Dynamics in Amine-Functionalized Mesoporous Hybrid Materials Probed through Deuterium Magic Angle Spinning NMR and Molecular Dynamic Simulations
We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)trimethoxysilane (3-GPTMS) and 3-(trimethoxysilyl)propyl methacrylate (3-MATMS) grafted on SBA-15. Methylene-deuterated diamine as a pendent group is anchored to GPTMS (O3Si-CH2–CH...
Saved in:
Published in | Journal of physical chemistry. C Vol. 124; no. 11; pp. 6154 - 6170 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
19.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-7447 1932-7455 1932-7455 |
DOI | 10.1021/acs.jpcc.9b11948 |
Cover
Abstract | We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)trimethoxysilane (3-GPTMS) and 3-(trimethoxysilyl)propyl methacrylate (3-MATMS) grafted on SBA-15. Methylene-deuterated diamine as a pendent group is anchored to GPTMS (O3Si-CH2–CH2–CH2–O–CH2–CH(OH)- CH2–NH-CD 2 -CD 2 -NH2) and MATMS (O3Si-CH2–CH2–CH2–O-C(N-CD 2 -CD 2 -NH2)-C(CH3)CH2) postgrafting. Proton and deuterium solid state NMR experiments under MAS were performed at two hydration levels and temperatures ranging from 253 to 315 K. Deuterium spectra were deconvoluted into three components with different average quadrupolar parameters: a relatively rigid component arising from local or librational motion of C–2H2 corresponding to “small angle” jumps, an intermediate dynamic component, and a large amplitude dynamic component. Population ratios of rigid versus dynamic components show that diamine-MATMS is more rigid when compared with diamine-GPTMS at high hydration. The role of the length of the linkers, steric hindrance, grafting concentration, etc. in defining mobility is investigated. Finally, by correlating proton and deuterium MAS NMR spectral analysis, the role of a few water molecules in inducing dynamics of the linkers was investigated. Molecular dynamic (MD) simulations support the experimental analysis. MD simulations indicate different types of mobility arising from the same molecular binding configuration of diamine-MATMS. Dynamics induced by a few hydroxyls on the pore surface accessible to the linker, various molecular conformations, and stabilization of the linker through hydrogen bonding with the surface, derived from MD simulations, are discussed. |
---|---|
AbstractList | We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)trimethoxysilane (3-GPTMS) and 3-(trimethoxysilyl)propyl methacrylate (3-MATMS) grafted on SBA-15. Methylene-deuterated diamine as a pendent group is anchored to GPTMS (O3Si-CH2–CH2–CH2–O–CH2–CH(OH)- CH2–NH-CD 2 -CD 2 -NH2) and MATMS (O3Si-CH2–CH2–CH2–O-C(N-CD 2 -CD 2 -NH2)-C(CH3)CH2) postgrafting. Proton and deuterium solid state NMR experiments under MAS were performed at two hydration levels and temperatures ranging from 253 to 315 K. Deuterium spectra were deconvoluted into three components with different average quadrupolar parameters: a relatively rigid component arising from local or librational motion of C–2H2 corresponding to “small angle” jumps, an intermediate dynamic component, and a large amplitude dynamic component. Population ratios of rigid versus dynamic components show that diamine-MATMS is more rigid when compared with diamine-GPTMS at high hydration. The role of the length of the linkers, steric hindrance, grafting concentration, etc. in defining mobility is investigated. Finally, by correlating proton and deuterium MAS NMR spectral analysis, the role of a few water molecules in inducing dynamics of the linkers was investigated. Molecular dynamic (MD) simulations support the experimental analysis. MD simulations indicate different types of mobility arising from the same molecular binding configuration of diamine-MATMS. Dynamics induced by a few hydroxyls on the pore surface accessible to the linker, various molecular conformations, and stabilization of the linker through hydrogen bonding with the surface, derived from MD simulations, are discussed. We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)trimethoxysilane (3-GPTMS) and 3-(trimethoxysilyl)propyl methacrylate (3-MATMS) grafted on SBA-15. Methylene-deuterated diamine as a pendent group is anchored to GPTMS (O₃Si-CH₂–CH₂–CH₂–O–CH₂–CH(OH)- CH₂–NH-CD₂-CD₂-NH₂) and MATMS (O₃Si-CH₂–CH₂–CH₂–O-C(N-CD₂-CD₂-NH₂)-C(CH₃)═CH₂) postgrafting. Proton and deuterium solid state NMR experiments under MAS were performed at two hydration levels and temperatures ranging from 253 to 315 K. Deuterium spectra were deconvoluted into three components with different average quadrupolar parameters: a relatively rigid component arising from local or librational motion of C–²H₂ corresponding to “small angle” jumps, an intermediate dynamic component, and a large amplitude dynamic component. Population ratios of rigid versus dynamic components show that diamine-MATMS is more rigid when compared with diamine-GPTMS at high hydration. The role of the length of the linkers, steric hindrance, grafting concentration, etc. in defining mobility is investigated. Finally, by correlating proton and deuterium MAS NMR spectral analysis, the role of a few water molecules in inducing dynamics of the linkers was investigated. Molecular dynamic (MD) simulations support the experimental analysis. MD simulations indicate different types of mobility arising from the same molecular binding configuration of diamine-MATMS. Dynamics induced by a few hydroxyls on the pore surface accessible to the linker, various molecular conformations, and stabilization of the linker through hydrogen bonding with the surface, derived from MD simulations, are discussed. |
Author | Ajithkumar, T. G Jayanthi, S Veena, V. S Kavya, I Vinod, C. P Lazar, A |
AuthorAffiliation | Academy of Scientific and Innovative Research CSIR-National Chemical Laboratory Catalysis and Inorganic Chemistry Division CSIR- National Chemical Laboratory Central NMR Facility and Physical and Materials Chemistry Division Department of Physics |
AuthorAffiliation_xml | – name: CSIR-National Chemical Laboratory – name: Academy of Scientific and Innovative Research – name: Department of Physics – name: Catalysis and Inorganic Chemistry Division – name: Central NMR Facility and Physical and Materials Chemistry Division – name: CSIR- National Chemical Laboratory |
Author_xml | – sequence: 1 givenname: V. S surname: Veena fullname: Veena, V. S organization: Department of Physics – sequence: 2 givenname: I surname: Kavya fullname: Kavya, I organization: CSIR- National Chemical Laboratory – sequence: 3 givenname: A surname: Lazar fullname: Lazar, A organization: CSIR- National Chemical Laboratory – sequence: 4 givenname: C. P orcidid: 0000-0001-9857-4907 surname: Vinod fullname: Vinod, C. P organization: CSIR- National Chemical Laboratory – sequence: 5 givenname: T. G surname: Ajithkumar fullname: Ajithkumar, T. G organization: CSIR- National Chemical Laboratory – sequence: 6 givenname: S orcidid: 0000-0003-3957-1022 surname: Jayanthi fullname: Jayanthi, S email: jayanthi.s@iist.ac.in, mssjayanthi@gmail.com organization: Department of Physics |
BookMark | eNp1kD9PwzAQxS0EEm1hZ_TIQEps55_HqqUUqQVEYbYc125dJXawk6F8Cj4yDq3YmHy-93t3ujcE58YaCcANiscoxuieCz_eN0KMaYkQTYozMECU4ChP0vT8r07ySzD0fh_HKYkRGYDv2cHwWgsPtYGTWhsZzTsjWm0Nr_SX3MCV9LaxznYeLg6l06HDW-k0rzx8dbYMSLsL8nYHZ7Lrla4OyFYLODHbSsJ1o43RZgufV2-Qm-C3lRRdxR08LYdrXYd_v9RfgQsVRsvr0zsCH_OH9-kiWr48Pk0ny4jjLGsjXKSYZIJSIpSiRVbmgvKNSvKEpwWhsihJkm9UShUqaMLzLFMIc0pShYksVU5G4PY4t3H2s5O-ZbX2QlYVNzLcynBCEEVphouAxkdUOOu9k4o1TtfcHRiKWR8-C-GzPnx2Cj9Y7o6WX8V2LqTp_8d_AORMjLE |
Cites_doi | 10.1063/1.1680061 10.1039/b905830c 10.1016/0022-2364(80)90131-6 10.1021/ma0345246 10.1515/zpch-2018-1110 10.1021/jp810572r 10.1016/S1381-1177(00)00218-6 10.1007/s003390000612 10.1021/jp3061152 10.1021/jp012391p 10.1021/acs.jpcb.8b12204 10.1039/b009478l 10.1021/jp9013527 10.1007/BF01469664 10.1002/ijch.201300095 10.1039/C8CP04902E 10.1021/bi00102a014 10.1002/mrc.984 10.3390/polym9020058 10.1002/app.1990.070391117 10.1002/chem.201204326 10.1021/cr00007a014 10.1007/BF01381764 10.1002/cphc.201300200 10.1016/S1387-1811(01)00257-8 10.1039/b104729a 10.1021/ja974025i 10.1021/ja026855o 10.1021/bk-1984-0247.ch004 10.1039/b707322d 10.1039/b924813g 10.1002/pola.21094 10.1016/j.fuproc.2005.01.013 10.1002/chem.201804065 10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X 10.1021/cm011060m 10.1016/j.matchemphys.2016.03.007 10.1002/macp.1979.021800123 10.1002/app.1991.070430617 10.1039/C3RA44748K 10.1016/j.jmr.2007.03.017 10.3390/app8071032 10.1016/j.egypro.2017.03.1362 10.1007/s10971-005-2290-4 10.1021/jp100114v 10.1021/jp4028782 10.1002/chem.200400351 10.1039/c0sm01348j 10.1016/0022-2364(82)90301-8 10.1163/156856106776381811 10.1039/C6PY01425A 10.1002/adma.19970091011 10.1515/zpch-2017-1059 10.1039/c2cc00143h |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.jpcc.9b11948 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 6170 |
ExternalDocumentID | 10_1021_acs_jpcc_9b11948 a576185464 |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 RNS ROL UI2 UKR VF5 VG9 VQA W1F 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a266t-285236c993cff986b7c9adf474a5839e8b347df59f1894a766f12a935f23ebf73 |
IEDL.DBID | ACS |
ISSN | 1932-7447 1932-7455 |
IngestDate | Fri Jul 11 02:17:11 EDT 2025 Tue Jul 01 02:17:54 EDT 2025 Thu Aug 27 22:10:25 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a266t-285236c993cff986b7c9adf474a5839e8b347df59f1894a766f12a935f23ebf73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3957-1022 0000-0001-9857-4907 |
PQID | 2431915628 |
PQPubID | 24069 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2431915628 crossref_primary_10_1021_acs_jpcc_9b11948 acs_journals_10_1021_acs_jpcc_9b11948 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-19 |
PublicationDateYYYYMMDD | 2020-03-19 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref3/cit3 ref27/cit27 Schmidt-Rohr K. (ref28/cit28) 1994 ref56/cit56 ref52/cit52 ref23/cit23 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 Gass T. (ref8/cit8) 1998 ref50/cit50 ref54/cit54 Dubois G. (ref16/cit16) 2007 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref40/cit40 Tisher W. (ref9/cit9) 1999; 200 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref55/cit55 doi: 10.1063/1.1680061 – ident: ref48/cit48 doi: 10.1039/b905830c – ident: ref30/cit30 doi: 10.1016/0022-2364(80)90131-6 – ident: ref14/cit14 doi: 10.1021/ma0345246 – ident: ref25/cit25 doi: 10.1515/zpch-2018-1110 – ident: ref40/cit40 doi: 10.1021/jp810572r – ident: ref3/cit3 doi: 10.1016/S1381-1177(00)00218-6 – ident: ref15/cit15 doi: 10.1007/s003390000612 – ident: ref43/cit43 doi: 10.1021/jp3061152 – ident: ref45/cit45 doi: 10.1021/jp012391p – ident: ref27/cit27 doi: 10.1021/acs.jpcb.8b12204 – ident: ref7/cit7 doi: 10.1039/b009478l – ident: ref38/cit38 doi: 10.1021/jp9013527 – ident: ref32/cit32 doi: 10.1007/BF01469664 – ident: ref24/cit24 doi: 10.1002/ijch.201300095 – ident: ref53/cit53 doi: 10.1039/C8CP04902E – ident: ref36/cit36 doi: 10.1021/bi00102a014 – ident: ref52/cit52 doi: 10.1002/mrc.984 – ident: ref20/cit20 doi: 10.3390/polym9020058 – ident: ref19/cit19 doi: 10.1002/app.1990.070391117 – volume: 200 volume-title: Topics in Current Chemistry-Immobilized Enzymes: Method and Applications year: 1999 ident: ref9/cit9 – ident: ref1/cit1 doi: 10.1002/chem.201204326 – ident: ref35/cit35 doi: 10.1021/cr00007a014 – ident: ref31/cit31 doi: 10.1007/BF01381764 – volume-title: Dielectric Films for Advanced Microelectronics year: 2007 ident: ref16/cit16 – volume-title: Multidimensional Solid-State NMR and Polymers year: 1994 ident: ref28/cit28 – ident: ref37/cit37 doi: 10.1002/cphc.201300200 – ident: ref5/cit5 doi: 10.1016/S1387-1811(01)00257-8 – ident: ref2/cit2 doi: 10.1039/b104729a – ident: ref4/cit4 doi: 10.1021/ja974025i – ident: ref6/cit6 doi: 10.1021/ja026855o – ident: ref33/cit33 doi: 10.1021/bk-1984-0247.ch004 – ident: ref23/cit23 doi: 10.1039/b707322d – ident: ref41/cit41 doi: 10.1039/b924813g – ident: ref12/cit12 doi: 10.1002/pola.21094 – ident: ref58/cit58 doi: 10.1016/j.fuproc.2005.01.013 – ident: ref57/cit57 – ident: ref26/cit26 doi: 10.1002/chem.201804065 – ident: ref54/cit54 doi: 10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X – ident: ref11/cit11 doi: 10.1021/cm011060m – ident: ref51/cit51 doi: 10.1016/j.matchemphys.2016.03.007 – ident: ref29/cit29 doi: 10.1002/macp.1979.021800123 – ident: ref21/cit21 doi: 10.1002/app.1991.070430617 – ident: ref18/cit18 doi: 10.1039/C3RA44748K – ident: ref56/cit56 doi: 10.1016/j.jmr.2007.03.017 – ident: ref50/cit50 doi: 10.3390/app8071032 – ident: ref49/cit49 doi: 10.1016/j.egypro.2017.03.1362 – ident: ref47/cit47 doi: 10.1007/s10971-005-2290-4 – ident: ref42/cit42 doi: 10.1021/jp100114v – ident: ref44/cit44 doi: 10.1021/jp4028782 – ident: ref22/cit22 doi: 10.1002/chem.200400351 – ident: ref10/cit10 doi: 10.1039/c0sm01348j – ident: ref39/cit39 doi: 10.1016/0022-2364(82)90301-8 – ident: ref13/cit13 doi: 10.1163/156856106776381811 – ident: ref17/cit17 doi: 10.1039/C6PY01425A – ident: ref34/cit34 doi: 10.1002/adma.19970091011 – ident: ref46/cit46 doi: 10.1515/zpch-2017-1059 – ident: ref59/cit59 doi: 10.1039/c2cc00143h – volume-title: Immobilized Biomolecules in Analysis-A Practical Approach year: 1998 ident: ref8/cit8 |
SSID | ssj0053013 |
Score | 2.3157825 |
Snippet | We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)trimethoxysilane (3-GPTMS) and... We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)trimethoxysilane (3-GPTMS) and... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6154 |
SubjectTerms | deuterium hydrogen bonding molecular conformation nuclear magnetic resonance spectroscopy porous media spectral analysis temperature |
Title | Dynamics in Amine-Functionalized Mesoporous Hybrid Materials Probed through Deuterium Magic Angle Spinning NMR and Molecular Dynamic Simulations |
URI | http://dx.doi.org/10.1021/acs.jpcc.9b11948 https://www.proquest.com/docview/2431915628 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODCG_FWkODAoWNNk7Y5ThvThLQJMZC4VUmaoALrJtod4Ffwk3H6EBogtGuVJpXj2p_j2B9C5zEnxjUCohNjtEOZ5zvCuMLhhplWoIli0h7oD4Z-_4HePLLH7zY5PzP4xL0SKms-T5VqculCxB0uoxXig5ZZGNQZ1VaXgaJ6ZQYZECOlQZWS_GsG64hUNu-I5u1w4Vx6GyVLUVb0JLR3Sl6as1w21cfvjo0LfPcmWq8wJm6XSrGFlnS6jVY7NbXbDvrsljz0GU5S3B4D0HR64N_KY8HkQ8d4oLMJIPPJLMP9d1vUhQciL5UV39oKohhXDD-4qy0rRDIbwxAwo7idPr1qPJomBRkSHg7usEjh_ZqHF1eL41EyrrjDsl300Lu-7_SdiprBEeDRc4eEEMD6CsCNMoaHvgwUF7GhARUMIJcOpUeD2DBu3JBTEfi-cYngHjPE09IE3h5qpJNU7yMsISALdaxCmxHVHpWUxNJjAnCkrXptHaALEGVU_VpZVGTNiRsVD0G-USXfA3RZ72c0LTt1_DP2rN7wCERvcyQi1SDTiACg4hDTkvBwwXWP0BqxMbi948ePUSN_m-kTACq5PC009AtRJ-Wh |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BPcAF-kIF-nCl9tBDFuLYSXxc7Xa1hc2qYkHiFtmOjVLY7IpkD_Ar-MmM82hFVVVwtRzbGk8833g88wF8yQS1vpXonVhrPMaD0JPWl56w3B5Fhmqu3IV-Mg3H5-z4gl-sgd_lwuAiShyprIP4f6oL-Ieu7ddS655QPjre8Tq8QCxCHVtDfzDrDl-O-ho0gWQEjoxFbWTyXyM4e6TLx_bo8XFc25jRDpz-Xl39tOSqt6pUT9_9VbjxWct_Cdst4iT9RkVewZopXsPmoCN6ewP3w4aVviR5QfpzhJ3eCK1dc0mY35mMJKZcIE5frEoyvnUpXiSRVaO65KfLJ8pIy_dDhsZxROSrOXbBQ5X0i8trQ2bLvKZGItPklMgCv-9YeUk7OZnl85ZJrHwL56PvZ4Ox1xI1eBLte-XRGN3ZUCPU0daKOFSRFjKzLGKSIwAzsQpYlFkurB8LJqMwtD6VIuCWBkbZKNiFjWJRmHdAFLpnscl07OKjJmCK0UwFXCKqdDmwR3vwFUWZtj9amdYxdOqndSPKN23luwffum1Nl03djv_0_dzte4qidxETWRiUaUoRXgn0cGm8_8R5P8Hm-CyZpJMf05MD2KLOO3ev_8R72KhuVuYDQphKfayV9gFDmu4C |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xkBgvG7ChsR_Mk8bDHlKIYyfxY9Wu6jZaIQqIt8h2bJSxptWSPoy_Yn_yzomDxDQh9mo5tnM--77z-fwBfMwFtaGV6J1YawLGoziQNpSBsNweJ4ZqrtyB_mQajy_Y1yt-tQa8y4XBQVTYUtUE8d2qXubWvzAQHrny70ute0KF6HynT2DDRe0cY0N_MOs2YI46G7XBZASPjCU-OvmvFpxN0tV9m3R_S27szOg5XN6NsLlectNb1aqnb_96vPG_f2EbnnnkSfqtquzAmil34emgI3x7Ab-HLTt9RYqS9OcIP4MRWr32sLC4NTmZmGqBeH2xqsj4l0v1IhNZtypMTl1eUU487w8ZGscVUazmWAU3V9Ivr38YMlsWDUUSmU7OiCzx-46dl_jOyayYe0ax6iVcjD6fD8aBJ2wIJNr5OqApurWxRsijrRVprBItZG5ZwiRHIGZSFbEkt1zYMBVMJnFsQypFxC2NjLJJtAfr5aI0r4AodNNSk-vUxUlNxBSjuYq4RHTpcmGP9-EQRZn5BVdlTSydhllTiPLNvHz34VM3tdmyfb_jgbofurnPUPQuciJLgzLNKMIsgZ4uTV8_st_3sHk6HGUnX6bf3sAWdU66uwQo3sJ6_XNl3iGSqdVBo7d_APil8IU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+in+Amine-Functionalized+Mesoporous+Hybrid+Materials+Probed+through+Deuterium+Magic+Angle+Spinning+NMR+and+Molecular+Dynamic+Simulations&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Veena%2C+V.+S&rft.au=Kavya%2C+I&rft.au=Lazar%2C+A&rft.au=Vinod%2C+C.+P&rft.date=2020-03-19&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=124&rft.issue=11&rft.spage=6154&rft.epage=6170&rft_id=info:doi/10.1021%2Facs.jpcc.9b11948&rft.externalDocID=a576185464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |