Machine tool metrology : an industrial handbook
Maximizing reader insights into the key scientific disciplines of Machine Tool Metrology, this text will prove useful for the industrial-practitioner and those interested in the operation of machine tools. Within this current level of industrial-content, this book incorporates significant usage of t...
Saved in:
Main Author | |
---|---|
Format | eBook Book |
Language | English |
Published |
Cham
Springer
2016
Springer International Publishing AG Springer International Publishing |
Edition | 1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- Intro -- Publishing History -- Preface -- Acknowledgements -- Contents -- 1 Measurement and Machine Tools-An Introduction -- 1.1 Why the Need for Accurate and Precise Machine Tools-a Brief History -- 1.2 The Early Historical Development of a Linear Measurements -- 1.2.1 The Historical Development of the Metre and the International Bureau of Weights and Measures (BIPM) -- 1.2.2 Optical and Laser Length Measurement -- 1.3 International Standards Laboratories-Why They Are Essential -- 1.3.1 What Is Traceability and Why Is It Necessary? -- 1.3.2 Auditing Metrology: Artefacts, Instrumentation and Equipment -- 1.3.3 National Metrological Research and Calibration Laboratories -- 1.4 Machine Tool's Machining Capabilities -- 1.5 Metrology Equipment Utilised for Basic Machine Tool Calibration Checks -- 1.5.1 Gauge Blocks -- 1.5.2 Length Bars -- 1.5.3 Combination Angle Gauges -- 1.5.4 Precision Polygons -- 1.5.5 Dial Gauges and Dial Test Indicators -- 1.5.6 Straightedges and Cylindrical Precision Mandrels -- 1.5.7 Precision- and Cylindrical Squares -- 1.6 A Concise History of Machine Tool Calibration -- 1.7 Notable Chronology in Machine Tool Testing -- 1.8 Achievable Accuracy and Precision of Machine Tools -- 1.9 Accuracy and Precision-Produced by a Machine Tool -- 1.10 Designation of Machine Tool Axes and Kinematics -- 1.11 Configurations of Machining and Turning Centres -- 1.11.1 -- 1.11.2 Modular, or Reconfigurable Machine Tools -- 1.11.3 Modular Machine Tool Construction -- 1.11.4 Turning and Machining Centre Configurations -- 1.11.5 CNC Controller Developments -- 1.11.6 Non-orthogonalParallel Kinematic Machines (PKM) -- 1.12 Major Elements in a Machine Tool's Construction -- 1.12.1 Headstocks for Turning Centres and Spindles for Machining Centres -- 1.12.2 CNC Conventional Drive Systems and Recirculating Ballscrews
- 1.12.3 Machine Tool-Bearing Categories -- 1.12.4 Constructional Elements for Machine Tools -- 1.12.5 Linear Motor Drive Systems -- 1.12.6 Linear and Rotary Axis PositioningMonitoring Systems -- 1.13 Finite Element Analysis (FEA) of Machine Tools -- 1.13.1 FEA of CNC Machine Tools -- 1.13.2 Industrial Machine Tool Case Study in FEA-for a Machining Centre -- 1.14 Basic Construction of Coordinate Measuring Machines (CMMs) -- 1.14.1 Introduction to the CMM -- 1.14.2 CMM Construction -- 1.14.3 CMM-Mechanical Probe -- 1.14.4 Recent CMM Probing Systems -- 1.14.5 Micro-Metrology Probes -- References -- 2 Laser Instrumentation and Calibration -- 2.1 Introduction to Lasers -- 2.1.1 Why Is Calibration so Important? -- 2.1.2 Calibration of Laser Interferometers -- 2.1.3 Laser Calibration-Potential Error and Uncertainty Sources -- 2.1.4 Introduction to Laser Machine Calibration -- 2.2 Methods of Machine Acceptance Tests-The Basis for Verification -- 2.2.1 ISO 230 Machine Tool Standards-Previous and Current Calibration Procedures -- 2.2.2 ISO 230-Laser Calibration Procedures on CNC Machine Tools -- 2.2.3 Laser Diagonal Displacement Test -- 2.2.4 Laser Step Diagonal Test -- 2.2.5 Potential Errors-In Three Axes Machine Tools -- 2.3 ISO 10360 for Coordinate Measuring Machine (CMM) Calibration and Verification -- 2.3.1 Coordinate Measuring Machine (CMM)-Fundamentals -- 2.3.2 CMM-Environmental Conditions -- 2.3.3 CMM Performance Standards -- 2.4 Calibration of a Rotary Table-With a Rotary Indexer -- 2.4.1 AxisSet™ Checkup-Utilised for Machine Tool Alignments -- 2.5 Machine Tool Linear Axes-Factors Affecting Their Accuracy and Precision -- 2.6 Laser Tracker-Instrumentation, Testing and Applications -- 2.6.1 Laser Tracker-Calibration Procedures -- 2.6.2 Laser Tracker-Frequently Asked Questions -- 2.6.3 Laser Tracker-Machine-Based Research Applications -- References
- 7 Uncertainty of Measurement and Statistical Process Control
- 5.11.2 Verification of Articulated Arm CMM (AACMM) -- References -- 6 Machine Tool Performance: Spindle Analysis -- Corrosion and Condition Monitoring -- Thermography -- 6.1 Machine Tool Spindle Analysis -- 6.1.1 Design Trends in Machine Tool Spindles -- 6.1.2 Machine Tool Spindle Failure Modes -- 6.1.3 Complete Machine Tool Retrofits and Rebuilds -- 6.2 Monitoring and Diagnostics of Machine Tool Spindles -- 6.2.1 Spindle Monitoring Instrumentation-For Machine Tools -- 6.2.2 Thermal Distortion-At the Spindle -- 6.2.3 Spindle Error Motions -- 6.3 Spindle Error Analyser (SEA) Instrumentation -- 6.3.1 Spindle Error Analyser-The Master Target and Its Fixtures-Spindle Hardware -- 6.3.2 Spindle Error Analyser-Spindle Software -- 6.3.3 SEA-Thermal Drift-Resulting from Expansion of Materials -- 6.3.4 SEA-Thermal Tests -- 6.3.5 SEA-How Spindle Measurement Data is Displayed -- 6.3.6 SEA-Spindle Error Plots: For Analysis and Rectification of Bearings -- 6.4 Corrosion-Basic Concepts -- 6.4.1 Understanding Metallic Corrosion-In Brief -- 6.4.2 Machine Tool Spalling-of Bearings and Gears -- 6.4.3 Bearing Failure Modes-With Hard Particle Lubricant Contamination -- 6.4.4 Bearing Contamination -- 6.5 Condition Monitoring-Of Machine Tools -- 6.5.1 Condition Monitoring-Historical Perspective -- 6.5.2 Types of Condition Monitoring Systems -- 6.5.3 Condition Monitoring Systems-Establishing a Programme -- 6.6 Thermographical Inspection -- 6.6.1 Electromagnetic Spectrum-A Brief and Introductory History -- 6.6.2 Thermography-Further Information -- 6.6.3 Thermal Imaging Cameras -- 6.6.4 Emissivity-Thermal Radiation -- 6.6.5 Advantages and Limitations of Thermography -- 6.6.6 Effects of Temperature Variation in Machine Tools -- 6.6.7 Controlling Component Part Temperatures -- 6.6.8 Minimising Heat Sources -- 6.6.9 Temperature Control Strategies -- References
- 3 Optical Instrumentation for Machine Calibration -- 3.1 Basic Principles of Light -- 3.1.1 Optical Alignment-Basic Principles -- 3.2 Autocollimation Principles -- 3.2.1 Basic Design of an Autocollimator -- 3.2.2 Autocollimator-its Optical Operational Principle -- 3.2.3 Digital Autocollimators -- 3.2.4 Precision Polygons for Angular Measurements -- 3.2.5 Angular Calibration of a Precision Polygon -- 3.2.6 Calibration of a Rotary Table -- 3.3 The Micro-optic Dual-Axis Autocollimator, or Angledekkor -- 3.3.1 Optical Squares and Prisms -- 3.4 Alignment Telescope-Principles of Alignment -- 3.4.1 Targets for Autocollimators -- 3.4.2 Auto-reflection and Autocollimation -- 3.4.3 Calculating Mirror Gradients -- 3.4.4 Effects of the Earth's Curvature and Atmospheric Refraction -- 3.5 Precision Spirit Level -- 3.6 Optical Instrumentation-Clinometers -- 3.7 Talyvel-Precision Level -- 3.7.1 Software Programs-for Precision Electronic Levels -- References -- 4 Telescoping Ballbars and Other Diagnostic Instrumentation -- 4.1 Telescoping Ballbars -- 4.1.1 Machine Tool Health Checks-The Reason Why They Are Necessary -- 4.1.2 Telescoping Ballbars-Historical Development and Operation -- 4.1.3 Telescoping Ballbar-In More Detail -- 4.1.4 Ballbar Testing-Why the Need? -- 4.1.5 Wireless Telescoping Ballbar -- 4.1.6 Telescoping Ballbar-A Closer Examination of Machine Tool Inaccuracies -- 4.1.7 Ballbars-Other Instrumental Variations -- 4.2 Grid Encoders and Linear Comparator Systems -- 4.3 Rotary Analyzer System and Calibration Rings -- 4.4 Calibration Spheres and Rings-for CMMs -- References -- 5 Artefacts for Machine Verification -- 5.1 Introduction to Artefact Verification-For Interim CMM Checks -- 5.1.1 An Introduction to CMM Error Sources -- 5.1.2 ISO 10360 and CMM Performance -- 5.1.3 Material Standard of Size and CMM Accuracy
- 5.1.4 CMM-Length Measurement and Maximum Permissible Errors -- 5.2 Purpose-Made Artefacts-Testpieces -- 5.3 General Artefacts for CMM Verification -- 5.3.1 Step Gauge-Its Calibration -- 5.3.2 Step Gauge-For Verification of the Accuracy of CMMs -- 5.3.3 Machine Checking Gauge (MCG) -- 5.4 Ball- and Hole-Plates -- 5.4.1 The 3-D Ball-Plates -- 5.4.2 Ball- and Cube-Tetrahedrons -- 5.5 Large Reference Artefact-For Large-Scale CMM Verification -- 5.5.1 Large Reference Artefact (LRA)-Design and Construction -- 5.5.2 Large Reference Artefact-Reference Surfaces -- 5.5.3 Large Reference Artefact-Artefact Positioning, Alignment and Testing -- 5.5.4 Large Reference Artefact-Summary and Concluding Remarks -- 5.6 Machinable-Artefacts for Machine Tool Verification -- 5.6.1 Introduction to Machinable Testpiece Standards -- 5.6.2 Artefact Stereometry-For Dynamic Machine Tool and Comparative Assessment -- 5.6.3 Stereometric Artefact-Conceptual Design -- 5.6.4 Stereometric Artefact-Machining Trials -- 5.6.5 Stereometric Artefact-Machined and Metrological Results -- 5.7 Small Coordinate Measuring Machine (SCMM) -- 5.7.1 Small Coordinate Measuring Machine-Design Requirements -- 5.7.2 Small Coordinate Measuring Machine-Interferometers, Autocollimators and Probe Design -- 5.8 A Novel 3-D-Nano Touch Probe-For an Ultra-Precision CMM -- 5.8.1 Probing Force and Surface Damage -- 5.8.2 The 3-D-Nano Touch Probe-Constructional Details -- 5.9 Robotic Arms -- 5.9.1 Industrial Robotics-Their Historical Development -- 5.9.2 Defining Robotic Parameters -- 5.9.3 Robotic Calibration -- 5.9.4 Robotic Calibration Devices and Techniques -- 5.10 Parallel Kinematic Mechanism (PKM)-Equator™ Gauge -- 5.10.1 Theory of Operation-Of the PKM -- 5.10.2 Calibrating This PKM -- 5.11 Articulated Arm CMM (AACMM) -- 5.11.1 Articulated Arm CMMs-In More Detail