Reactivation of Industrial Spent Hydrocracking Catalyst for Tetralin Selective Hydrogenation and Ring-Opening

Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic and environmental benefits. However, seldom have reports on this subject been found. Herein, a solvent-induced coordinating method was develop...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 63; no. 47; pp. 20544 - 20552
Main Authors Liu, Junhao, Geng, Xuchao, Ma, Wenshuo, Wang, Xiaohui, Hu, Yue, Fu, Jianye, Ma, Lishuang, Lyu, Yuchao, Liu, Xinmei
Format Journal Article
LanguageEnglish
Published American Chemical Society 27.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic and environmental benefits. However, seldom have reports on this subject been found. Herein, a solvent-induced coordinating method was developed to reactivate the industrial spent hydrocracking catalysts for tetralin selective hydrogenation and ring-opening to produce benzene, toluene, and xylene (BTX). The developed reactivation method could redisperse the aggregated Ni, Mo active phases and transform the inert β-NiMoO4 phases into the type II NiMoS active phases after sulfidation. The newly formed NiMoS active phases bear 2–3 stacking layers and short stacking lengths over the reactivated catalyst. Besides, the porous structure is reconstructed by removal of the framework aluminum (FAL) and the extra-framework aluminum (EFAL) from the support, and the acidity of the reactivated catalyst is enhanced by the introduction of Beta zeolite. Compared with the spent catalysts, the hydrocracking performance of the reactivated catalysts shows a significant improvement. The tetralin conversion is 83% with a BTX selectivity of 48%, which is comparable to the performance of the freshly prepared catalysts reported in the literature. This work provides a new idea for the resource utilization of spent hydrocracking catalysts.
AbstractList Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic and environmental benefits. However, seldom have reports on this subject been found. Herein, a solvent-induced coordinating method was developed to reactivate the industrial spent hydrocracking catalysts for tetralin selective hydrogenation and ring-opening to produce benzene, toluene, and xylene (BTX). The developed reactivation method could redisperse the aggregated Ni, Mo active phases and transform the inert β-NiMoO₄ phases into the type II NiMoS active phases after sulfidation. The newly formed NiMoS active phases bear 2–3 stacking layers and short stacking lengths over the reactivated catalyst. Besides, the porous structure is reconstructed by removal of the framework aluminum (FAL) and the extra-framework aluminum (EFAL) from the support, and the acidity of the reactivated catalyst is enhanced by the introduction of Beta zeolite. Compared with the spent catalysts, the hydrocracking performance of the reactivated catalysts shows a significant improvement. The tetralin conversion is 83% with a BTX selectivity of 48%, which is comparable to the performance of the freshly prepared catalysts reported in the literature. This work provides a new idea for the resource utilization of spent hydrocracking catalysts.
Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic and environmental benefits. However, seldom have reports on this subject been found. Herein, a solvent-induced coordinating method was developed to reactivate the industrial spent hydrocracking catalysts for tetralin selective hydrogenation and ring-opening to produce benzene, toluene, and xylene (BTX). The developed reactivation method could redisperse the aggregated Ni, Mo active phases and transform the inert β-NiMoO4 phases into the type II NiMoS active phases after sulfidation. The newly formed NiMoS active phases bear 2–3 stacking layers and short stacking lengths over the reactivated catalyst. Besides, the porous structure is reconstructed by removal of the framework aluminum (FAL) and the extra-framework aluminum (EFAL) from the support, and the acidity of the reactivated catalyst is enhanced by the introduction of Beta zeolite. Compared with the spent catalysts, the hydrocracking performance of the reactivated catalysts shows a significant improvement. The tetralin conversion is 83% with a BTX selectivity of 48%, which is comparable to the performance of the freshly prepared catalysts reported in the literature. This work provides a new idea for the resource utilization of spent hydrocracking catalysts.
Author Geng, Xuchao
Ma, Wenshuo
Ma, Lishuang
Lyu, Yuchao
Fu, Jianye
Wang, Xiaohui
Hu, Yue
Liu, Xinmei
Liu, Junhao
AuthorAffiliation State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Junhao
  surname: Liu
  fullname: Liu, Junhao
– sequence: 2
  givenname: Xuchao
  surname: Geng
  fullname: Geng, Xuchao
– sequence: 3
  givenname: Wenshuo
  surname: Ma
  fullname: Ma, Wenshuo
– sequence: 4
  givenname: Xiaohui
  surname: Wang
  fullname: Wang, Xiaohui
– sequence: 5
  givenname: Yue
  surname: Hu
  fullname: Hu, Yue
– sequence: 6
  givenname: Jianye
  surname: Fu
  fullname: Fu, Jianye
– sequence: 7
  givenname: Lishuang
  orcidid: 0000-0002-8683-633X
  surname: Ma
  fullname: Ma, Lishuang
– sequence: 8
  givenname: Yuchao
  orcidid: 0000-0001-7686-9624
  surname: Lyu
  fullname: Lyu, Yuchao
  email: yuchaolyu@upc.edu.cn
– sequence: 9
  givenname: Xinmei
  orcidid: 0000-0001-8306-9545
  surname: Liu
  fullname: Liu, Xinmei
  email: lxmei@upc.edu.cn
BookMark eNp1kMFLwzAUh4NMcE7vHnP0YGeSJm16lKFuMBhs81yy5GV0dslMUmH_vR3d1dN78L7fB-93j0bOO0DoiZIpJYy-Kh2nDegw5Zqwqipu0JgKRjJBuBihMZFSZkJKcYfuYzwQQoTgfIyOa1A6Nb8qNd5hb_HCmS6m0KgWb07gEp6fTfA6KP3duD2eqaTac0zY-oC3kIJqG4c30MLFAgO9Bzf4lDN43ceyVa_q5wO6taqN8HidE_T18b6dzbPl6nMxe1tmihVFyoyUzApLKmNoXhJpBLPWCF2BJgWxhZHAd5ySStqikjsuc6b6leWVgqooWT5Bz4P3FPxPBzHVxyZqaFvlwHexzqngjNOSlj1KBlQHH2MAW59Cc1ThXFNSX5qt-2brS7P1tdk-8jJELpeD74Lrf_kf_wOfloA6
Cites_doi 10.1016/j.jiec.2020.06.022
10.1016/j.bcab.2019.101252
10.1016/j.resconrec.2008.02.004
10.1016/j.apcata.2017.08.019
10.1016/j.jenvman.2020.111789
10.1021/ie4019148
10.1016/j.jcat.2017.04.012
10.1016/j.jcat.2010.12.014
10.1021/ie9008343
10.1016/B978-0-444-63881-6.00012-3
10.1016/j.cattod.2022.09.006
10.1016/j.cattod.2007.02.023
10.1021/acs.energyfuels.3c00490
10.1016/j.cattod.2007.10.112
10.1016/j.fuproc.2022.107586
10.1016/j.jcat.2015.07.031
10.1016/j.jcat.2014.10.005
10.1016/j.cattod.2017.07.019
10.1016/j.apcatb.2013.10.019
10.1016/S0920-5861(99)00096-6
10.1134/S1070427217090087
10.1021/ja010516y
10.1007/s10562-018-2365-9
10.1016/j.ccr.2011.03.014
10.1016/j.fuel.2016.03.068
10.1016/j.apcatb.2017.05.011
10.1016/j.jiec.2021.01.010
10.1016/j.fuproc.2023.107856
10.1021/acssuschemeng.3c01202
10.1016/j.jcat.2004.11.011
10.1016/j.apcata.2021.118095
10.1021/acs.iecr.5b03359
10.1039/C3CS60394F
10.1016/S0920-5861(03)00410-3
10.1016/j.resconrec.2008.08.005
10.1016/j.cattod.2013.10.007
10.1016/j.apcata.2009.03.006
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.iecr.4c02996
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 20552
ExternalDocumentID 10_1021_acs_iecr_4c02996
e15063419
GroupedDBID -~X
.DC
.K2
4.4
53G
55A
5GY
5VS
6TJ
7~N
AABXI
ABMVS
ABQRX
ABUCX
ACGFO
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
~02
AAYXX
ABBLG
ABLBI
CITATION
7S9
L.6
ID FETCH-LOGICAL-a266t-d882f5f09dd13708d52ffd5c9ec060f6d8e4b41098f698b4832a8f6239ae96723
IEDL.DBID ACS
ISSN 0888-5885
1520-5045
IngestDate Fri Jul 11 12:11:25 EDT 2025
Tue Jul 01 03:05:45 EDT 2025
Thu Nov 28 03:13:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a266t-d882f5f09dd13708d52ffd5c9ec060f6d8e4b41098f698b4832a8f6239ae96723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8306-9545
0000-0002-8683-633X
0000-0001-7686-9624
PQID 3154241717
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_3154241717
crossref_primary_10_1021_acs_iecr_4c02996
acs_journals_10_1021_acs_iecr_4c02996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-27
PublicationDateYYYYMMDD 2024-11-27
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-27
  day: 27
PublicationDecade 2020
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1016/j.jiec.2020.06.022
– ident: ref8/cit8
  doi: 10.1016/j.bcab.2019.101252
– ident: ref6/cit6
  doi: 10.1016/j.resconrec.2008.02.004
– ident: ref11/cit11
  doi: 10.1016/j.apcata.2017.08.019
– ident: ref7/cit7
  doi: 10.1016/j.jenvman.2020.111789
– ident: ref9/cit9
  doi: 10.1021/ie4019148
– ident: ref23/cit23
  doi: 10.1016/j.jcat.2017.04.012
– ident: ref33/cit33
  doi: 10.1016/j.jcat.2010.12.014
– ident: ref19/cit19
  doi: 10.1021/ie9008343
– ident: ref3/cit3
  doi: 10.1016/B978-0-444-63881-6.00012-3
– ident: ref16/cit16
  doi: 10.1016/j.cattod.2022.09.006
– ident: ref34/cit34
  doi: 10.1016/j.cattod.2007.02.023
– ident: ref38/cit38
  doi: 10.1021/acs.energyfuels.3c00490
– ident: ref14/cit14
  doi: 10.1016/j.cattod.2007.10.112
– ident: ref37/cit37
  doi: 10.1016/j.fuproc.2022.107586
– ident: ref18/cit18
  doi: 10.1016/j.jcat.2015.07.031
– ident: ref31/cit31
  doi: 10.1016/j.jcat.2014.10.005
– ident: ref32/cit32
  doi: 10.1016/j.cattod.2017.07.019
– ident: ref21/cit21
  doi: 10.1016/j.apcatb.2013.10.019
– ident: ref13/cit13
  doi: 10.1016/S0920-5861(99)00096-6
– ident: ref22/cit22
  doi: 10.1134/S1070427217090087
– ident: ref29/cit29
  doi: 10.1021/ja010516y
– ident: ref20/cit20
  doi: 10.1007/s10562-018-2365-9
– ident: ref1/cit1
  doi: 10.1016/j.ccr.2011.03.014
– ident: ref30/cit30
  doi: 10.1016/j.fuel.2016.03.068
– ident: ref17/cit17
  doi: 10.1016/j.apcatb.2017.05.011
– ident: ref36/cit36
  doi: 10.1016/j.jiec.2021.01.010
– ident: ref39/cit39
  doi: 10.1016/j.fuproc.2023.107856
– ident: ref10/cit10
  doi: 10.1021/acssuschemeng.3c01202
– ident: ref25/cit25
  doi: 10.1016/j.jcat.2004.11.011
– ident: ref12/cit12
  doi: 10.1016/j.apcata.2021.118095
– ident: ref35/cit35
  doi: 10.1021/acs.iecr.5b03359
– ident: ref27/cit27
  doi: 10.1016/j.apcatb.2013.10.019
– ident: ref2/cit2
  doi: 10.1039/C3CS60394F
– ident: ref4/cit4
  doi: 10.1016/j.jenvman.2020.111789
– ident: ref28/cit28
  doi: 10.1016/S0920-5861(03)00410-3
– ident: ref5/cit5
  doi: 10.1016/j.resconrec.2008.08.005
– ident: ref15/cit15
  doi: 10.1016/j.cattod.2013.10.007
– ident: ref26/cit26
  doi: 10.1016/j.apcata.2009.03.006
SSID ssj0005544
Score 2.4592893
Snippet Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 20544
SubjectTerms acidity
aluminum
benzene
catalysts
hazardous waste
hydrogenation
Kinetics, Catalysis, and Reaction Engineering
toluene
xylene
zeolites
Title Reactivation of Industrial Spent Hydrocracking Catalyst for Tetralin Selective Hydrogenation and Ring-Opening
URI http://dx.doi.org/10.1021/acs.iecr.4c02996
https://www.proquest.com/docview/3154241717
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvTgW1xfRNCDh9Y2bdLkKIvLIuhhH7C3kldBxO6y7R7WX--k7bKuinhqKemDJDPf15nkG4RuiNO1U1J5iZDWi6kUnuRx6NGIhaHWIuNVov35hfVG8dOYjlcyOd8z-CS8l7rwX4FC-bEOwHeyTbRFGNiwo0GdwWo5B60Kt4LRuJ1EnDYpyd-e4IBIF-tAtO6HK3Dp7tVViopKk9CtKXnz56Xy9cdPxcZ_fPc-2m04Jn6oJ8UB2rD5Idr5ojx4hN771u1oqOOxeJLhVQkPPJgCEOHewgC2zaR2sXTccVGeRVFi4Lh4aKvwSI4HVREd8Jd1a5iL9fNkbnAfbvPcchU4HqNR93HY6XlN5QVPAmCXngHendEsEMaEURJwQ0mWGaqF1QELMma4jVUcBoJnTHAVg1uQcEoiJ_XNEhKdoFY-ye0pwjAUmkfGCksBME3ClYqYEUpRwXQgdBvdQk-ljeUUaZUUJ2HqLrruS5vua6O75XCl01qI44-218vxTMFaXApE5nYyL9IIGCNwFviHPfvne8_RNgEe47YfkuQCtcrZ3F4CDynVVTUBPwHMP9m8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RcGg5UPoSUKCLRA89OPi1691jFBGFNuGQBCk3a1-WqqoOws4h_Hpm105DqqqCky1rvV7tzs73eWZnBuAidnntlFRBJqQNUipFIHkaBTRhUaS1KLh3tI9v2PA2_T6n8x2I1rEwOIgKe6q8E3-TXSC6dM9-IpPqpjpEFcpewS5ykdgJda8_3ZzqoL5-K-4dF1DEaeuZ_FcPDo90tY1H2-rYY8zgLUz-jM4fLfnVXdaqqx_-Stz4ouEfwH7LOEmvEZF3sGPL97D3JA_hB_g9sS6-obHOkkVBNgU9yPQOYYkMVwaR7l5qZ1knfWfzWVU1QcZLZtYbS0oy9SV1UHs2rVEym_5kacgEXwvc4RW8foTbwdWsPwzaOgyBRPiuA4MsvKBFKIyJkizkhsZFYagWVocsLJjhNlVpFApeMMFVikpC4m2cuMTfLIuTT9ApF6U9BIIronlirLAU4dNkXKmEGaEUFUyHQh_BV5ypvN1HVe5d5HGUu4du-vJ2-o7g23rV8rsmLcd_2p6vlzXHveMcIrK0i2WVJ8gfkcHgH-3xM7_7BV4PZ-NRPrq--fEZ3sTIcFxgYpydQKe-X9pTZCi1OvMy-QhvI-Id
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkCp6oFBA0Ad1pXLgkCUvO_YRLV1tW4oQC4hb5KeEENkVyR7g13fsZHlUCMEpkeU4jj2PLzOeGYAfqc9rp6SKCiFtlFMpIsnzJKIZSxKthePB0f73iA3P8t8X9GIO6CwWBidR40h1cOJ7rp4Y12UYSPZ8-yWiqV6uYxSjbB4WvdfOE_Z-f_RwsoOGGq7IPz6oiNPOO_ncCF4n6fqpTnoqkoOeGXyA8_sZhuMlV71po3r67r_kjW_-hBVY7pAn2W9JZRXmbPUR3j_KR7gG1yfWxzm0VloyduShsAcZTVA9keGtQY13I7W3sJO-t_3c1g1B5EtObTCaVGQUSuugFG17I4W248nKkBN8LPKHWPC6DmeDn6f9YdTVY4gkqvEmMojGHXWxMCbJipgbmjpnqBZWxyx2zHCbqzyJBXdMcJWjsJB4m2Y-ATgr0mwDFqpxZTeB4K5onhkrLEU1agquVMaMUIoKpmOht2AHV6rs-Kkug6s8TUrf6Jev7JZvC3ZnO1dO2vQcL_T9PtvaEnnIO0ZkZcfTuswQRyKSwT_bT6987zd4d3wwKA9_Hf35DEspAh0fn5gWX2ChuZnarwhUGrUdyPIfykrkoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactivation+of+Industrial+Spent+Hydrocracking+Catalyst+for+Tetralin+Selective+Hydrogenation+and+Ring-Opening&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Liu%2C+Junhao&rft.au=Geng%2C+Xuchao&rft.au=Ma%2C+Wenshuo&rft.au=Wang%2C+Xiaohui&rft.date=2024-11-27&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=63&rft.issue=47&rft.spage=20544&rft.epage=20552&rft_id=info:doi/10.1021%2Facs.iecr.4c02996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_iecr_4c02996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon