Dynamics in Amine-Functionalized Mesoporous Hybrid Materials Probed through Deuterium Magic Angle Spinning NMR and Molecular Dynamic Simulations

We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)­trimethoxysilane (3-GPTMS) and 3-(trimethoxysilyl)­propyl methacrylate (3-MATMS) grafted on SBA-15. Methylene-deuterated diamine as a pendent group is anchored to GPTMS (O3Si-CH2–CH...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 124; no. 11; pp. 6154 - 6170
Main Authors Veena, V. S, Kavya, I, Lazar, A, Vinod, C. P, Ajithkumar, T. G, Jayanthi, S
Format Journal Article
LanguageEnglish
Published American Chemical Society 19.03.2020
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
1932-7455
DOI10.1021/acs.jpcc.9b11948

Cover

Abstract We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)­trimethoxysilane (3-GPTMS) and 3-(trimethoxysilyl)­propyl methacrylate (3-MATMS) grafted on SBA-15. Methylene-deuterated diamine as a pendent group is anchored to GPTMS (O3Si-CH2–CH2–CH2–O–CH2–CH­(OH)- CH2–NH-CD 2 -CD 2 -NH2) and MATMS (O3Si-CH2–CH2–CH2–O-C­(N-CD 2 -CD 2 -NH2)-C­(CH3)CH2) postgrafting. Proton and deuterium solid state NMR experiments under MAS were performed at two hydration levels and temperatures ranging from 253 to 315 K. Deuterium spectra were deconvoluted into three components with different average quadrupolar parameters: a relatively rigid component arising from local or librational motion of C–2H2 corresponding to “small angle” jumps, an intermediate dynamic component, and a large amplitude dynamic component. Population ratios of rigid versus dynamic components show that diamine-MATMS is more rigid when compared with diamine-GPTMS at high hydration. The role of the length of the linkers, steric hindrance, grafting concentration, etc. in defining mobility is investigated. Finally, by correlating proton and deuterium MAS NMR spectral analysis, the role of a few water molecules in inducing dynamics of the linkers was investigated. Molecular dynamic (MD) simulations support the experimental analysis. MD simulations indicate different types of mobility arising from the same molecular binding configuration of diamine-MATMS. Dynamics induced by a few hydroxyls on the pore surface accessible to the linker, various molecular conformations, and stabilization of the linker through hydrogen bonding with the surface, derived from MD simulations, are discussed.
AbstractList We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)­trimethoxysilane (3-GPTMS) and 3-(trimethoxysilyl)­propyl methacrylate (3-MATMS) grafted on SBA-15. Methylene-deuterated diamine as a pendent group is anchored to GPTMS (O3Si-CH2–CH2–CH2–O–CH2–CH­(OH)- CH2–NH-CD 2 -CD 2 -NH2) and MATMS (O3Si-CH2–CH2–CH2–O-C­(N-CD 2 -CD 2 -NH2)-C­(CH3)CH2) postgrafting. Proton and deuterium solid state NMR experiments under MAS were performed at two hydration levels and temperatures ranging from 253 to 315 K. Deuterium spectra were deconvoluted into three components with different average quadrupolar parameters: a relatively rigid component arising from local or librational motion of C–2H2 corresponding to “small angle” jumps, an intermediate dynamic component, and a large amplitude dynamic component. Population ratios of rigid versus dynamic components show that diamine-MATMS is more rigid when compared with diamine-GPTMS at high hydration. The role of the length of the linkers, steric hindrance, grafting concentration, etc. in defining mobility is investigated. Finally, by correlating proton and deuterium MAS NMR spectral analysis, the role of a few water molecules in inducing dynamics of the linkers was investigated. Molecular dynamic (MD) simulations support the experimental analysis. MD simulations indicate different types of mobility arising from the same molecular binding configuration of diamine-MATMS. Dynamics induced by a few hydroxyls on the pore surface accessible to the linker, various molecular conformations, and stabilization of the linker through hydrogen bonding with the surface, derived from MD simulations, are discussed.
We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)trimethoxysilane (3-GPTMS) and 3-(trimethoxysilyl)propyl methacrylate (3-MATMS) grafted on SBA-15. Methylene-deuterated diamine as a pendent group is anchored to GPTMS (O₃Si-CH₂–CH₂–CH₂–O–CH₂–CH(OH)- CH₂–NH-CD₂-CD₂-NH₂) and MATMS (O₃Si-CH₂–CH₂–CH₂–O-C(N-CD₂-CD₂-NH₂)-C(CH₃)═CH₂) postgrafting. Proton and deuterium solid state NMR experiments under MAS were performed at two hydration levels and temperatures ranging from 253 to 315 K. Deuterium spectra were deconvoluted into three components with different average quadrupolar parameters: a relatively rigid component arising from local or librational motion of C–²H₂ corresponding to “small angle” jumps, an intermediate dynamic component, and a large amplitude dynamic component. Population ratios of rigid versus dynamic components show that diamine-MATMS is more rigid when compared with diamine-GPTMS at high hydration. The role of the length of the linkers, steric hindrance, grafting concentration, etc. in defining mobility is investigated. Finally, by correlating proton and deuterium MAS NMR spectral analysis, the role of a few water molecules in inducing dynamics of the linkers was investigated. Molecular dynamic (MD) simulations support the experimental analysis. MD simulations indicate different types of mobility arising from the same molecular binding configuration of diamine-MATMS. Dynamics induced by a few hydroxyls on the pore surface accessible to the linker, various molecular conformations, and stabilization of the linker through hydrogen bonding with the surface, derived from MD simulations, are discussed.
Author Ajithkumar, T. G
Jayanthi, S
Veena, V. S
Kavya, I
Vinod, C. P
Lazar, A
AuthorAffiliation Academy of Scientific and Innovative Research
CSIR-National Chemical Laboratory
Catalysis and Inorganic Chemistry Division
CSIR- National Chemical Laboratory
Central NMR Facility and Physical and Materials Chemistry Division
Department of Physics
AuthorAffiliation_xml – name: CSIR-National Chemical Laboratory
– name: Academy of Scientific and Innovative Research
– name: Department of Physics
– name: Catalysis and Inorganic Chemistry Division
– name: Central NMR Facility and Physical and Materials Chemistry Division
– name: CSIR- National Chemical Laboratory
Author_xml – sequence: 1
  givenname: V. S
  surname: Veena
  fullname: Veena, V. S
  organization: Department of Physics
– sequence: 2
  givenname: I
  surname: Kavya
  fullname: Kavya, I
  organization: CSIR- National Chemical Laboratory
– sequence: 3
  givenname: A
  surname: Lazar
  fullname: Lazar, A
  organization: CSIR- National Chemical Laboratory
– sequence: 4
  givenname: C. P
  orcidid: 0000-0001-9857-4907
  surname: Vinod
  fullname: Vinod, C. P
  organization: CSIR- National Chemical Laboratory
– sequence: 5
  givenname: T. G
  surname: Ajithkumar
  fullname: Ajithkumar, T. G
  organization: CSIR- National Chemical Laboratory
– sequence: 6
  givenname: S
  orcidid: 0000-0003-3957-1022
  surname: Jayanthi
  fullname: Jayanthi, S
  email: jayanthi.s@iist.ac.in, mssjayanthi@gmail.com
  organization: Department of Physics
BookMark eNp1kD9PwzAQxS0EEm1hZ_TIQEps55_HqqUUqQVEYbYc125dJXawk6F8Cj4yDq3YmHy-93t3ujcE58YaCcANiscoxuieCz_eN0KMaYkQTYozMECU4ChP0vT8r07ySzD0fh_HKYkRGYDv2cHwWgsPtYGTWhsZzTsjWm0Nr_SX3MCV9LaxznYeLg6l06HDW-k0rzx8dbYMSLsL8nYHZ7Lrla4OyFYLODHbSsJ1o43RZgufV2-Qm-C3lRRdxR08LYdrXYd_v9RfgQsVRsvr0zsCH_OH9-kiWr48Pk0ny4jjLGsjXKSYZIJSIpSiRVbmgvKNSvKEpwWhsihJkm9UShUqaMLzLFMIc0pShYksVU5G4PY4t3H2s5O-ZbX2QlYVNzLcynBCEEVphouAxkdUOOu9k4o1TtfcHRiKWR8-C-GzPnx2Cj9Y7o6WX8V2LqTp_8d_AORMjLE
Cites_doi 10.1063/1.1680061
10.1039/b905830c
10.1016/0022-2364(80)90131-6
10.1021/ma0345246
10.1515/zpch-2018-1110
10.1021/jp810572r
10.1016/S1381-1177(00)00218-6
10.1007/s003390000612
10.1021/jp3061152
10.1021/jp012391p
10.1021/acs.jpcb.8b12204
10.1039/b009478l
10.1021/jp9013527
10.1007/BF01469664
10.1002/ijch.201300095
10.1039/C8CP04902E
10.1021/bi00102a014
10.1002/mrc.984
10.3390/polym9020058
10.1002/app.1990.070391117
10.1002/chem.201204326
10.1021/cr00007a014
10.1007/BF01381764
10.1002/cphc.201300200
10.1016/S1387-1811(01)00257-8
10.1039/b104729a
10.1021/ja974025i
10.1021/ja026855o
10.1021/bk-1984-0247.ch004
10.1039/b707322d
10.1039/b924813g
10.1002/pola.21094
10.1016/j.fuproc.2005.01.013
10.1002/chem.201804065
10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
10.1021/cm011060m
10.1016/j.matchemphys.2016.03.007
10.1002/macp.1979.021800123
10.1002/app.1991.070430617
10.1039/C3RA44748K
10.1016/j.jmr.2007.03.017
10.3390/app8071032
10.1016/j.egypro.2017.03.1362
10.1007/s10971-005-2290-4
10.1021/jp100114v
10.1021/jp4028782
10.1002/chem.200400351
10.1039/c0sm01348j
10.1016/0022-2364(82)90301-8
10.1163/156856106776381811
10.1039/C6PY01425A
10.1002/adma.19970091011
10.1515/zpch-2017-1059
10.1039/c2cc00143h
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.jpcc.9b11948
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 6170
ExternalDocumentID 10_1021_acs_jpcc_9b11948
a576185464
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7S9
L.6
ID FETCH-LOGICAL-a266t-285236c993cff986b7c9adf474a5839e8b347df59f1894a766f12a935f23ebf73
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Fri Jul 11 02:17:11 EDT 2025
Tue Jul 01 02:17:54 EDT 2025
Thu Aug 27 22:10:25 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a266t-285236c993cff986b7c9adf474a5839e8b347df59f1894a766f12a935f23ebf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3957-1022
0000-0001-9857-4907
PQID 2431915628
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_2431915628
crossref_primary_10_1021_acs_jpcc_9b11948
acs_journals_10_1021_acs_jpcc_9b11948
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-19
PublicationDateYYYYMMDD 2020-03-19
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-19
  day: 19
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
ref27/cit27
Schmidt-Rohr K. (ref28/cit28) 1994
ref56/cit56
ref52/cit52
ref23/cit23
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
Gass T. (ref8/cit8) 1998
ref50/cit50
ref54/cit54
Dubois G. (ref16/cit16) 2007
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref40/cit40
Tisher W. (ref9/cit9) 1999; 200
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref55/cit55
  doi: 10.1063/1.1680061
– ident: ref48/cit48
  doi: 10.1039/b905830c
– ident: ref30/cit30
  doi: 10.1016/0022-2364(80)90131-6
– ident: ref14/cit14
  doi: 10.1021/ma0345246
– ident: ref25/cit25
  doi: 10.1515/zpch-2018-1110
– ident: ref40/cit40
  doi: 10.1021/jp810572r
– ident: ref3/cit3
  doi: 10.1016/S1381-1177(00)00218-6
– ident: ref15/cit15
  doi: 10.1007/s003390000612
– ident: ref43/cit43
  doi: 10.1021/jp3061152
– ident: ref45/cit45
  doi: 10.1021/jp012391p
– ident: ref27/cit27
  doi: 10.1021/acs.jpcb.8b12204
– ident: ref7/cit7
  doi: 10.1039/b009478l
– ident: ref38/cit38
  doi: 10.1021/jp9013527
– ident: ref32/cit32
  doi: 10.1007/BF01469664
– ident: ref24/cit24
  doi: 10.1002/ijch.201300095
– ident: ref53/cit53
  doi: 10.1039/C8CP04902E
– ident: ref36/cit36
  doi: 10.1021/bi00102a014
– ident: ref52/cit52
  doi: 10.1002/mrc.984
– ident: ref20/cit20
  doi: 10.3390/polym9020058
– ident: ref19/cit19
  doi: 10.1002/app.1990.070391117
– volume: 200
  volume-title: Topics in Current Chemistry-Immobilized Enzymes: Method and Applications
  year: 1999
  ident: ref9/cit9
– ident: ref1/cit1
  doi: 10.1002/chem.201204326
– ident: ref35/cit35
  doi: 10.1021/cr00007a014
– ident: ref31/cit31
  doi: 10.1007/BF01381764
– volume-title: Dielectric Films for Advanced Microelectronics
  year: 2007
  ident: ref16/cit16
– volume-title: Multidimensional Solid-State NMR and Polymers
  year: 1994
  ident: ref28/cit28
– ident: ref37/cit37
  doi: 10.1002/cphc.201300200
– ident: ref5/cit5
  doi: 10.1016/S1387-1811(01)00257-8
– ident: ref2/cit2
  doi: 10.1039/b104729a
– ident: ref4/cit4
  doi: 10.1021/ja974025i
– ident: ref6/cit6
  doi: 10.1021/ja026855o
– ident: ref33/cit33
  doi: 10.1021/bk-1984-0247.ch004
– ident: ref23/cit23
  doi: 10.1039/b707322d
– ident: ref41/cit41
  doi: 10.1039/b924813g
– ident: ref12/cit12
  doi: 10.1002/pola.21094
– ident: ref58/cit58
  doi: 10.1016/j.fuproc.2005.01.013
– ident: ref57/cit57
– ident: ref26/cit26
  doi: 10.1002/chem.201804065
– ident: ref54/cit54
  doi: 10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
– ident: ref11/cit11
  doi: 10.1021/cm011060m
– ident: ref51/cit51
  doi: 10.1016/j.matchemphys.2016.03.007
– ident: ref29/cit29
  doi: 10.1002/macp.1979.021800123
– ident: ref21/cit21
  doi: 10.1002/app.1991.070430617
– ident: ref18/cit18
  doi: 10.1039/C3RA44748K
– ident: ref56/cit56
  doi: 10.1016/j.jmr.2007.03.017
– ident: ref50/cit50
  doi: 10.3390/app8071032
– ident: ref49/cit49
  doi: 10.1016/j.egypro.2017.03.1362
– ident: ref47/cit47
  doi: 10.1007/s10971-005-2290-4
– ident: ref42/cit42
  doi: 10.1021/jp100114v
– ident: ref44/cit44
  doi: 10.1021/jp4028782
– ident: ref22/cit22
  doi: 10.1002/chem.200400351
– ident: ref10/cit10
  doi: 10.1039/c0sm01348j
– ident: ref39/cit39
  doi: 10.1016/0022-2364(82)90301-8
– ident: ref13/cit13
  doi: 10.1163/156856106776381811
– ident: ref17/cit17
  doi: 10.1039/C6PY01425A
– ident: ref34/cit34
  doi: 10.1002/adma.19970091011
– ident: ref46/cit46
  doi: 10.1515/zpch-2017-1059
– ident: ref59/cit59
  doi: 10.1039/c2cc00143h
– volume-title: Immobilized Biomolecules in Analysis-A Practical Approach
  year: 1998
  ident: ref8/cit8
SSID ssj0053013
Score 2.3157825
Snippet We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)­trimethoxysilane (3-GPTMS) and...
We present a deuterium magic angle spinning (MAS) NMR study on two widely used hybrid materials (3-glycidyloxy propyl)trimethoxysilane (3-GPTMS) and...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 6154
SubjectTerms deuterium
hydrogen bonding
molecular conformation
nuclear magnetic resonance spectroscopy
porous media
spectral analysis
temperature
Title Dynamics in Amine-Functionalized Mesoporous Hybrid Materials Probed through Deuterium Magic Angle Spinning NMR and Molecular Dynamic Simulations
URI http://dx.doi.org/10.1021/acs.jpcc.9b11948
https://www.proquest.com/docview/2431915628
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODCG_FWkODAoWNNk7Y5ThvThLQJMZC4VUmaoALrJtod4Ffwk3H6EBogtGuVJpXj2p_j2B9C5zEnxjUCohNjtEOZ5zvCuMLhhplWoIli0h7oD4Z-_4HePLLH7zY5PzP4xL0SKms-T5VqculCxB0uoxXig5ZZGNQZ1VaXgaJ6ZQYZECOlQZWS_GsG64hUNu-I5u1w4Vx6GyVLUVb0JLR3Sl6as1w21cfvjo0LfPcmWq8wJm6XSrGFlnS6jVY7NbXbDvrsljz0GU5S3B4D0HR64N_KY8HkQ8d4oLMJIPPJLMP9d1vUhQciL5UV39oKohhXDD-4qy0rRDIbwxAwo7idPr1qPJomBRkSHg7usEjh_ZqHF1eL41EyrrjDsl300Lu-7_SdiprBEeDRc4eEEMD6CsCNMoaHvgwUF7GhARUMIJcOpUeD2DBu3JBTEfi-cYngHjPE09IE3h5qpJNU7yMsISALdaxCmxHVHpWUxNJjAnCkrXptHaALEGVU_VpZVGTNiRsVD0G-USXfA3RZ72c0LTt1_DP2rN7wCERvcyQi1SDTiACg4hDTkvBwwXWP0BqxMbi948ePUSN_m-kTACq5PC009AtRJ-Wh
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BPcAF-kIF-nCl9tBDFuLYSXxc7Xa1hc2qYkHiFtmOjVLY7IpkD_Ar-MmM82hFVVVwtRzbGk8833g88wF8yQS1vpXonVhrPMaD0JPWl56w3B5Fhmqu3IV-Mg3H5-z4gl-sgd_lwuAiShyprIP4f6oL-Ieu7ddS655QPjre8Tq8QCxCHVtDfzDrDl-O-ho0gWQEjoxFbWTyXyM4e6TLx_bo8XFc25jRDpz-Xl39tOSqt6pUT9_9VbjxWct_Cdst4iT9RkVewZopXsPmoCN6ewP3w4aVviR5QfpzhJ3eCK1dc0mY35mMJKZcIE5frEoyvnUpXiSRVaO65KfLJ8pIy_dDhsZxROSrOXbBQ5X0i8trQ2bLvKZGItPklMgCv-9YeUk7OZnl85ZJrHwL56PvZ4Ox1xI1eBLte-XRGN3ZUCPU0daKOFSRFjKzLGKSIwAzsQpYlFkurB8LJqMwtD6VIuCWBkbZKNiFjWJRmHdAFLpnscl07OKjJmCK0UwFXCKqdDmwR3vwFUWZtj9amdYxdOqndSPKN23luwffum1Nl03djv_0_dzte4qidxETWRiUaUoRXgn0cGm8_8R5P8Hm-CyZpJMf05MD2KLOO3ev_8R72KhuVuYDQphKfayV9gFDmu4C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xkBgvG7ChsR_Mk8bDHlKIYyfxY9Wu6jZaIQqIt8h2bJSxptWSPoy_Yn_yzomDxDQh9mo5tnM--77z-fwBfMwFtaGV6J1YawLGoziQNpSBsNweJ4ZqrtyB_mQajy_Y1yt-tQa8y4XBQVTYUtUE8d2qXubWvzAQHrny70ute0KF6HynT2DDRe0cY0N_MOs2YI46G7XBZASPjCU-OvmvFpxN0tV9m3R_S27szOg5XN6NsLlectNb1aqnb_96vPG_f2EbnnnkSfqtquzAmil34emgI3x7Ab-HLTt9RYqS9OcIP4MRWr32sLC4NTmZmGqBeH2xqsj4l0v1IhNZtypMTl1eUU487w8ZGscVUazmWAU3V9Ivr38YMlsWDUUSmU7OiCzx-46dl_jOyayYe0ax6iVcjD6fD8aBJ2wIJNr5OqApurWxRsijrRVprBItZG5ZwiRHIGZSFbEkt1zYMBVMJnFsQypFxC2NjLJJtAfr5aI0r4AodNNSk-vUxUlNxBSjuYq4RHTpcmGP9-EQRZn5BVdlTSydhllTiPLNvHz34VM3tdmyfb_jgbofurnPUPQuciJLgzLNKMIsgZ4uTV8_st_3sHk6HGUnX6bf3sAWdU66uwQo3sJ6_XNl3iGSqdVBo7d_APil8IU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+in+Amine-Functionalized+Mesoporous+Hybrid+Materials+Probed+through+Deuterium+Magic+Angle+Spinning+NMR+and+Molecular+Dynamic+Simulations&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Veena%2C+V.+S&rft.au=Kavya%2C+I&rft.au=Lazar%2C+A&rft.au=Vinod%2C+C.+P&rft.date=2020-03-19&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=124&rft.issue=11&rft.spage=6154&rft.epage=6170&rft_id=info:doi/10.1021%2Facs.jpcc.9b11948&rft.externalDocID=a576185464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon