Laser-Shock-Driven In Situ Evolution of Atomic Defect and Piezoelectricity in Graphitic Carbon Nitride for the Ionization in Mass Spectrometry
Nanostructurescoupled with mass spectrometryhave been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules in laser desorption/ionization mass spectrometry (LDI-MS). However, the impact of laser-induced shock wave on the ionization of the nanostru...
Saved in:
Published in | ACS nano Vol. 16; no. 11; pp. 18284 - 18297 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanostructurescoupled with mass spectrometryhave been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules in laser desorption/ionization mass spectrometry (LDI-MS). However, the impact of laser-induced shock wave on the ionization of the nanostructures has rarely been reported. Herein, we systematically elucidate the laser shock wave effect on the ionization in terms of the in situ development of atomic defects and piezoelectricity in two-dimensional graphitic carbon nitride nanosheets (g-C3N4 NS) by short laser pulses. The mass analysis results of immunosuppressive drugs verify the enhanced LDI-MS performance, structurally originating from anisotropic lattice distortions in g-C3N4 NS, i.e., in-plane extension (contraction) and out-of-plane contraction (extension) that modulate the charge carrier motion. Along with the experimental investigations, density functional theory calculations on Mulliken charges and dipole moments demonstrate the contribution of defect and piezoelectricity to the ionization. The results of this study provide a mechanistic understanding of the underlying ionization processes, which is crucial for revealing the full potential of laser shock waves in LDI-MS. |
---|---|
AbstractList | Nanostructurescoupled with mass spectrometryhave been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules in laser desorption/ionization mass spectrometry (LDI-MS). However, the impact of laser-induced shock wave on the ionization of the nanostructures has rarely been reported. Herein, we systematically elucidate the laser shock wave effect on the ionization in terms of the in situ development of atomic defects and piezoelectricity in two-dimensional graphitic carbon nitride nanosheets (g-C3N4 NS) by short laser pulses. The mass analysis results of immunosuppressive drugs verify the enhanced LDI-MS performance, structurally originating from anisotropic lattice distortions in g-C3N4 NS, i.e., in-plane extension (contraction) and out-of-plane contraction (extension) that modulate the charge carrier motion. Along with the experimental investigations, density functional theory calculations on Mulliken charges and dipole moments demonstrate the contribution of defect and piezoelectricity to the ionization. The results of this study provide a mechanistic understanding of the underlying ionization processes, which is crucial for revealing the full potential of laser shock waves in LDI-MS. Nanostructures─coupled with mass spectrometry─have been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules in laser desorption/ionization mass spectrometry (LDI-MS). However, the impact of laser-induced shock wave on the ionization of the nanostructures has rarely been reported. Herein, we systematically elucidate the laser shock wave effect on the ionization in terms of the development of atomic defects and piezoelectricity in two-dimensional graphitic carbon nitride nanosheets (g-C N NS) by short laser pulses. The mass analysis results of immunosuppressive drugs verify the enhanced LDI-MS performance, structurally originating from anisotropic lattice distortions in g-C N NS, i.e., in-plane extension (contraction) and out-of-plane contraction (extension) that modulate the charge carrier motion. Along with the experimental investigations, density functional theory calculations on Mulliken charges and dipole moments demonstrate the contribution of defect and piezoelectricity to the ionization. The results of this study provide a mechanistic understanding of the underlying ionization processes, which is crucial for revealing the full potential of laser shock waves in LDI-MS. |
Author | Noh, Joo-Yoon Kang, Min-Jung Kim, Moon-Ju Yun, Tae Gyeong Son, Dong Hee Pyun, Jae-Chul |
AuthorAffiliation | Department of Chemistry Department of Materials and Science and Engineering Texas A&M University |
AuthorAffiliation_xml | – name: Department of Materials and Science and Engineering – name: Texas A&M University – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Moon-Ju surname: Kim fullname: Kim, Moon-Ju organization: Department of Materials and Science and Engineering – sequence: 2 givenname: Joo-Yoon surname: Noh fullname: Noh, Joo-Yoon organization: Department of Materials and Science and Engineering – sequence: 3 givenname: Tae Gyeong surname: Yun fullname: Yun, Tae Gyeong organization: Department of Materials and Science and Engineering – sequence: 4 givenname: Min-Jung surname: Kang fullname: Kang, Min-Jung – sequence: 5 givenname: Dong Hee orcidid: 0000-0001-9002-5188 surname: Son fullname: Son, Dong Hee organization: Texas A&M University – sequence: 6 givenname: Jae-Chul orcidid: 0000-0001-9954-6860 surname: Pyun fullname: Pyun, Jae-Chul email: jcpyun@yonsei.ac.kr organization: Department of Materials and Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36265010$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtPAjEUhRuDkYeu3ZnuzUAfzGtJAJEEHwmauJu0nU4oMi1pOyTwI_zNFkF3ru69ud85yTld0NJGSwBuMepjRPCACaeZNn0iUJzn9AJ0cE6TCGXJR-tvj3EbdJ1bIxSnWZpcgTZNSBIjjDrga8GctNFyZcRnNLFqJzWca7hUvoHTndk0XhkNTQVH3tRKwImspPCQ6RK-KnkwchNOq4Tye6g0nFm2XSkfwDGzPCifVfiWElbGQr-ScG60OrAf04A_Mefgcnu0MLX0dn8NLiu2cfLmPHvg_WH6Nn6MFi-z-Xi0iBhJqI8EzQlLcJqxkAQPaclIyQnOSZxJTvJEUB4P-ZCLKs4FxVQIHnjOJM6zMmUx7YHByVdY45yVVbG1qmZ2X2BUHJstzs0W52aD4u6k2Da8luUf_1tlAO5PQFAWa9NYHQL8a_cNWFGIxw |
CitedBy_id | crossref_primary_10_1002_adma_202209083 crossref_primary_10_1007_s12274_024_6491_y crossref_primary_10_1039_D3CS00213F crossref_primary_10_1039_D3TA05591D crossref_primary_10_1021_acsnano_4c02429 crossref_primary_10_1021_acs_jafc_3c04650 crossref_primary_10_1021_acsami_3c14254 |
Cites_doi | 10.1002/asia.201090016 10.1016/j.nanoen.2020.104735 10.1007/s43207-020-00103-3 10.1088/1361-6528/ab7679 10.1007/s13206-020-4202-7 10.1002/adfm.202102475 10.1007/s13206-022-00046-3 10.1038/ncomms5284 10.1088/1361-6463/50/7/073001 10.1016/j.mattod.2018.01.031 10.1115/1.1445149 10.1039/b605646f 10.1063/1.346783 10.1115/1.4052909 10.1039/C7TA04639A 10.1021/ja808329f 10.1080/05704928.2019.1570519 10.1039/D0RA08608H 10.1016/j.chempr.2018.12.009 10.1364/OE.23.002962 10.1016/j.apcatb.2020.119191 10.1021/ja512179x 10.1021/acsnano.1c02016 10.1039/C5NR00665A 10.1002/jrs.6189 10.1016/j.jcis.2017.06.089 10.1038/s41467-021-25140-2 10.1016/j.pmatsci.2017.02.004 10.1063/1.341867 10.1021/cr0103773 10.1021/cr010375i 10.1002/adma.202101751 10.1002/rcm.8372 10.1002/asia.202000850 10.1021/acsami.9b03386 10.1063/1.4764060 10.1021/jp711484f 10.1016/j.carbon.2013.07.055 10.1016/j.jala.2004.01.004 10.1016/j.carbon.2016.11.030 10.1016/j.nanoen.2021.105743 10.1039/C8TC00084K 10.1016/j.apcatb.2019.01.043 10.1039/C7CC02957H 10.1039/C7CP05242A 10.1177/1087057115623740 10.1016/j.cej.2021.131844 10.1002/anie.201811709 10.1016/j.trac.2012.03.011 10.1016/j.apcatb.2018.03.035 10.1007/s43207-021-00151-3 10.1038/20400 10.1039/C4TA04100C 10.1007/s13206-020-4208-1 10.1021/acs.jpcc.5b05957 10.1016/j.carbon.2014.08.059 10.1021/acschemneuro.8b00121 10.1002/adma.200401756 10.1016/j.jenvman.2019.06.043 10.1021/acssuschemeng.7b01477 10.1002/solr.201800298 10.1007/s43207-021-00159-9 10.1038/s41598-018-25946-z 10.1039/D0CC00866D 10.1002/aenm.202103329 10.1002/smll.202103745 10.1016/j.ijhydene.2022.04.065 10.1063/1.3507138 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1021/acsnano.2c05993 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 18297 |
ExternalDocumentID | 10_1021_acsnano_2c05993 36265010 c726573212 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH ABJNI ACBEA BAANH CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION |
ID | FETCH-LOGICAL-a263t-c392a6178a362143da2db219258eb296c3b54b4bcf59c313ccb2a6bae198d7a53 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Wed Oct 09 16:39:40 EDT 2024 Sat Sep 28 08:16:17 EDT 2024 Thu Nov 24 04:02:03 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | atomic defect LDI-MS piezoelectricity laser-induced shock wave 2D g-C3N4 nanosheets anisotropic lattice distortion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a263t-c392a6178a362143da2db219258eb296c3b54b4bcf59c313ccb2a6bae198d7a53 |
ORCID | 0000-0001-9954-6860 0000-0001-9002-5188 |
PMID | 36265010 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1021_acsnano_2c05993 pubmed_primary_36265010 acs_journals_10_1021_acsnano_2c05993 |
PublicationCentury | 2000 |
PublicationDate | 20221122 2022-11-22 |
PublicationDateYYYYMMDD | 2022-11-22 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221122 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 Kim M. J. (ref7/cit7) 2019; 33 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref22/cit22 ref33/cit33 Yang L. (ref58/cit58) 2014; 4 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 |
References_xml | – ident: ref29/cit29 doi: 10.1002/asia.201090016 – ident: ref62/cit62 doi: 10.1016/j.nanoen.2020.104735 – ident: ref57/cit57 doi: 10.1007/s43207-020-00103-3 – ident: ref41/cit41 doi: 10.1088/1361-6528/ab7679 – ident: ref64/cit64 doi: 10.1007/s13206-020-4202-7 – ident: ref13/cit13 doi: 10.1002/adfm.202102475 – ident: ref69/cit69 doi: 10.1007/s13206-022-00046-3 – ident: ref20/cit20 doi: 10.1038/ncomms5284 – ident: ref43/cit43 doi: 10.1088/1361-6463/50/7/073001 – ident: ref21/cit21 doi: 10.1016/j.mattod.2018.01.031 – ident: ref35/cit35 doi: 10.1115/1.1445149 – ident: ref3/cit3 doi: 10.1039/b605646f – ident: ref34/cit34 doi: 10.1063/1.346783 – ident: ref37/cit37 doi: 10.1115/1.4052909 – ident: ref24/cit24 doi: 10.1039/C7TA04639A – ident: ref27/cit27 doi: 10.1021/ja808329f – ident: ref14/cit14 doi: 10.1080/05704928.2019.1570519 – ident: ref52/cit52 doi: 10.1039/D0RA08608H – ident: ref22/cit22 doi: 10.1016/j.chempr.2018.12.009 – ident: ref50/cit50 doi: 10.1364/OE.23.002962 – ident: ref16/cit16 doi: 10.1016/j.apcatb.2020.119191 – ident: ref25/cit25 doi: 10.1021/ja512179x – ident: ref63/cit63 doi: 10.1021/acsnano.1c02016 – ident: ref26/cit26 doi: 10.1039/C5NR00665A – ident: ref45/cit45 doi: 10.1002/jrs.6189 – ident: ref55/cit55 doi: 10.1016/j.jcis.2017.06.089 – ident: ref40/cit40 doi: 10.1038/s41467-021-25140-2 – ident: ref32/cit32 doi: 10.1016/j.pmatsci.2017.02.004 – ident: ref38/cit38 doi: 10.1063/1.341867 – ident: ref4/cit4 doi: 10.1021/cr0103773 – ident: ref2/cit2 doi: 10.1021/cr010375i – ident: ref17/cit17 doi: 10.1002/adma.202101751 – volume: 33 start-page: 527 year: 2019 ident: ref7/cit7 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.8372 contributor: fullname: Kim M. J. – ident: ref48/cit48 doi: 10.1002/asia.202000850 – ident: ref10/cit10 doi: 10.1021/acsami.9b03386 – ident: ref33/cit33 doi: 10.1063/1.4764060 – ident: ref49/cit49 doi: 10.1021/jp711484f – volume: 4 start-page: 1 year: 2014 ident: ref58/cit58 publication-title: Sci. Rep. contributor: fullname: Yang L. – ident: ref31/cit31 doi: 10.1016/j.carbon.2013.07.055 – ident: ref6/cit6 doi: 10.1016/j.jala.2004.01.004 – ident: ref30/cit30 doi: 10.1016/j.carbon.2016.11.030 – ident: ref19/cit19 doi: 10.1016/j.nanoen.2021.105743 – ident: ref51/cit51 doi: 10.1039/C8TC00084K – ident: ref67/cit67 doi: 10.1016/j.apcatb.2019.01.043 – ident: ref11/cit11 doi: 10.1039/C7CC02957H – ident: ref23/cit23 doi: 10.1039/C7CP05242A – ident: ref66/cit66 doi: 10.1177/1087057115623740 – ident: ref46/cit46 doi: 10.1016/j.cej.2021.131844 – ident: ref53/cit53 doi: 10.1002/anie.201811709 – ident: ref15/cit15 doi: 10.1016/j.trac.2012.03.011 – ident: ref18/cit18 doi: 10.1016/j.apcatb.2018.03.035 – ident: ref59/cit59 doi: 10.1007/s43207-021-00151-3 – ident: ref1/cit1 doi: 10.1038/20400 – ident: ref47/cit47 doi: 10.1039/C4TA04100C – ident: ref65/cit65 doi: 10.1007/s13206-020-4208-1 – ident: ref12/cit12 doi: 10.1021/acs.jpcc.5b05957 – ident: ref44/cit44 doi: 10.1016/j.carbon.2014.08.059 – ident: ref36/cit36 doi: 10.1021/acschemneuro.8b00121 – ident: ref28/cit28 doi: 10.1002/adma.200401756 – ident: ref68/cit68 doi: 10.1016/j.jenvman.2019.06.043 – ident: ref60/cit60 doi: 10.1021/acssuschemeng.7b01477 – ident: ref42/cit42 doi: 10.1002/solr.201800298 – ident: ref56/cit56 doi: 10.1007/s43207-021-00159-9 – ident: ref5/cit5 doi: 10.1038/s41598-018-25946-z – ident: ref9/cit9 doi: 10.1039/D0CC00866D – ident: ref61/cit61 doi: 10.1002/aenm.202103329 – ident: ref8/cit8 doi: 10.1002/smll.202103745 – ident: ref54/cit54 doi: 10.1016/j.ijhydene.2022.04.065 – ident: ref39/cit39 doi: 10.1063/1.3507138 |
SSID | ssj0057876 |
Score | 2.4963007 |
Snippet | Nanostructurescoupled with mass spectrometryhave been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules... Nanostructures─coupled with mass spectrometry─have been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules... |
SourceID | crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 18284 |
SubjectTerms | Graphite - chemistry Lasers Reproducibility of Results Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods |
Title | Laser-Shock-Driven In Situ Evolution of Atomic Defect and Piezoelectricity in Graphitic Carbon Nitride for the Ionization in Mass Spectrometry |
URI | http://dx.doi.org/10.1021/acsnano.2c05993 https://www.ncbi.nlm.nih.gov/pubmed/36265010 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagXODA8ly6C2gOe-DisnZitzlWfbBF7AqpVOotsh1bREjJKk2R6I_Y37wzTVq2rBCcM3GimfHMN_LMZ8bOrOnLKFjNE58EHsdOcmM1lipSJ8oMlA6CBpwvr_TFIv68VMvfZNF_nuBL8dG4VWGKsicdUYlED9kj2cetQShoNN8FXfI73RwgY4GMKGLP4nNvAUpDbnWQhg4A5TaxTI-alqzVlo-Q-kl-9Na17bnNfbbGf__zM_a0hZcwbPzhOXvgixfsyR3SwZfs5gsmrorPv2Mk5OOKoh3MCpjn9RomP1tPhDLAsKaJZRh76vgAU2TwNfebsrk4J3cI3yEv4BMxXlMLHYxMZfHNqxyfZh4QDQOiS5iVu1lPEr9EsA506X1NPAl19esVW0wn30YXvL2VgRupo5o7RFSGBgsN5j5EW5mRmcW4J9UAq_REu8iq2MbWBZW4SETOWZS3xotkkPWNil6zTlEW_g0DrbywFjV27kUcAlo1GJsIZYwKsRfnXXaGmkzbXbVKtwfmUqStetNWvV32YWfL9Lrh6Pi76HFj670g0fEoLEpP_u9bp-yxpAEIIbiUb1mnrtb-HcKS2r7fOuQtRizfHA |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N8QB7YPwcgwH3sAdeXGondpvHqdtooa1A3aS9RbZjiwiRTGmKxP4I_mbOSdptICR4Tc6Odb7cfafzfQY4NHogIm8US1ziWRxbwbRRlKoIlUg9lMrz0OA8m6vxefzhQl5sQX_dC0OLWNJMy6aIf80uwN_Rs0IXZU_YwCgS3YG7ckDhMoCh0WLte4P5qbaOTHkygYkNmc8fE4RoZJe3otEtXNnEl9Nd-LxZWXOs5GtvVZuevfqNtPF_lv4QHnRgE49a63gEW654DDs3KAifwM8phbGKLb6QX2THVfB9OClwkdcrPPne2SWWHo_q0L-Mxy6c_0BdZPgpd1dle41ObgnMY17g-8B_HQ7U4UhXhkbOc3qbOSRsjIQ1cVKuOz-D-IygOy4um5t4vrm6-vEUzk9PzkZj1t3RwLRQUc0s4Ssd2gw1RULCXpkWmSEvKOSQcvZE2cjI2MTGepnYiEfWGpI32vFkmA20jJ7BdlEW7jmgko4bQxrrOx57T-7Pa5NwqbX0seP9fTgkTabdP7ZMm_K54Gmn3rRT7z68XW9petkydvxddK_d8o1gIOeRlKK--LdvvYF747PZNJ1O5h9fwn0RWiM4Z0IcwHZdrdwrAiy1ed3Y6C-NeeeB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa2DBi2w9qte6SPjYceelFWyZYSH4OkadM2QYAsQG-GJEuoMcwOHGfA-iP2m0vZTtCuGLBdbVoWKIr8CIqfCDnWqssDpyWNbORoGBpOlZaYqnAZCdUT0jHf4DyZyotFeHkjbpqmMN8Lg5NY4Uirqojvd_UycQ3DAPuKzzOV5R1uPKtI8Jy8EF1WFWf7g_nG_3oTlHUtGXNlBBRbQp8nA_iIZFaPItIjbFnFmNEOWWxnVx0t-d5Zl7pj7v4gbvzf6e-SNw3ohH5tJW_JM5u9I68fUBHukd_XGM4KOr9F_0iHhfeBMM5gnpZrOPvZ2CfkDvql72OGofXnQEBlCcxSe5fX1-mkBkE9pBmcex5sf7AOBqrQ-OU0xbeJBcTIgJgTxvmmA9SLTxDCw3xZ3cjzw5bFr_dkMTr7NrigzV0NVHEZlNQgzlK-3VBhREQMliieaPSGXPQwd4-kCbQIdaiNE5EJWGCMRnmtLIt6SVeJ4ANpZXlmPxGQwjKtUWOnloXOoRt0SkdMKCVcaNlpmxyjJuNmr63iqozOWdyoN27U2yYnm2WNlzVzx99FP9bLvhX0JD0CU9X9f_vXF_JyNhzF1-Pp1QF5xX2HBGOU80PSKou1PULcUurPlZneA_mZ6fs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser-Shock-Driven+In+Situ+Evolution+of+Atomic+Defect+and+Piezoelectricity+in+Graphitic+Carbon+Nitride+for+the+Ionization+in+Mass+Spectrometry&rft.jtitle=ACS+nano&rft.au=Kim%2C+Moon-Ju&rft.au=Noh%2C+Joo-Yoon&rft.au=Yun%2C+Tae+Gyeong&rft.au=Kang%2C+Min-Jung&rft.date=2022-11-22&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=16&rft.issue=11&rft.spage=18284&rft.epage=18297&rft_id=info:doi/10.1021%2Facsnano.2c05993&rft.externalDocID=c726573212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |