Reactivation of Industrial Spent Hydrocracking Catalyst for Tetralin Selective Hydrogenation and Ring-Opening
Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic and environmental benefits. However, seldom have reports on this subject been found. Herein, a solvent-induced coordinating method was develop...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 63; no. 47; pp. 20544 - 20552 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
27.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic and environmental benefits. However, seldom have reports on this subject been found. Herein, a solvent-induced coordinating method was developed to reactivate the industrial spent hydrocracking catalysts for tetralin selective hydrogenation and ring-opening to produce benzene, toluene, and xylene (BTX). The developed reactivation method could redisperse the aggregated Ni, Mo active phases and transform the inert β-NiMoO4 phases into the type II NiMoS active phases after sulfidation. The newly formed NiMoS active phases bear 2–3 stacking layers and short stacking lengths over the reactivated catalyst. Besides, the porous structure is reconstructed by removal of the framework aluminum (FAL) and the extra-framework aluminum (EFAL) from the support, and the acidity of the reactivated catalyst is enhanced by the introduction of Beta zeolite. Compared with the spent catalysts, the hydrocracking performance of the reactivated catalysts shows a significant improvement. The tetralin conversion is 83% with a BTX selectivity of 48%, which is comparable to the performance of the freshly prepared catalysts reported in the literature. This work provides a new idea for the resource utilization of spent hydrocracking catalysts. |
---|---|
AbstractList | Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic and environmental benefits. However, seldom have reports on this subject been found. Herein, a solvent-induced coordinating method was developed to reactivate the industrial spent hydrocracking catalysts for tetralin selective hydrogenation and ring-opening to produce benzene, toluene, and xylene (BTX). The developed reactivation method could redisperse the aggregated Ni, Mo active phases and transform the inert β-NiMoO₄ phases into the type II NiMoS active phases after sulfidation. The newly formed NiMoS active phases bear 2–3 stacking layers and short stacking lengths over the reactivated catalyst. Besides, the porous structure is reconstructed by removal of the framework aluminum (FAL) and the extra-framework aluminum (EFAL) from the support, and the acidity of the reactivated catalyst is enhanced by the introduction of Beta zeolite. Compared with the spent catalysts, the hydrocracking performance of the reactivated catalysts shows a significant improvement. The tetralin conversion is 83% with a BTX selectivity of 48%, which is comparable to the performance of the freshly prepared catalysts reported in the literature. This work provides a new idea for the resource utilization of spent hydrocracking catalysts. Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic and environmental benefits. However, seldom have reports on this subject been found. Herein, a solvent-induced coordinating method was developed to reactivate the industrial spent hydrocracking catalysts for tetralin selective hydrogenation and ring-opening to produce benzene, toluene, and xylene (BTX). The developed reactivation method could redisperse the aggregated Ni, Mo active phases and transform the inert β-NiMoO4 phases into the type II NiMoS active phases after sulfidation. The newly formed NiMoS active phases bear 2–3 stacking layers and short stacking lengths over the reactivated catalyst. Besides, the porous structure is reconstructed by removal of the framework aluminum (FAL) and the extra-framework aluminum (EFAL) from the support, and the acidity of the reactivated catalyst is enhanced by the introduction of Beta zeolite. Compared with the spent catalysts, the hydrocracking performance of the reactivated catalysts shows a significant improvement. The tetralin conversion is 83% with a BTX selectivity of 48%, which is comparable to the performance of the freshly prepared catalysts reported in the literature. This work provides a new idea for the resource utilization of spent hydrocracking catalysts. |
Author | Geng, Xuchao Ma, Wenshuo Ma, Lishuang Lyu, Yuchao Fu, Jianye Wang, Xiaohui Hu, Yue Liu, Xinmei Liu, Junhao |
AuthorAffiliation | State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Junhao surname: Liu fullname: Liu, Junhao – sequence: 2 givenname: Xuchao surname: Geng fullname: Geng, Xuchao – sequence: 3 givenname: Wenshuo surname: Ma fullname: Ma, Wenshuo – sequence: 4 givenname: Xiaohui surname: Wang fullname: Wang, Xiaohui – sequence: 5 givenname: Yue surname: Hu fullname: Hu, Yue – sequence: 6 givenname: Jianye surname: Fu fullname: Fu, Jianye – sequence: 7 givenname: Lishuang orcidid: 0000-0002-8683-633X surname: Ma fullname: Ma, Lishuang – sequence: 8 givenname: Yuchao orcidid: 0000-0001-7686-9624 surname: Lyu fullname: Lyu, Yuchao email: yuchaolyu@upc.edu.cn – sequence: 9 givenname: Xinmei orcidid: 0000-0001-8306-9545 surname: Liu fullname: Liu, Xinmei email: lxmei@upc.edu.cn |
BookMark | eNp1kMFLwzAUh4NMcE7vHnP0YGeSJm16lKFuMBhs81yy5GV0dslMUmH_vR3d1dN78L7fB-93j0bOO0DoiZIpJYy-Kh2nDegw5Zqwqipu0JgKRjJBuBihMZFSZkJKcYfuYzwQQoTgfIyOa1A6Nb8qNd5hb_HCmS6m0KgWb07gEp6fTfA6KP3duD2eqaTac0zY-oC3kIJqG4c30MLFAgO9Bzf4lDN43ceyVa_q5wO6taqN8HidE_T18b6dzbPl6nMxe1tmihVFyoyUzApLKmNoXhJpBLPWCF2BJgWxhZHAd5ySStqikjsuc6b6leWVgqooWT5Bz4P3FPxPBzHVxyZqaFvlwHexzqngjNOSlj1KBlQHH2MAW59Cc1ThXFNSX5qt-2brS7P1tdk-8jJELpeD74Lrf_kf_wOfloA6 |
Cites_doi | 10.1016/j.jiec.2020.06.022 10.1016/j.bcab.2019.101252 10.1016/j.resconrec.2008.02.004 10.1016/j.apcata.2017.08.019 10.1016/j.jenvman.2020.111789 10.1021/ie4019148 10.1016/j.jcat.2017.04.012 10.1016/j.jcat.2010.12.014 10.1021/ie9008343 10.1016/B978-0-444-63881-6.00012-3 10.1016/j.cattod.2022.09.006 10.1016/j.cattod.2007.02.023 10.1021/acs.energyfuels.3c00490 10.1016/j.cattod.2007.10.112 10.1016/j.fuproc.2022.107586 10.1016/j.jcat.2015.07.031 10.1016/j.jcat.2014.10.005 10.1016/j.cattod.2017.07.019 10.1016/j.apcatb.2013.10.019 10.1016/S0920-5861(99)00096-6 10.1134/S1070427217090087 10.1021/ja010516y 10.1007/s10562-018-2365-9 10.1016/j.ccr.2011.03.014 10.1016/j.fuel.2016.03.068 10.1016/j.apcatb.2017.05.011 10.1016/j.jiec.2021.01.010 10.1016/j.fuproc.2023.107856 10.1021/acssuschemeng.3c01202 10.1016/j.jcat.2004.11.011 10.1016/j.apcata.2021.118095 10.1021/acs.iecr.5b03359 10.1039/C3CS60394F 10.1016/S0920-5861(03)00410-3 10.1016/j.resconrec.2008.08.005 10.1016/j.cattod.2013.10.007 10.1016/j.apcata.2009.03.006 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.iecr.4c02996 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 20552 |
ExternalDocumentID | 10_1021_acs_iecr_4c02996 e15063419 |
GroupedDBID | -~X .DC .K2 4.4 53G 55A 5GY 5VS 6TJ 7~N AABXI ABMVS ABQRX ABUCX ACGFO ACJ ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 ~02 AAYXX ABBLG ABLBI CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-a266t-d882f5f09dd13708d52ffd5c9ec060f6d8e4b41098f698b4832a8f6239ae96723 |
IEDL.DBID | ACS |
ISSN | 0888-5885 1520-5045 |
IngestDate | Fri Jul 11 12:11:25 EDT 2025 Tue Jul 01 03:05:45 EDT 2025 Thu Nov 28 03:13:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a266t-d882f5f09dd13708d52ffd5c9ec060f6d8e4b41098f698b4832a8f6239ae96723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8306-9545 0000-0002-8683-633X 0000-0001-7686-9624 |
PQID | 3154241717 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3154241717 crossref_primary_10_1021_acs_iecr_4c02996 acs_journals_10_1021_acs_iecr_4c02996 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-27 |
PublicationDateYYYYMMDD | 2024-11-27 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1016/j.jiec.2020.06.022 – ident: ref8/cit8 doi: 10.1016/j.bcab.2019.101252 – ident: ref6/cit6 doi: 10.1016/j.resconrec.2008.02.004 – ident: ref11/cit11 doi: 10.1016/j.apcata.2017.08.019 – ident: ref7/cit7 doi: 10.1016/j.jenvman.2020.111789 – ident: ref9/cit9 doi: 10.1021/ie4019148 – ident: ref23/cit23 doi: 10.1016/j.jcat.2017.04.012 – ident: ref33/cit33 doi: 10.1016/j.jcat.2010.12.014 – ident: ref19/cit19 doi: 10.1021/ie9008343 – ident: ref3/cit3 doi: 10.1016/B978-0-444-63881-6.00012-3 – ident: ref16/cit16 doi: 10.1016/j.cattod.2022.09.006 – ident: ref34/cit34 doi: 10.1016/j.cattod.2007.02.023 – ident: ref38/cit38 doi: 10.1021/acs.energyfuels.3c00490 – ident: ref14/cit14 doi: 10.1016/j.cattod.2007.10.112 – ident: ref37/cit37 doi: 10.1016/j.fuproc.2022.107586 – ident: ref18/cit18 doi: 10.1016/j.jcat.2015.07.031 – ident: ref31/cit31 doi: 10.1016/j.jcat.2014.10.005 – ident: ref32/cit32 doi: 10.1016/j.cattod.2017.07.019 – ident: ref21/cit21 doi: 10.1016/j.apcatb.2013.10.019 – ident: ref13/cit13 doi: 10.1016/S0920-5861(99)00096-6 – ident: ref22/cit22 doi: 10.1134/S1070427217090087 – ident: ref29/cit29 doi: 10.1021/ja010516y – ident: ref20/cit20 doi: 10.1007/s10562-018-2365-9 – ident: ref1/cit1 doi: 10.1016/j.ccr.2011.03.014 – ident: ref30/cit30 doi: 10.1016/j.fuel.2016.03.068 – ident: ref17/cit17 doi: 10.1016/j.apcatb.2017.05.011 – ident: ref36/cit36 doi: 10.1016/j.jiec.2021.01.010 – ident: ref39/cit39 doi: 10.1016/j.fuproc.2023.107856 – ident: ref10/cit10 doi: 10.1021/acssuschemeng.3c01202 – ident: ref25/cit25 doi: 10.1016/j.jcat.2004.11.011 – ident: ref12/cit12 doi: 10.1016/j.apcata.2021.118095 – ident: ref35/cit35 doi: 10.1021/acs.iecr.5b03359 – ident: ref27/cit27 doi: 10.1016/j.apcatb.2013.10.019 – ident: ref2/cit2 doi: 10.1039/C3CS60394F – ident: ref4/cit4 doi: 10.1016/j.jenvman.2020.111789 – ident: ref28/cit28 doi: 10.1016/S0920-5861(03)00410-3 – ident: ref5/cit5 doi: 10.1016/j.resconrec.2008.08.005 – ident: ref15/cit15 doi: 10.1016/j.cattod.2013.10.007 – ident: ref26/cit26 doi: 10.1016/j.apcata.2009.03.006 |
SSID | ssj0005544 |
Score | 2.4592893 |
Snippet | Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 20544 |
SubjectTerms | acidity aluminum benzene catalysts hazardous waste hydrogenation Kinetics, Catalysis, and Reaction Engineering toluene xylene zeolites |
Title | Reactivation of Industrial Spent Hydrocracking Catalyst for Tetralin Selective Hydrogenation and Ring-Opening |
URI | http://dx.doi.org/10.1021/acs.iecr.4c02996 https://www.proquest.com/docview/3154241717 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvTgW1xfRNCDh9Y2bdLkKIvLIuhhH7C3kldBxO6y7R7WX--k7bKuinhqKemDJDPf15nkG4RuiNO1U1J5iZDWi6kUnuRx6NGIhaHWIuNVov35hfVG8dOYjlcyOd8z-CS8l7rwX4FC-bEOwHeyTbRFGNiwo0GdwWo5B60Kt4LRuJ1EnDYpyd-e4IBIF-tAtO6HK3Dp7tVViopKk9CtKXnz56Xy9cdPxcZ_fPc-2m04Jn6oJ8UB2rD5Idr5ojx4hN771u1oqOOxeJLhVQkPPJgCEOHewgC2zaR2sXTccVGeRVFi4Lh4aKvwSI4HVREd8Jd1a5iL9fNkbnAfbvPcchU4HqNR93HY6XlN5QVPAmCXngHendEsEMaEURJwQ0mWGaqF1QELMma4jVUcBoJnTHAVg1uQcEoiJ_XNEhKdoFY-ye0pwjAUmkfGCksBME3ClYqYEUpRwXQgdBvdQk-ljeUUaZUUJ2HqLrruS5vua6O75XCl01qI44-218vxTMFaXApE5nYyL9IIGCNwFviHPfvne8_RNgEe47YfkuQCtcrZ3F4CDynVVTUBPwHMP9m8 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RcGg5UPoSUKCLRA89OPi1691jFBGFNuGQBCk3a1-WqqoOws4h_Hpm105DqqqCky1rvV7tzs73eWZnBuAidnntlFRBJqQNUipFIHkaBTRhUaS1KLh3tI9v2PA2_T6n8x2I1rEwOIgKe6q8E3-TXSC6dM9-IpPqpjpEFcpewS5ykdgJda8_3ZzqoL5-K-4dF1DEaeuZ_FcPDo90tY1H2-rYY8zgLUz-jM4fLfnVXdaqqx_-Stz4ouEfwH7LOEmvEZF3sGPL97D3JA_hB_g9sS6-obHOkkVBNgU9yPQOYYkMVwaR7l5qZ1knfWfzWVU1QcZLZtYbS0oy9SV1UHs2rVEym_5kacgEXwvc4RW8foTbwdWsPwzaOgyBRPiuA4MsvKBFKIyJkizkhsZFYagWVocsLJjhNlVpFApeMMFVikpC4m2cuMTfLIuTT9ApF6U9BIIronlirLAU4dNkXKmEGaEUFUyHQh_BV5ypvN1HVe5d5HGUu4du-vJ2-o7g23rV8rsmLcd_2p6vlzXHveMcIrK0i2WVJ8gfkcHgH-3xM7_7BV4PZ-NRPrq--fEZ3sTIcFxgYpydQKe-X9pTZCi1OvMy-QhvI-Id |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkCp6oFBA0Ad1pXLgkCUvO_YRLV1tW4oQC4hb5KeEENkVyR7g13fsZHlUCMEpkeU4jj2PLzOeGYAfqc9rp6SKCiFtlFMpIsnzJKIZSxKthePB0f73iA3P8t8X9GIO6CwWBidR40h1cOJ7rp4Y12UYSPZ8-yWiqV6uYxSjbB4WvdfOE_Z-f_RwsoOGGq7IPz6oiNPOO_ncCF4n6fqpTnoqkoOeGXyA8_sZhuMlV71po3r67r_kjW_-hBVY7pAn2W9JZRXmbPUR3j_KR7gG1yfWxzm0VloyduShsAcZTVA9keGtQY13I7W3sJO-t_3c1g1B5EtObTCaVGQUSuugFG17I4W248nKkBN8LPKHWPC6DmeDn6f9YdTVY4gkqvEmMojGHXWxMCbJipgbmjpnqBZWxyx2zHCbqzyJBXdMcJWjsJB4m2Y-ATgr0mwDFqpxZTeB4K5onhkrLEU1agquVMaMUIoKpmOht2AHV6rs-Kkug6s8TUrf6Jev7JZvC3ZnO1dO2vQcL_T9PtvaEnnIO0ZkZcfTuswQRyKSwT_bT6987zd4d3wwKA9_Hf35DEspAh0fn5gWX2ChuZnarwhUGrUdyPIfykrkoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactivation+of+Industrial+Spent+Hydrocracking+Catalyst+for+Tetralin+Selective+Hydrogenation+and+Ring-Opening&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Liu%2C+Junhao&rft.au=Geng%2C+Xuchao&rft.au=Ma%2C+Wenshuo&rft.au=Wang%2C+Xiaohui&rft.date=2024-11-27&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=63&rft.issue=47&rft.spage=20544&rft.epage=20552&rft_id=info:doi/10.1021%2Facs.iecr.4c02996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_iecr_4c02996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |