine Tool Calibration Checks -- 1.5.1 Gauge Blocks -- 1.5.2 Length Bars -- 1.5.3 Combination Angle Gauges -- 1.5.4 Precision Polygons -- 1.5.5 Dial Gauges and Dial Test Indicators -- 1.5.6 Straightedges and Cylindrical Precision Mandrels -- 1.5.7 Precision- and Cylindrical Squares -- 1.6 A Concise History of Machine Tool Calibration -- 1.7 Notable Chronology in Machine Tool Testing -- 1.8 Achievable Accuracy and Precision of Machine Tools -- 1.9 Accuracy and Precision-Produced by a Machine Tool -- 1.10 Designation of Machine Tool Axes and Kinematics -- 1.11 Configurations of Machining and Turning Centres -- 1.11.1 -- 1.11.2 Modular, or Reconfigurable Machine Tools -- 1.11.3 Modular Machine Tool Construction -- 1.11.4 Turning and Machining Centre Configurations -- 1.11.5 CNC Controller Developments -- 1.11.6 Non-orthogonalParallel Kinematic Machines (PKM) -- 1.12 Major Elements in a Machine Tool's Construction -- 1.12.1 Headstocks for Turning Centres and Spindles for Machining Centres -- 1.12.2 CNC Conventional Drive Systems and Recirculating Ballscrews
  • 1.12.3 Machine Tool-Bearing Categories -- 1.12.4 Constructional Elements for Machine Tools -- 1.12.5 Linear Motor Drive Systems -- 1.12.6 Linear and Rotary Axis PositioningMonitoring Systems -- 1.13 Finite Element Analysis (FEA) of Machine Tools -- 1.13.1 FEA of CNC Machine Tools -- 1.13.2 Industrial Machine Tool Case Study in FEA-for a Machining Centre -- 1.14 Basic Construction of Coordinate Measuring Machines (CMMs) -- 1.14.1 Introduction to the CMM -- 1.14.2 CMM Construction -- 1.14.3 CMM-Mechanical Probe -- 1.14.4 Recent CMM Probing Systems -- 1.14.5 Micro-Metrology Probes -- References -- 2 Laser Instrumentation and Calibration -- 2.1 Introduction to Lasers -- 2.1.1 Why Is Calibration so Important? -- 2.1.2 Calibration of Laser Interferometers -- 2.1.3 Laser Calibration-Potential Error and Uncertainty Sources -- 2.1.4 Introduction to Laser Machine Calibration -- 2.2 Methods of Machine Acceptance Tests-The Basis for Verification -- 2.2.1 ISO 230 Machine Tool Standards-Previous and Current Calibration Procedures -- 2.2.2 ISO 230-Laser Calibration Procedures on CNC Machine Tools -- 2.2.3 Laser Diagonal Displacement Test -- 2.2.4 Laser Step Diagonal Test -- 2.2.5 Potential Errors-In Three Axes Machine Tools -- 2.3 ISO 10360 for Coordinate Measuring Machine (CMM) Calibration and Verification -- 2.3.1 Coordinate Measuring Machine (CMM)-Fundamentals -- 2.3.2 CMM-Environmental Conditions -- 2.3.3 CMM Performance Standards -- 2.4 Calibration of a Rotary Table-With a Rotary Indexer -- 2.4.1 AxisSet™ Checkup-Utilised for Machine Tool Alignments -- 2.5 Machine Tool Linear Axes-Factors Affecting Their Accuracy and Precision -- 2.6 Laser Tracker-Instrumentation, Testing and Applications -- 2.6.1 Laser Tracker-Calibration Procedures -- 2.6.2 Laser Tracker-Frequently Asked Questions -- 2.6.3 Laser Tracker-Machine-Based Research Applications -- References
  • 7 Uncertainty of Measurement and Statistical Process Control
  • 5.11.2 Verification of Articulated Arm CMM (AACMM) -- References -- 6 Machine Tool Performance: Spindle Analysis -- Corrosion and Condition Monitoring -- Thermography -- 6.1 Machine Tool Spindle Analysis -- 6.1.1 Design Trends in Machine Tool Spindles -- 6.1.2 Machine Tool Spindle Failure Modes -- 6.1.3 Complete Machine Tool Retrofits and Rebuilds -- 6.2 Monitoring and Diagnostics of Machine Tool Spindles -- 6.2.1 Spindle Monitoring Instrumentation-For Machine Tools -- 6.2.2 Thermal Distortion-At the Spindle -- 6.2.3 Spindle Error Motions -- 6.3 Spindle Error Analyser (SEA) Instrumentation -- 6.3.1 Spindle Error Analyser-The Master Target and Its Fixtures-Spindle Hardware -- 6.3.2 Spindle Error Analyser-Spindle Software -- 6.3.3 SEA-Thermal Drift-Resulting from Expansion of Materials -- 6.3.4 SEA-Thermal Tests -- 6.3.5 SEA-How Spindle Measurement Data is Displayed -- 6.3.6 SEA-Spindle Error Plots: For Analysis and Rectification of Bearings -- 6.4 Corrosion-Basic Concepts -- 6.4.1 Understanding Metallic Corrosion-In Brief -- 6.4.2 Machine Tool Spalling-of Bearings and Gears -- 6.4.3 Bearing Failure Modes-With Hard Particle Lubricant Contamination -- 6.4.4 Bearing Contamination -- 6.5 Condition Monitoring-Of Machine Tools -- 6.5.1 Condition Monitoring-Historical Perspective -- 6.5.2 Types of Condition Monitoring Systems -- 6.5.3 Condition Monitoring Systems-Establishing a Programme -- 6.6 Thermographical Inspection -- 6.6.1 Electromagnetic Spectrum-A Brief and Introductory History -- 6.6.2 Thermography-Further Information -- 6.6.3 Thermal Imaging Cameras -- 6.6.4 Emissivity-Thermal Radiation -- 6.6.5 Advantages and Limitations of Thermography -- 6.6.6 Effects of Temperature Variation in Machine Tools -- 6.6.7 Controlling Component Part Temperatures -- 6.6.8 Minimising Heat Sources -- 6.6.9 Temperature Control Strategies -- References
  • 3 Optical Instrumentation for Machine Calibration -- 3.1 Basic Principles of Light -- 3.1.1 Optical Alignment-Basic Principles -- 3.2 Autocollimation Principles -- 3.2.1 Basic Design of an Autocollimator -- 3.2.2 Autocollimator-its Optical Operational Principle -- 3.2.3 Digital Autocollimators -- 3.2.4 Precision Polygons for Angular Measurements -- 3.2.5 Angular Calibration of a Precision Polygon -- 3.2.6 Calibration of a Rotary Table -- 3.3 The Micro-optic Dual-Axis Autocollimator, or Angledekkor -- 3.3.1 Optical Squares and Prisms -- 3.4 Alignment Telescope-Principles of Alignment -- 3.4.1 Targets for Autocollimators -- 3.4.2 Auto-reflection and Autocollimation -- 3.4.3 Calculating Mirror Gradients -- 3.4.4 Effects of the Earth's Curvature and Atmospheric Refraction -- 3.5 Precision Spirit Level -- 3.6 Optical Instrumentation-Clinometers -- 3.7 Talyvel-Precision Level -- 3.7.1 Software Programs-for Precision Electronic Levels -- References -- 4 Telescoping Ballbars and Other Diagnostic Instrumentation -- 4.1 Telescoping Ballbars -- 4.1.1 Machine Tool Health Checks-The Reason Why They Are Necessary -- 4.1.2 Telescoping Ballbars-Historical Development and Operation -- 4.1.3 Telescoping Ballbar-In More Detail -- 4.1.4 Ballbar Testing-Why the Need? -- 4.1.5 Wireless Telescoping Ballbar -- 4.1.6 Telescoping Ballbar-A Closer Examination of Machine Tool Inaccuracies -- 4.1.7 Ballbars-Other Instrumental Variations -- 4.2 Grid Encoders and Linear Comparator Systems -- 4.3 Rotary Analyzer System and Calibration Rings -- 4.4 Calibration Spheres and Rings-for CMMs -- References -- 5 Artefacts for Machine Verification -- 5.1 Introduction to Artefact Verification-For Interim CMM Checks -- 5.1.1 An Introduction to CMM Error Sources -- 5.1.2 ISO 10360 and CMM Performance -- 5.1.3 Material Standard of Size and CMM Accuracy
  • 5.1.4 CMM-Length Measurement and Maximum Permissible Errors -- 5.2 Purpose-Made Artefacts-Testpieces -- 5.3 General Artefacts for CMM Verification -- 5.3.1 Step Gauge-Its Calibration -- 5.3.2 Step Gauge-For Verification of the Accuracy of CMMs -- 5.3.3 Machine Checking Gauge (MCG) -- 5.4 Ball- and Hole-Plates -- 5.4.1 The 3-D Ball-Plates -- 5.4.2 Ball- and Cube-Tetrahedrons -- 5.5 Large Reference Artefact-For Large-Scale CMM Verification -- 5.5.1 Large Reference Artefact (LRA)-Design and Construction -- 5.5.2 Large Reference Artefact-Reference Surfaces -- 5.5.3 Large Reference Artefact-Artefact Positioning, Alignment and Testing -- 5.5.4 Large Reference Artefact-Summary and Concluding Remarks -- 5.6 Machinable-Artefacts for Machine Tool Verification -- 5.6.1 Introduction to Machinable Testpiece Standards -- 5.6.2 Artefact Stereometry-For Dynamic Machine Tool and Comparative Assessment -- 5.6.3 Stereometric Artefact-Conceptual Design -- 5.6.4 Stereometric Artefact-Machining Trials -- 5.6.5 Stereometric Artefact-Machined and Metrological Results -- 5.7 Small Coordinate Measuring Machine (SCMM) -- 5.7.1 Small Coordinate Measuring Machine-Design Requirements -- 5.7.2 Small Coordinate Measuring Machine-Interferometers, Autocollimators and Probe Design -- 5.8 A Novel 3-D-Nano Touch Probe-For an Ultra-Precision CMM -- 5.8.1 Probing Force and Surface Damage -- 5.8.2 The 3-D-Nano Touch Probe-Constructional Details -- 5.9 Robotic Arms -- 5.9.1 Industrial Robotics-Their Historical Development -- 5.9.2 Defining Robotic Parameters -- 5.9.3 Robotic Calibration -- 5.9.4 Robotic Calibration Devices and Techniques -- 5.10 Parallel Kinematic Mechanism (PKM)-Equator™ Gauge -- 5.10.1 Theory of Operation-Of the PKM -- 5.10.2 Calibrating This PKM -- 5.11 Articulated Arm CMM (AACMM) -- 5.11.1 Articulated Arm CMMs-In More Detail