Laser-Shock-Driven In Situ Evolution of Atomic Defect and Piezoelectricity in Graphitic Carbon Nitride for the Ionization in Mass Spectrometry

Nanostructurescoupled with mass spectrometryhave been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules in laser desorption/ionization mass spectrometry (LDI-MS). However, the impact of laser-induced shock wave on the ionization of the nanostru...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 16; no. 11; pp. 18284 - 18297
Main Authors Kim, Moon-Ju, Noh, Joo-Yoon, Yun, Tae Gyeong, Kang, Min-Jung, Son, Dong Hee, Pyun, Jae-Chul
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanostructurescoupled with mass spectrometryhave been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules in laser desorption/ionization mass spectrometry (LDI-MS). However, the impact of laser-induced shock wave on the ionization of the nanostructures has rarely been reported. Herein, we systematically elucidate the laser shock wave effect on the ionization in terms of the in situ development of atomic defects and piezoelectricity in two-dimensional graphitic carbon nitride nanosheets (g-C3N4 NS) by short laser pulses. The mass analysis results of immunosuppressive drugs verify the enhanced LDI-MS performance, structurally originating from anisotropic lattice distortions in g-C3N4 NS, i.e., in-plane extension (contraction) and out-of-plane contraction (extension) that modulate the charge carrier motion. Along with the experimental investigations, density functional theory calculations on Mulliken charges and dipole moments demonstrate the contribution of defect and piezoelectricity to the ionization. The results of this study provide a mechanistic understanding of the underlying ionization processes, which is crucial for revealing the full potential of laser shock waves in LDI-MS.
AbstractList Nanostructurescoupled with mass spectrometryhave been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules in laser desorption/ionization mass spectrometry (LDI-MS). However, the impact of laser-induced shock wave on the ionization of the nanostructures has rarely been reported. Herein, we systematically elucidate the laser shock wave effect on the ionization in terms of the in situ development of atomic defects and piezoelectricity in two-dimensional graphitic carbon nitride nanosheets (g-C3N4 NS) by short laser pulses. The mass analysis results of immunosuppressive drugs verify the enhanced LDI-MS performance, structurally originating from anisotropic lattice distortions in g-C3N4 NS, i.e., in-plane extension (contraction) and out-of-plane contraction (extension) that modulate the charge carrier motion. Along with the experimental investigations, density functional theory calculations on Mulliken charges and dipole moments demonstrate the contribution of defect and piezoelectricity to the ionization. The results of this study provide a mechanistic understanding of the underlying ionization processes, which is crucial for revealing the full potential of laser shock waves in LDI-MS.
Nanostructures─coupled with mass spectrometry─have been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules in laser desorption/ionization mass spectrometry (LDI-MS). However, the impact of laser-induced shock wave on the ionization of the nanostructures has rarely been reported. Herein, we systematically elucidate the laser shock wave effect on the ionization in terms of the development of atomic defects and piezoelectricity in two-dimensional graphitic carbon nitride nanosheets (g-C N NS) by short laser pulses. The mass analysis results of immunosuppressive drugs verify the enhanced LDI-MS performance, structurally originating from anisotropic lattice distortions in g-C N NS, i.e., in-plane extension (contraction) and out-of-plane contraction (extension) that modulate the charge carrier motion. Along with the experimental investigations, density functional theory calculations on Mulliken charges and dipole moments demonstrate the contribution of defect and piezoelectricity to the ionization. The results of this study provide a mechanistic understanding of the underlying ionization processes, which is crucial for revealing the full potential of laser shock waves in LDI-MS.
Author Noh, Joo-Yoon
Kang, Min-Jung
Kim, Moon-Ju
Yun, Tae Gyeong
Son, Dong Hee
Pyun, Jae-Chul
AuthorAffiliation Department of Chemistry
Department of Materials and Science and Engineering
Texas A&M University
AuthorAffiliation_xml – name: Department of Materials and Science and Engineering
– name: Texas A&M University
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Moon-Ju
  surname: Kim
  fullname: Kim, Moon-Ju
  organization: Department of Materials and Science and Engineering
– sequence: 2
  givenname: Joo-Yoon
  surname: Noh
  fullname: Noh, Joo-Yoon
  organization: Department of Materials and Science and Engineering
– sequence: 3
  givenname: Tae Gyeong
  surname: Yun
  fullname: Yun, Tae Gyeong
  organization: Department of Materials and Science and Engineering
– sequence: 4
  givenname: Min-Jung
  surname: Kang
  fullname: Kang, Min-Jung
– sequence: 5
  givenname: Dong Hee
  orcidid: 0000-0001-9002-5188
  surname: Son
  fullname: Son, Dong Hee
  organization: Texas A&M University
– sequence: 6
  givenname: Jae-Chul
  orcidid: 0000-0001-9954-6860
  surname: Pyun
  fullname: Pyun, Jae-Chul
  email: jcpyun@yonsei.ac.kr
  organization: Department of Materials and Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36265010$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtPAjEUhRuDkYeu3ZnuzUAfzGtJAJEEHwmauJu0nU4oMi1pOyTwI_zNFkF3ru69ud85yTld0NJGSwBuMepjRPCACaeZNn0iUJzn9AJ0cE6TCGXJR-tvj3EbdJ1bIxSnWZpcgTZNSBIjjDrga8GctNFyZcRnNLFqJzWca7hUvoHTndk0XhkNTQVH3tRKwImspPCQ6RK-KnkwchNOq4Tye6g0nFm2XSkfwDGzPCifVfiWElbGQr-ScG60OrAf04A_Mefgcnu0MLX0dn8NLiu2cfLmPHvg_WH6Nn6MFi-z-Xi0iBhJqI8EzQlLcJqxkAQPaclIyQnOSZxJTvJEUB4P-ZCLKs4FxVQIHnjOJM6zMmUx7YHByVdY45yVVbG1qmZ2X2BUHJstzs0W52aD4u6k2Da8luUf_1tlAO5PQFAWa9NYHQL8a_cNWFGIxw
CitedBy_id crossref_primary_10_1002_adma_202209083
crossref_primary_10_1007_s12274_024_6491_y
crossref_primary_10_1039_D3CS00213F
crossref_primary_10_1039_D3TA05591D
crossref_primary_10_1021_acsnano_4c02429
crossref_primary_10_1021_acs_jafc_3c04650
crossref_primary_10_1021_acsami_3c14254
Cites_doi 10.1002/asia.201090016
10.1016/j.nanoen.2020.104735
10.1007/s43207-020-00103-3
10.1088/1361-6528/ab7679
10.1007/s13206-020-4202-7
10.1002/adfm.202102475
10.1007/s13206-022-00046-3
10.1038/ncomms5284
10.1088/1361-6463/50/7/073001
10.1016/j.mattod.2018.01.031
10.1115/1.1445149
10.1039/b605646f
10.1063/1.346783
10.1115/1.4052909
10.1039/C7TA04639A
10.1021/ja808329f
10.1080/05704928.2019.1570519
10.1039/D0RA08608H
10.1016/j.chempr.2018.12.009
10.1364/OE.23.002962
10.1016/j.apcatb.2020.119191
10.1021/ja512179x
10.1021/acsnano.1c02016
10.1039/C5NR00665A
10.1002/jrs.6189
10.1016/j.jcis.2017.06.089
10.1038/s41467-021-25140-2
10.1016/j.pmatsci.2017.02.004
10.1063/1.341867
10.1021/cr0103773
10.1021/cr010375i
10.1002/adma.202101751
10.1002/rcm.8372
10.1002/asia.202000850
10.1021/acsami.9b03386
10.1063/1.4764060
10.1021/jp711484f
10.1016/j.carbon.2013.07.055
10.1016/j.jala.2004.01.004
10.1016/j.carbon.2016.11.030
10.1016/j.nanoen.2021.105743
10.1039/C8TC00084K
10.1016/j.apcatb.2019.01.043
10.1039/C7CC02957H
10.1039/C7CP05242A
10.1177/1087057115623740
10.1016/j.cej.2021.131844
10.1002/anie.201811709
10.1016/j.trac.2012.03.011
10.1016/j.apcatb.2018.03.035
10.1007/s43207-021-00151-3
10.1038/20400
10.1039/C4TA04100C
10.1007/s13206-020-4208-1
10.1021/acs.jpcc.5b05957
10.1016/j.carbon.2014.08.059
10.1021/acschemneuro.8b00121
10.1002/adma.200401756
10.1016/j.jenvman.2019.06.043
10.1021/acssuschemeng.7b01477
10.1002/solr.201800298
10.1007/s43207-021-00159-9
10.1038/s41598-018-25946-z
10.1039/D0CC00866D
10.1002/aenm.202103329
10.1002/smll.202103745
10.1016/j.ijhydene.2022.04.065
10.1063/1.3507138
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1021/acsnano.2c05993
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 18297
ExternalDocumentID 10_1021_acsnano_2c05993
36265010
c726573212
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
ABJNI
ACBEA
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ID FETCH-LOGICAL-a263t-c392a6178a362143da2db219258eb296c3b54b4bcf59c313ccb2a6bae198d7a53
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Wed Oct 09 16:39:40 EDT 2024
Sat Sep 28 08:16:17 EDT 2024
Thu Nov 24 04:02:03 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords atomic defect
LDI-MS
piezoelectricity
laser-induced shock wave
2D g-C3N4 nanosheets
anisotropic lattice distortion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a263t-c392a6178a362143da2db219258eb296c3b54b4bcf59c313ccb2a6bae198d7a53
ORCID 0000-0001-9954-6860
0000-0001-9002-5188
PMID 36265010
PageCount 14
ParticipantIDs crossref_primary_10_1021_acsnano_2c05993
pubmed_primary_36265010
acs_journals_10_1021_acsnano_2c05993
PublicationCentury 2000
PublicationDate 20221122
2022-11-22
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 20221122
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
Kim M. J. (ref7/cit7) 2019; 33
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref22/cit22
ref33/cit33
Yang L. (ref58/cit58) 2014; 4
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
References_xml – ident: ref29/cit29
  doi: 10.1002/asia.201090016
– ident: ref62/cit62
  doi: 10.1016/j.nanoen.2020.104735
– ident: ref57/cit57
  doi: 10.1007/s43207-020-00103-3
– ident: ref41/cit41
  doi: 10.1088/1361-6528/ab7679
– ident: ref64/cit64
  doi: 10.1007/s13206-020-4202-7
– ident: ref13/cit13
  doi: 10.1002/adfm.202102475
– ident: ref69/cit69
  doi: 10.1007/s13206-022-00046-3
– ident: ref20/cit20
  doi: 10.1038/ncomms5284
– ident: ref43/cit43
  doi: 10.1088/1361-6463/50/7/073001
– ident: ref21/cit21
  doi: 10.1016/j.mattod.2018.01.031
– ident: ref35/cit35
  doi: 10.1115/1.1445149
– ident: ref3/cit3
  doi: 10.1039/b605646f
– ident: ref34/cit34
  doi: 10.1063/1.346783
– ident: ref37/cit37
  doi: 10.1115/1.4052909
– ident: ref24/cit24
  doi: 10.1039/C7TA04639A
– ident: ref27/cit27
  doi: 10.1021/ja808329f
– ident: ref14/cit14
  doi: 10.1080/05704928.2019.1570519
– ident: ref52/cit52
  doi: 10.1039/D0RA08608H
– ident: ref22/cit22
  doi: 10.1016/j.chempr.2018.12.009
– ident: ref50/cit50
  doi: 10.1364/OE.23.002962
– ident: ref16/cit16
  doi: 10.1016/j.apcatb.2020.119191
– ident: ref25/cit25
  doi: 10.1021/ja512179x
– ident: ref63/cit63
  doi: 10.1021/acsnano.1c02016
– ident: ref26/cit26
  doi: 10.1039/C5NR00665A
– ident: ref45/cit45
  doi: 10.1002/jrs.6189
– ident: ref55/cit55
  doi: 10.1016/j.jcis.2017.06.089
– ident: ref40/cit40
  doi: 10.1038/s41467-021-25140-2
– ident: ref32/cit32
  doi: 10.1016/j.pmatsci.2017.02.004
– ident: ref38/cit38
  doi: 10.1063/1.341867
– ident: ref4/cit4
  doi: 10.1021/cr0103773
– ident: ref2/cit2
  doi: 10.1021/cr010375i
– ident: ref17/cit17
  doi: 10.1002/adma.202101751
– volume: 33
  start-page: 527
  year: 2019
  ident: ref7/cit7
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.8372
  contributor:
    fullname: Kim M. J.
– ident: ref48/cit48
  doi: 10.1002/asia.202000850
– ident: ref10/cit10
  doi: 10.1021/acsami.9b03386
– ident: ref33/cit33
  doi: 10.1063/1.4764060
– ident: ref49/cit49
  doi: 10.1021/jp711484f
– volume: 4
  start-page: 1
  year: 2014
  ident: ref58/cit58
  publication-title: Sci. Rep.
  contributor:
    fullname: Yang L.
– ident: ref31/cit31
  doi: 10.1016/j.carbon.2013.07.055
– ident: ref6/cit6
  doi: 10.1016/j.jala.2004.01.004
– ident: ref30/cit30
  doi: 10.1016/j.carbon.2016.11.030
– ident: ref19/cit19
  doi: 10.1016/j.nanoen.2021.105743
– ident: ref51/cit51
  doi: 10.1039/C8TC00084K
– ident: ref67/cit67
  doi: 10.1016/j.apcatb.2019.01.043
– ident: ref11/cit11
  doi: 10.1039/C7CC02957H
– ident: ref23/cit23
  doi: 10.1039/C7CP05242A
– ident: ref66/cit66
  doi: 10.1177/1087057115623740
– ident: ref46/cit46
  doi: 10.1016/j.cej.2021.131844
– ident: ref53/cit53
  doi: 10.1002/anie.201811709
– ident: ref15/cit15
  doi: 10.1016/j.trac.2012.03.011
– ident: ref18/cit18
  doi: 10.1016/j.apcatb.2018.03.035
– ident: ref59/cit59
  doi: 10.1007/s43207-021-00151-3
– ident: ref1/cit1
  doi: 10.1038/20400
– ident: ref47/cit47
  doi: 10.1039/C4TA04100C
– ident: ref65/cit65
  doi: 10.1007/s13206-020-4208-1
– ident: ref12/cit12
  doi: 10.1021/acs.jpcc.5b05957
– ident: ref44/cit44
  doi: 10.1016/j.carbon.2014.08.059
– ident: ref36/cit36
  doi: 10.1021/acschemneuro.8b00121
– ident: ref28/cit28
  doi: 10.1002/adma.200401756
– ident: ref68/cit68
  doi: 10.1016/j.jenvman.2019.06.043
– ident: ref60/cit60
  doi: 10.1021/acssuschemeng.7b01477
– ident: ref42/cit42
  doi: 10.1002/solr.201800298
– ident: ref56/cit56
  doi: 10.1007/s43207-021-00159-9
– ident: ref5/cit5
  doi: 10.1038/s41598-018-25946-z
– ident: ref9/cit9
  doi: 10.1039/D0CC00866D
– ident: ref61/cit61
  doi: 10.1002/aenm.202103329
– ident: ref8/cit8
  doi: 10.1002/smll.202103745
– ident: ref54/cit54
  doi: 10.1016/j.ijhydene.2022.04.065
– ident: ref39/cit39
  doi: 10.1063/1.3507138
SSID ssj0057876
Score 2.4963007
Snippet Nanostructurescoupled with mass spectrometryhave been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules...
Nanostructures─coupled with mass spectrometry─have been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules...
SourceID crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 18284
SubjectTerms Graphite - chemistry
Lasers
Reproducibility of Results
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods
Title Laser-Shock-Driven In Situ Evolution of Atomic Defect and Piezoelectricity in Graphitic Carbon Nitride for the Ionization in Mass Spectrometry
URI http://dx.doi.org/10.1021/acsnano.2c05993
https://www.ncbi.nlm.nih.gov/pubmed/36265010
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagXODA8ly6C2gOe-DisnZitzlWfbBF7AqpVOotsh1bREjJKk2R6I_Y37wzTVq2rBCcM3GimfHMN_LMZ8bOrOnLKFjNE58EHsdOcmM1lipSJ8oMlA6CBpwvr_TFIv68VMvfZNF_nuBL8dG4VWGKsicdUYlED9kj2cetQShoNN8FXfI73RwgY4GMKGLP4nNvAUpDbnWQhg4A5TaxTI-alqzVlo-Q-kl-9Na17bnNfbbGf__zM_a0hZcwbPzhOXvgixfsyR3SwZfs5gsmrorPv2Mk5OOKoh3MCpjn9RomP1tPhDLAsKaJZRh76vgAU2TwNfebsrk4J3cI3yEv4BMxXlMLHYxMZfHNqxyfZh4QDQOiS5iVu1lPEr9EsA506X1NPAl19esVW0wn30YXvL2VgRupo5o7RFSGBgsN5j5EW5mRmcW4J9UAq_REu8iq2MbWBZW4SETOWZS3xotkkPWNil6zTlEW_g0DrbywFjV27kUcAlo1GJsIZYwKsRfnXXaGmkzbXbVKtwfmUqStetNWvV32YWfL9Lrh6Pi76HFj670g0fEoLEpP_u9bp-yxpAEIIbiUb1mnrtb-HcKS2r7fOuQtRizfHA
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N8QB7YPwcgwH3sAdeXGondpvHqdtooa1A3aS9RbZjiwiRTGmKxP4I_mbOSdptICR4Tc6Odb7cfafzfQY4NHogIm8US1ziWRxbwbRRlKoIlUg9lMrz0OA8m6vxefzhQl5sQX_dC0OLWNJMy6aIf80uwN_Rs0IXZU_YwCgS3YG7ckDhMoCh0WLte4P5qbaOTHkygYkNmc8fE4RoZJe3otEtXNnEl9Nd-LxZWXOs5GtvVZuevfqNtPF_lv4QHnRgE49a63gEW654DDs3KAifwM8phbGKLb6QX2THVfB9OClwkdcrPPne2SWWHo_q0L-Mxy6c_0BdZPgpd1dle41ObgnMY17g-8B_HQ7U4UhXhkbOc3qbOSRsjIQ1cVKuOz-D-IygOy4um5t4vrm6-vEUzk9PzkZj1t3RwLRQUc0s4Ssd2gw1RULCXpkWmSEvKOSQcvZE2cjI2MTGepnYiEfWGpI32vFkmA20jJ7BdlEW7jmgko4bQxrrOx57T-7Pa5NwqbX0seP9fTgkTabdP7ZMm_K54Gmn3rRT7z68XW9petkydvxddK_d8o1gIOeRlKK--LdvvYF747PZNJ1O5h9fwn0RWiM4Z0IcwHZdrdwrAiy1ed3Y6C-NeeeB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9swDBa2DBi2w9qte6SPjYceelFWyZYSH4OkadM2QYAsQG-GJEuoMcwOHGfA-iP2m0vZTtCuGLBdbVoWKIr8CIqfCDnWqssDpyWNbORoGBpOlZaYqnAZCdUT0jHf4DyZyotFeHkjbpqmMN8Lg5NY4Uirqojvd_UycQ3DAPuKzzOV5R1uPKtI8Jy8EF1WFWf7g_nG_3oTlHUtGXNlBBRbQp8nA_iIZFaPItIjbFnFmNEOWWxnVx0t-d5Zl7pj7v4gbvzf6e-SNw3ohH5tJW_JM5u9I68fUBHukd_XGM4KOr9F_0iHhfeBMM5gnpZrOPvZ2CfkDvql72OGofXnQEBlCcxSe5fX1-mkBkE9pBmcex5sf7AOBqrQ-OU0xbeJBcTIgJgTxvmmA9SLTxDCw3xZ3cjzw5bFr_dkMTr7NrigzV0NVHEZlNQgzlK-3VBhREQMliieaPSGXPQwd4-kCbQIdaiNE5EJWGCMRnmtLIt6SVeJ4ANpZXlmPxGQwjKtUWOnloXOoRt0SkdMKCVcaNlpmxyjJuNmr63iqozOWdyoN27U2yYnm2WNlzVzx99FP9bLvhX0JD0CU9X9f_vXF_JyNhzF1-Pp1QF5xX2HBGOU80PSKou1PULcUurPlZneA_mZ6fs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser-Shock-Driven+In+Situ+Evolution+of+Atomic+Defect+and+Piezoelectricity+in+Graphitic+Carbon+Nitride+for+the+Ionization+in+Mass+Spectrometry&rft.jtitle=ACS+nano&rft.au=Kim%2C+Moon-Ju&rft.au=Noh%2C+Joo-Yoon&rft.au=Yun%2C+Tae+Gyeong&rft.au=Kang%2C+Min-Jung&rft.date=2022-11-22&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=16&rft.issue=11&rft.spage=18284&rft.epage=18297&rft_id=info:doi/10.1021%2Facsnano.2c05993&rft.externalDocID=c726573212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon