Valence-State-Engineered Electrochemiluminescence from Au Nanoclusters
To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs’ ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state...
Saved in:
Published in | ACS nano Vol. 17; no. 1; pp. 355 - 362 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs’ ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state of the Au body element, i.e., Au(0) and Au(I), is performed via successively reducing the precursor AuCl4 – to Au(I) and Au(0) with BSA. The obtained BSA-AuNCs/N2H4 system leads to three anodic ECL processes at 0.37 (ECL-1), 0.85 (ECL-2), and 1.45 V (ECL-3). ECL-1 is generated from the BSA-Au(0) section of BSA-AuNCs in a surface-defect-involved route and is much stronger and red-shifted compared to ECL-2 and ECL-3, which are generated from the BSA-Au(I) section of BSA-AuNCs in the band-gap-engineered route. Each of the anodic ECL processes can be selectively generated and/or suppressed via adjusting the Au(I)/Au(0) ratio of BSA-AuNCs, tunable ECL generation route, and triggering potential, and the emission intensity and waveband of metal NCs are conveniently achieved in body-element-involved valence-state engineering. |
---|---|
AbstractList | To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs’ ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state of the Au body element, i.e., Au(0) and Au(I), is performed via successively reducing the precursor AuCl4 – to Au(I) and Au(0) with BSA. The obtained BSA-AuNCs/N2H4 system leads to three anodic ECL processes at 0.37 (ECL-1), 0.85 (ECL-2), and 1.45 V (ECL-3). ECL-1 is generated from the BSA-Au(0) section of BSA-AuNCs in a surface-defect-involved route and is much stronger and red-shifted compared to ECL-2 and ECL-3, which are generated from the BSA-Au(I) section of BSA-AuNCs in the band-gap-engineered route. Each of the anodic ECL processes can be selectively generated and/or suppressed via adjusting the Au(I)/Au(0) ratio of BSA-AuNCs, tunable ECL generation route, and triggering potential, and the emission intensity and waveband of metal NCs are conveniently achieved in body-element-involved valence-state engineering. To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs' ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state of the Au body element, i.e., Au(0) and Au(I), is performed via successively reducing the precursor AuCl4- to Au(I) and Au(0) with BSA. The obtained BSA-AuNCs/N2H4 system leads to three anodic ECL processes at 0.37 (ECL-1), 0.85 (ECL-2), and 1.45 V (ECL-3). ECL-1 is generated from the BSA-Au(0) section of BSA-AuNCs in a surface-defect-involved route and is much stronger and red-shifted compared to ECL-2 and ECL-3, which are generated from the BSA-Au(I) section of BSA-AuNCs in the band-gap-engineered route. Each of the anodic ECL processes can be selectively generated and/or suppressed via adjusting the Au(I)/Au(0) ratio of BSA-AuNCs, tunable ECL generation route, and triggering potential, and the emission intensity and waveband of metal NCs are conveniently achieved in body-element-involved valence-state engineering.To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs' ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state of the Au body element, i.e., Au(0) and Au(I), is performed via successively reducing the precursor AuCl4- to Au(I) and Au(0) with BSA. The obtained BSA-AuNCs/N2H4 system leads to three anodic ECL processes at 0.37 (ECL-1), 0.85 (ECL-2), and 1.45 V (ECL-3). ECL-1 is generated from the BSA-Au(0) section of BSA-AuNCs in a surface-defect-involved route and is much stronger and red-shifted compared to ECL-2 and ECL-3, which are generated from the BSA-Au(I) section of BSA-AuNCs in the band-gap-engineered route. Each of the anodic ECL processes can be selectively generated and/or suppressed via adjusting the Au(I)/Au(0) ratio of BSA-AuNCs, tunable ECL generation route, and triggering potential, and the emission intensity and waveband of metal NCs are conveniently achieved in body-element-involved valence-state engineering. To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs' ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state of the Au body element, i.e., Au(0) and Au(I), is performed via successively reducing the precursor AuCl to Au(I) and Au(0) with BSA. The obtained BSA-AuNCs/N H system leads to three anodic ECL processes at 0.37 (ECL-1), 0.85 (ECL-2), and 1.45 V (ECL-3). ECL-1 is generated from the BSA-Au(0) section of BSA-AuNCs in a surface-defect-involved route and is much stronger and red-shifted compared to ECL-2 and ECL-3, which are generated from the BSA-Au(I) section of BSA-AuNCs in the band-gap-engineered route. Each of the anodic ECL processes can be selectively generated and/or suppressed via adjusting the Au(I)/Au(0) ratio of BSA-AuNCs, tunable ECL generation route, and triggering potential, and the emission intensity and waveband of metal NCs are conveniently achieved in body-element-involved valence-state engineering. |
Author | Gao, Xuwen Zou, Guizheng Zhang, Bin Wang, Dongyang Jia, Jingna |
AuthorAffiliation | School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Dongyang orcidid: 0000-0002-1887-4326 surname: Wang fullname: Wang, Dongyang – sequence: 2 givenname: Xuwen orcidid: 0000-0002-0281-0141 surname: Gao fullname: Gao, Xuwen – sequence: 3 givenname: Jingna orcidid: 0000-0002-4023-0420 surname: Jia fullname: Jia, Jingna – sequence: 4 givenname: Bin orcidid: 0000-0002-1529-6356 surname: Zhang fullname: Zhang, Bin – sequence: 5 givenname: Guizheng orcidid: 0000-0002-3295-3848 surname: Zou fullname: Zou, Guizheng email: zouguizheng@sdu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36534370$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kDtPwzAURi1URB8ws6GMSCjtdZw4yVhVLSBVMPAQW-Q6N5DKsYudDPx7XDV0QILJln0-389nTAbaaCTkksKUQkRnQjottJlGErI4jU_IiOaMh5Dxt8Fxn9AhGTu3BUjSLOVnZMh4wmKWwoisXoVCLTF8akWL4VK_1xrRYhksFcrWGvmBTa26xh87uSeDypommHfBgx8sVedatO6cnFZCObzo1wl5WS2fF3fh-vH2fjFfhyLirA2jPGEZ8CiLSkFljugbceGbZxXIEuIUeCU3XJYUYgkij2IBcYY5YxSrpKRsQq4P7-6s-ezQtUVT-1pKCY2mc0WUJkkGkOZ79KpHu02DZbGzdSPsV_Hzdw_MDoC0xjmL1RGhUOztFr3dorfrE8mvhKy9ttro1opa_ZO7OeT8RbE1ndXe0Z_0N1Y6jpY |
CitedBy_id | crossref_primary_10_1002_agt2_699 crossref_primary_10_1016_j_cej_2023_144013 crossref_primary_10_1002_ange_202414073 crossref_primary_10_1016_j_cej_2023_143366 crossref_primary_10_1016_j_aca_2023_342146 crossref_primary_10_1021_acs_analchem_4c04594 crossref_primary_10_1021_acsnano_4c02501 crossref_primary_10_1021_acs_analchem_3c05632 crossref_primary_10_1021_acs_jafc_4c01525 crossref_primary_10_1021_acs_analchem_3c04579 crossref_primary_10_1021_acs_analchem_4c00225 crossref_primary_10_1021_acs_analchem_4c01039 crossref_primary_10_1016_j_microc_2025_113216 crossref_primary_10_1021_acs_analchem_3c04816 crossref_primary_10_1016_j_snb_2024_136690 crossref_primary_10_1016_j_snb_2023_134911 crossref_primary_10_1016_j_cej_2025_160268 crossref_primary_10_1016_j_jelechem_2024_118448 crossref_primary_10_1038_s41467_024_48011_y crossref_primary_10_1002_ange_202300893 crossref_primary_10_1002_smll_202301357 crossref_primary_10_1039_D4NR05222F crossref_primary_10_1039_D4SD00272E crossref_primary_10_1016_j_aca_2024_343388 crossref_primary_10_1021_acs_analchem_3c04153 crossref_primary_10_1021_acs_analchem_4c02878 crossref_primary_10_1016_j_apcatb_2024_124679 crossref_primary_10_1002_anie_202300893 crossref_primary_10_1021_acs_analchem_3c04086 crossref_primary_10_1021_acs_analchem_4c04014 crossref_primary_10_1016_j_jece_2023_111546 crossref_primary_10_1016_j_saa_2025_126092 crossref_primary_10_1021_acs_analchem_4c02427 crossref_primary_10_1021_acs_jpcc_3c06277 crossref_primary_10_1021_acsaelm_4c00036 crossref_primary_10_1021_acsnano_3c05037 crossref_primary_10_1039_D4QI02461C crossref_primary_10_1016_j_foodchem_2024_141370 crossref_primary_10_1016_j_snb_2024_136193 crossref_primary_10_1021_acs_analchem_2c05248 crossref_primary_10_1016_j_trac_2023_117030 crossref_primary_10_1002_anie_202414073 crossref_primary_10_3389_frans_2024_1506786 crossref_primary_10_1002_ejic_202300657 crossref_primary_10_1016_j_snb_2024_136347 crossref_primary_10_1016_j_bios_2023_115589 crossref_primary_10_1039_D3NR05464K crossref_primary_10_1063_5_0226303 crossref_primary_10_1039_D4AN01314J crossref_primary_10_1016_j_aca_2024_343284 crossref_primary_10_1021_acs_analchem_3c05620 crossref_primary_10_1016_j_snb_2023_134506 crossref_primary_10_1039_D4CS00962B crossref_primary_10_1016_j_snb_2024_135736 crossref_primary_10_1016_j_jhazmat_2023_131546 crossref_primary_10_1016_j_snb_2024_135536 |
Cites_doi | 10.1021/acs.analchem.0c05187 10.1002/ppsc.201900314 10.1021/acsami.9b11026 10.1021/nl101225f 10.1016/j.aca.2019.08.065 10.1016/j.bios.2019.111530 10.1021/jacs.5b12727 10.1021/acs.analchem.0c00125 10.1021/acs.analchem.9b00199 10.1002/chem.202102926 10.1021/ja806804u 10.1039/C0CC04180G 10.1021/cr068083a 10.1021/acs.analchem.7b01897 10.1039/C39940000801 10.1007/BF01002564 10.1021/acsanm.0c03284 10.1021/acs.jpcc.9b07765 10.1021/jacs.7b11712 10.1021/acs.analchem.6b02770 10.1179/1753555715Y.0000000061 10.1016/j.talanta.2018.12.078 10.1021/cr400710z 10.1021/jacs.1c08877 10.1002/celc.201600920 10.1039/C7NR03382F 10.1126/science.1069336 10.1021/jacs.5b04210 10.1002/adma.201004554 10.1021/acs.analchem.8b02642 10.1039/C5NJ02263K 10.1002/celc.201901733 10.1021/acsami.7b02446 10.1016/j.ccr.2014.04.029 10.1021/ja306199p 10.1002/anie.201901970 10.1039/C7QM00609H 10.1039/C7CP01915G 10.1039/C5CS00086F 10.1021/acs.analchem.2c00475 10.1039/C7NR06050E 10.1039/C7CC09394B 10.1021/acs.analchem.1c05047 10.1039/D0CC02047H 10.1021/jacs.0c10907 10.1016/j.cej.2021.129761 10.1021/acs.analchem.6b04675 10.1016/j.chroma.2016.12.075 10.1021/acs.analchem.1c00063 10.1002/anie.201900115 10.1021/cr020373d 10.1021/acs.accounts.8b00495 10.1021/acs.analchem.1c01601 10.1021/acs.accounts.6b00441 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsnano.2c08474 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 362 |
ExternalDocumentID | 36534370 10_1021_acsnano_2c08474 b399800227 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA ADHGD BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a263t-2953806282da1c9ee0576a8478f0cd04706fcb6cd104c0a924a048e9331ef5d13 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 12:45:21 EDT 2025 Mon Jul 21 06:05:55 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Tue Jul 01 02:58:55 EDT 2025 Mon Mar 06 00:59:25 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | electrochemiluminescence valence-state-engineered surface-defect-involved Au nanocluster band-gap-engineered |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a263t-2953806282da1c9ee0576a8478f0cd04706fcb6cd104c0a924a048e9331ef5d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1887-4326 0000-0002-4023-0420 0000-0002-0281-0141 0000-0002-3295-3848 0000-0002-1529-6356 |
PMID | 36534370 |
PQID | 2755800791 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2755800791 pubmed_primary_36534370 crossref_primary_10_1021_acsnano_2c08474 crossref_citationtrail_10_1021_acsnano_2c08474 acs_journals_10_1021_acsnano_2c08474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230110 2023-01-10 |
PublicationDateYYYYMMDD | 2023-01-10 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230110 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref23/cit23 doi: 10.1021/acs.analchem.0c05187 – ident: ref35/cit35 doi: 10.1002/ppsc.201900314 – ident: ref30/cit30 doi: 10.1021/acsami.9b11026 – ident: ref40/cit40 doi: 10.1021/nl101225f – ident: ref47/cit47 doi: 10.1016/j.aca.2019.08.065 – ident: ref4/cit4 doi: 10.1016/j.bios.2019.111530 – ident: ref27/cit27 doi: 10.1021/jacs.5b12727 – ident: ref29/cit29 doi: 10.1021/acs.analchem.0c00125 – ident: ref14/cit14 doi: 10.1021/acs.analchem.9b00199 – ident: ref28/cit28 doi: 10.1002/chem.202102926 – ident: ref31/cit31 doi: 10.1021/ja806804u – ident: ref9/cit9 doi: 10.1039/C0CC04180G – ident: ref18/cit18 doi: 10.1021/cr068083a – ident: ref11/cit11 doi: 10.1021/acs.analchem.7b01897 – ident: ref33/cit33 doi: 10.1039/C39940000801 – ident: ref32/cit32 doi: 10.1007/BF01002564 – ident: ref20/cit20 doi: 10.1021/acsanm.0c03284 – ident: ref43/cit43 doi: 10.1021/acs.jpcc.9b07765 – ident: ref34/cit34 doi: 10.1021/jacs.7b11712 – ident: ref39/cit39 doi: 10.1021/acs.analchem.6b02770 – ident: ref46/cit46 doi: 10.1179/1753555715Y.0000000061 – ident: ref53/cit53 doi: 10.1016/j.talanta.2018.12.078 – ident: ref2/cit2 doi: 10.1021/cr400710z – ident: ref42/cit42 doi: 10.1021/jacs.1c08877 – ident: ref7/cit7 doi: 10.1002/celc.201600920 – ident: ref19/cit19 doi: 10.1039/C7NR03382F – ident: ref8/cit8 doi: 10.1126/science.1069336 – ident: ref15/cit15 doi: 10.1021/jacs.5b04210 – ident: ref50/cit50 doi: 10.1002/adma.201004554 – ident: ref12/cit12 doi: 10.1021/acs.analchem.8b02642 – ident: ref37/cit37 doi: 10.1039/C5NJ02263K – ident: ref25/cit25 doi: 10.1002/celc.201901733 – ident: ref3/cit3 doi: 10.1021/acsami.7b02446 – ident: ref52/cit52 doi: 10.1016/j.ccr.2014.04.029 – ident: ref36/cit36 doi: 10.1021/ja306199p – ident: ref44/cit44 doi: 10.1002/anie.201901970 – ident: ref38/cit38 doi: 10.1039/C7QM00609H – ident: ref54/cit54 doi: 10.1039/C7CP01915G – ident: ref6/cit6 doi: 10.1039/C5CS00086F – ident: ref10/cit10 doi: 10.1021/acs.analchem.2c00475 – ident: ref48/cit48 doi: 10.1039/C7NR06050E – ident: ref26/cit26 doi: 10.1039/C7CC09394B – ident: ref21/cit21 doi: 10.1021/acs.analchem.1c05047 – ident: ref22/cit22 doi: 10.1039/D0CC02047H – ident: ref41/cit41 doi: 10.1021/jacs.0c10907 – ident: ref51/cit51 doi: 10.1016/j.cej.2021.129761 – ident: ref5/cit5 doi: 10.1021/acs.analchem.6b04675 – ident: ref45/cit45 doi: 10.1016/j.chroma.2016.12.075 – ident: ref24/cit24 doi: 10.1021/acs.analchem.1c00063 – ident: ref17/cit17 doi: 10.1002/anie.201900115 – ident: ref1/cit1 doi: 10.1021/cr020373d – ident: ref49/cit49 doi: 10.1021/acs.accounts.8b00495 – ident: ref13/cit13 doi: 10.1021/acs.analchem.1c01601 – ident: ref16/cit16 doi: 10.1021/acs.accounts.6b00441 |
SSID | ssj0057876 |
Score | 2.6062877 |
Snippet | To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 355 |
SubjectTerms | Electrochemical Techniques Gold Luminescent Measurements Serum Albumin, Bovine |
Title | Valence-State-Engineered Electrochemiluminescence from Au Nanoclusters |
URI | http://dx.doi.org/10.1021/acsnano.2c08474 https://www.ncbi.nlm.nih.gov/pubmed/36534370 https://www.proquest.com/docview/2755800791 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4LDDwfpSXgtSBxcF52fFYVa0qBhYo6hY5F3uhShFJFn495zzKo6pgTmw5d77zd7nzd4T0QWpraBlVMjY0lDqmMTeMZjKLEd4LI9K6yveRT6bhwyyafZFF_87g-969giJX-cL1gaEnDTfJts9jYeOswfCpc7p23_EmgYwBMqKIJYvPygT2GILi5zG0BlvWZ8x4v6nOKmpqQlta8upWZerCxypx49_LPyB7LdJ0Bs3WOCQbOj8iu9_4B4_J-EXVd45oDTlp90xnzqjpjgOWTgDdl62NB_umY6-jOIPKQa-8gHllaRaKEzIdj56HE9o2VqDK50FJfYluzl6e9DPlobY0yo8rXF5sGGQsFIwbSDlkGKsBUxiiKTR0LYPA0ybKvOCUbOWLXJ8ThwkwofY0oJ3jOKkMR4cZAo-UAhmxHumjBJLWMIqkznn7XtKKJWnF0iNup44EWnJy2yNjvn7A3XLAW8PLsf7V206_CdqOTYioXC-qIvFFFCFgFtLrkbNG8cvJAh4FYSDYxf8-4JLs2Eb09ueMx67IVvle6WuEK2V6U2_UTzA65SY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB0VOAAH9qWsQSoSFxfHSZzkwKEqrVqWXljELbiOcwGliDRC8DX8Cn_GOEvZVIkLEtckHnkZz7zJeJ4BatJXeqOFRPheRGxfecTjESWhH3oI793I7WenfHu8c2Wf3Dg3FXgta2GwEwlKSrIk_ge7gHmIz2IRD-pMUjSodnGM8lQ9P2GQlhx1j3FF9xlrty6bHVLcI0AE49aQMB93ta4VZKEwsXMKMQoXKMWLqAyp7VIeyT6XIYYmkgqMSATqtcJQ31SRE5oWyp2AKYQ-TId3jeZFaeu1uvM8b41xOYKXEXnQjw5r7yeTr95vDKTNXFt7Ht5Gk5KdaLmrp8N-Xb5844v8z7O2AHMFrjYa-UZYhIqKl2D2E9viMrSvRVZhRTKATcp3KjRa-V1AUpMnoLHWlQBSf2no4hujkRrogwbyPtWkEskKXP3JQFZhMh7Eah0M6srIVqaSaNWwnS8iju7BltwRQvoOrUINZzwozEASZBl-ZgbFMgTFMlShXmpBIAsqdn0jyP34BgejBg85C8n4T_dKtQrQUuj0j4jVIE0C5joOhgeub1ZhLde3kTCLO5ZtuXTjdwPYhenO5flZcNbtnW7CDEPgp39LmXQLJoePqdpGoDbs72R7xYDbv1azdz_uRaM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1JS8QwFH64gOjBfRnXCgpeMqZpm7YHD4M6uCGCC95qJstF6YidIvp7_Cv-L1-6DC4MeBG8tk3I8pbv9eV9AdiSsbaKpoiII0P8WEck4oYSFasI4X1owk5xyvecH137J7fB7RC81bUwOIgMe8qKJL7V6kdlKoYBdxefpyLtNpmkaFT96ijlqX55xkAt2zs-wF3dZqx9eLV_RKq7BIhg3OsRFqNm23pBpoSLA9SIU7jAXiJDpaJ-SLmRHS4VhieSCoxKBMq2xnDf1SZQrof9DsOoTRLaEK-1f1nbeyvyvMxdY2yOAKZPIPRjwNYDyuyrBxwAawv31p6C9_7CFKda7pt5r9OUr984I__7yk3DZIWvnVapEDMwpNNZmPjEujgH7RtRVFqRAmiT-p1WzmF5J5C0JApotG1FgLRfOrYIx2nlDvqirnzILblENg_XfzKRBRhJu6leAoeG0vja1RKtG7aLheHoJnzJAyFkHNAGbOGKJ5U5yJIi08_cpNqGpNqGBjRrSUhkRclubwZ5GNxgp9_gsWQjGfzpZi1aCVoMmwYSqe7mWcLCIMAwIYzdBiyWMtfvzOOB53shXf7dBDZg7OKgnZwdn5-uwDhD_Gf_Trl0FUZ6T7leQ7zW66wX6uLA3V9L2Qcdn0gm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Valence-State-Engineered+Electrochemiluminescence+from+Au+Nanoclusters&rft.jtitle=ACS+nano&rft.au=Wang%2C+Dongyang&rft.au=Gao%2C+Xuwen&rft.au=Jia%2C+Jingna&rft.au=Zhang%2C+Bin&rft.date=2023-01-10&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=17&rft.issue=1&rft.spage=355&rft.epage=362&rft_id=info:doi/10.1021%2Facsnano.2c08474&rft.externalDocID=b399800227 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |