Valence-State-Engineered Electrochemiluminescence from Au Nanoclusters

To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs’ ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 17; no. 1; pp. 355 - 362
Main Authors Wang, Dongyang, Gao, Xuwen, Jia, Jingna, Zhang, Bin, Zou, Guizheng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs’ ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state of the Au body element, i.e., Au(0) and Au­(I), is performed via successively reducing the precursor AuCl4 – to Au­(I) and Au(0) with BSA. The obtained BSA-AuNCs/N2H4 system leads to three anodic ECL processes at 0.37 (ECL-1), 0.85 (ECL-2), and 1.45 V (ECL-3). ECL-1 is generated from the BSA-Au(0) section of BSA-AuNCs in a surface-defect-involved route and is much stronger and red-shifted compared to ECL-2 and ECL-3, which are generated from the BSA-Au­(I) section of BSA-AuNCs in the band-gap-engineered route. Each of the anodic ECL processes can be selectively generated and/or suppressed via adjusting the Au­(I)/Au(0) ratio of BSA-AuNCs, tunable ECL generation route, and triggering potential, and the emission intensity and waveband of metal NCs are conveniently achieved in body-element-involved valence-state engineering.
AbstractList To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs’ ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state of the Au body element, i.e., Au(0) and Au­(I), is performed via successively reducing the precursor AuCl4 – to Au­(I) and Au(0) with BSA. The obtained BSA-AuNCs/N2H4 system leads to three anodic ECL processes at 0.37 (ECL-1), 0.85 (ECL-2), and 1.45 V (ECL-3). ECL-1 is generated from the BSA-Au(0) section of BSA-AuNCs in a surface-defect-involved route and is much stronger and red-shifted compared to ECL-2 and ECL-3, which are generated from the BSA-Au­(I) section of BSA-AuNCs in the band-gap-engineered route. Each of the anodic ECL processes can be selectively generated and/or suppressed via adjusting the Au­(I)/Au(0) ratio of BSA-AuNCs, tunable ECL generation route, and triggering potential, and the emission intensity and waveband of metal NCs are conveniently achieved in body-element-involved valence-state engineering.
To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs' ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state of the Au body element, i.e., Au(0) and Au(I), is performed via successively reducing the precursor AuCl4- to Au(I) and Au(0) with BSA. The obtained BSA-AuNCs/N2H4 system leads to three anodic ECL processes at 0.37 (ECL-1), 0.85 (ECL-2), and 1.45 V (ECL-3). ECL-1 is generated from the BSA-Au(0) section of BSA-AuNCs in a surface-defect-involved route and is much stronger and red-shifted compared to ECL-2 and ECL-3, which are generated from the BSA-Au(I) section of BSA-AuNCs in the band-gap-engineered route. Each of the anodic ECL processes can be selectively generated and/or suppressed via adjusting the Au(I)/Au(0) ratio of BSA-AuNCs, tunable ECL generation route, and triggering potential, and the emission intensity and waveband of metal NCs are conveniently achieved in body-element-involved valence-state engineering.To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs' ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state of the Au body element, i.e., Au(0) and Au(I), is performed via successively reducing the precursor AuCl4- to Au(I) and Au(0) with BSA. The obtained BSA-AuNCs/N2H4 system leads to three anodic ECL processes at 0.37 (ECL-1), 0.85 (ECL-2), and 1.45 V (ECL-3). ECL-1 is generated from the BSA-Au(0) section of BSA-AuNCs in a surface-defect-involved route and is much stronger and red-shifted compared to ECL-2 and ECL-3, which are generated from the BSA-Au(I) section of BSA-AuNCs in the band-gap-engineered route. Each of the anodic ECL processes can be selectively generated and/or suppressed via adjusting the Au(I)/Au(0) ratio of BSA-AuNCs, tunable ECL generation route, and triggering potential, and the emission intensity and waveband of metal NCs are conveniently achieved in body-element-involved valence-state engineering.
To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering strategy is developed to adjust the NCs' ECL with bovine serum albumin (BSA)-stabilized AuNCs as a model, in which engineering the valence state of the Au body element, i.e., Au(0) and Au(I), is performed via successively reducing the precursor AuCl to Au(I) and Au(0) with BSA. The obtained BSA-AuNCs/N H system leads to three anodic ECL processes at 0.37 (ECL-1), 0.85 (ECL-2), and 1.45 V (ECL-3). ECL-1 is generated from the BSA-Au(0) section of BSA-AuNCs in a surface-defect-involved route and is much stronger and red-shifted compared to ECL-2 and ECL-3, which are generated from the BSA-Au(I) section of BSA-AuNCs in the band-gap-engineered route. Each of the anodic ECL processes can be selectively generated and/or suppressed via adjusting the Au(I)/Au(0) ratio of BSA-AuNCs, tunable ECL generation route, and triggering potential, and the emission intensity and waveband of metal NCs are conveniently achieved in body-element-involved valence-state engineering.
Author Gao, Xuwen
Zou, Guizheng
Zhang, Bin
Wang, Dongyang
Jia, Jingna
AuthorAffiliation School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: School of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Dongyang
  orcidid: 0000-0002-1887-4326
  surname: Wang
  fullname: Wang, Dongyang
– sequence: 2
  givenname: Xuwen
  orcidid: 0000-0002-0281-0141
  surname: Gao
  fullname: Gao, Xuwen
– sequence: 3
  givenname: Jingna
  orcidid: 0000-0002-4023-0420
  surname: Jia
  fullname: Jia, Jingna
– sequence: 4
  givenname: Bin
  orcidid: 0000-0002-1529-6356
  surname: Zhang
  fullname: Zhang, Bin
– sequence: 5
  givenname: Guizheng
  orcidid: 0000-0002-3295-3848
  surname: Zou
  fullname: Zou, Guizheng
  email: zouguizheng@sdu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36534370$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtPwzAURi1URB8ws6GMSCjtdZw4yVhVLSBVMPAQW-Q6N5DKsYudDPx7XDV0QILJln0-389nTAbaaCTkksKUQkRnQjottJlGErI4jU_IiOaMh5Dxt8Fxn9AhGTu3BUjSLOVnZMh4wmKWwoisXoVCLTF8akWL4VK_1xrRYhksFcrWGvmBTa26xh87uSeDypommHfBgx8sVedatO6cnFZCObzo1wl5WS2fF3fh-vH2fjFfhyLirA2jPGEZ8CiLSkFljugbceGbZxXIEuIUeCU3XJYUYgkij2IBcYY5YxSrpKRsQq4P7-6s-ezQtUVT-1pKCY2mc0WUJkkGkOZ79KpHu02DZbGzdSPsV_Hzdw_MDoC0xjmL1RGhUOztFr3dorfrE8mvhKy9ttro1opa_ZO7OeT8RbE1ndXe0Z_0N1Y6jpY
CitedBy_id crossref_primary_10_1002_agt2_699
crossref_primary_10_1016_j_cej_2023_144013
crossref_primary_10_1002_ange_202414073
crossref_primary_10_1016_j_cej_2023_143366
crossref_primary_10_1016_j_aca_2023_342146
crossref_primary_10_1021_acs_analchem_4c04594
crossref_primary_10_1021_acsnano_4c02501
crossref_primary_10_1021_acs_analchem_3c05632
crossref_primary_10_1021_acs_jafc_4c01525
crossref_primary_10_1021_acs_analchem_3c04579
crossref_primary_10_1021_acs_analchem_4c00225
crossref_primary_10_1021_acs_analchem_4c01039
crossref_primary_10_1016_j_microc_2025_113216
crossref_primary_10_1021_acs_analchem_3c04816
crossref_primary_10_1016_j_snb_2024_136690
crossref_primary_10_1016_j_snb_2023_134911
crossref_primary_10_1016_j_cej_2025_160268
crossref_primary_10_1016_j_jelechem_2024_118448
crossref_primary_10_1038_s41467_024_48011_y
crossref_primary_10_1002_ange_202300893
crossref_primary_10_1002_smll_202301357
crossref_primary_10_1039_D4NR05222F
crossref_primary_10_1039_D4SD00272E
crossref_primary_10_1016_j_aca_2024_343388
crossref_primary_10_1021_acs_analchem_3c04153
crossref_primary_10_1021_acs_analchem_4c02878
crossref_primary_10_1016_j_apcatb_2024_124679
crossref_primary_10_1002_anie_202300893
crossref_primary_10_1021_acs_analchem_3c04086
crossref_primary_10_1021_acs_analchem_4c04014
crossref_primary_10_1016_j_jece_2023_111546
crossref_primary_10_1016_j_saa_2025_126092
crossref_primary_10_1021_acs_analchem_4c02427
crossref_primary_10_1021_acs_jpcc_3c06277
crossref_primary_10_1021_acsaelm_4c00036
crossref_primary_10_1021_acsnano_3c05037
crossref_primary_10_1039_D4QI02461C
crossref_primary_10_1016_j_foodchem_2024_141370
crossref_primary_10_1016_j_snb_2024_136193
crossref_primary_10_1021_acs_analchem_2c05248
crossref_primary_10_1016_j_trac_2023_117030
crossref_primary_10_1002_anie_202414073
crossref_primary_10_3389_frans_2024_1506786
crossref_primary_10_1002_ejic_202300657
crossref_primary_10_1016_j_snb_2024_136347
crossref_primary_10_1016_j_bios_2023_115589
crossref_primary_10_1039_D3NR05464K
crossref_primary_10_1063_5_0226303
crossref_primary_10_1039_D4AN01314J
crossref_primary_10_1016_j_aca_2024_343284
crossref_primary_10_1021_acs_analchem_3c05620
crossref_primary_10_1016_j_snb_2023_134506
crossref_primary_10_1039_D4CS00962B
crossref_primary_10_1016_j_snb_2024_135736
crossref_primary_10_1016_j_jhazmat_2023_131546
crossref_primary_10_1016_j_snb_2024_135536
Cites_doi 10.1021/acs.analchem.0c05187
10.1002/ppsc.201900314
10.1021/acsami.9b11026
10.1021/nl101225f
10.1016/j.aca.2019.08.065
10.1016/j.bios.2019.111530
10.1021/jacs.5b12727
10.1021/acs.analchem.0c00125
10.1021/acs.analchem.9b00199
10.1002/chem.202102926
10.1021/ja806804u
10.1039/C0CC04180G
10.1021/cr068083a
10.1021/acs.analchem.7b01897
10.1039/C39940000801
10.1007/BF01002564
10.1021/acsanm.0c03284
10.1021/acs.jpcc.9b07765
10.1021/jacs.7b11712
10.1021/acs.analchem.6b02770
10.1179/1753555715Y.0000000061
10.1016/j.talanta.2018.12.078
10.1021/cr400710z
10.1021/jacs.1c08877
10.1002/celc.201600920
10.1039/C7NR03382F
10.1126/science.1069336
10.1021/jacs.5b04210
10.1002/adma.201004554
10.1021/acs.analchem.8b02642
10.1039/C5NJ02263K
10.1002/celc.201901733
10.1021/acsami.7b02446
10.1016/j.ccr.2014.04.029
10.1021/ja306199p
10.1002/anie.201901970
10.1039/C7QM00609H
10.1039/C7CP01915G
10.1039/C5CS00086F
10.1021/acs.analchem.2c00475
10.1039/C7NR06050E
10.1039/C7CC09394B
10.1021/acs.analchem.1c05047
10.1039/D0CC02047H
10.1021/jacs.0c10907
10.1016/j.cej.2021.129761
10.1021/acs.analchem.6b04675
10.1016/j.chroma.2016.12.075
10.1021/acs.analchem.1c00063
10.1002/anie.201900115
10.1021/cr020373d
10.1021/acs.accounts.8b00495
10.1021/acs.analchem.1c01601
10.1021/acs.accounts.6b00441
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.2c08474
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 362
ExternalDocumentID 36534370
10_1021_acsnano_2c08474
b399800227
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
ADHGD
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a263t-2953806282da1c9ee0576a8478f0cd04706fcb6cd104c0a924a048e9331ef5d13
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 12:45:21 EDT 2025
Mon Jul 21 06:05:55 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Tue Jul 01 02:58:55 EDT 2025
Mon Mar 06 00:59:25 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords electrochemiluminescence
valence-state-engineered
surface-defect-involved
Au nanocluster
band-gap-engineered
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a263t-2953806282da1c9ee0576a8478f0cd04706fcb6cd104c0a924a048e9331ef5d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1887-4326
0000-0002-4023-0420
0000-0002-0281-0141
0000-0002-3295-3848
0000-0002-1529-6356
PMID 36534370
PQID 2755800791
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2755800791
pubmed_primary_36534370
crossref_primary_10_1021_acsnano_2c08474
crossref_citationtrail_10_1021_acsnano_2c08474
acs_journals_10_1021_acsnano_2c08474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230110
2023-01-10
PublicationDateYYYYMMDD 2023-01-10
PublicationDate_xml – month: 01
  year: 2023
  text: 20230110
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1021/acs.analchem.0c05187
– ident: ref35/cit35
  doi: 10.1002/ppsc.201900314
– ident: ref30/cit30
  doi: 10.1021/acsami.9b11026
– ident: ref40/cit40
  doi: 10.1021/nl101225f
– ident: ref47/cit47
  doi: 10.1016/j.aca.2019.08.065
– ident: ref4/cit4
  doi: 10.1016/j.bios.2019.111530
– ident: ref27/cit27
  doi: 10.1021/jacs.5b12727
– ident: ref29/cit29
  doi: 10.1021/acs.analchem.0c00125
– ident: ref14/cit14
  doi: 10.1021/acs.analchem.9b00199
– ident: ref28/cit28
  doi: 10.1002/chem.202102926
– ident: ref31/cit31
  doi: 10.1021/ja806804u
– ident: ref9/cit9
  doi: 10.1039/C0CC04180G
– ident: ref18/cit18
  doi: 10.1021/cr068083a
– ident: ref11/cit11
  doi: 10.1021/acs.analchem.7b01897
– ident: ref33/cit33
  doi: 10.1039/C39940000801
– ident: ref32/cit32
  doi: 10.1007/BF01002564
– ident: ref20/cit20
  doi: 10.1021/acsanm.0c03284
– ident: ref43/cit43
  doi: 10.1021/acs.jpcc.9b07765
– ident: ref34/cit34
  doi: 10.1021/jacs.7b11712
– ident: ref39/cit39
  doi: 10.1021/acs.analchem.6b02770
– ident: ref46/cit46
  doi: 10.1179/1753555715Y.0000000061
– ident: ref53/cit53
  doi: 10.1016/j.talanta.2018.12.078
– ident: ref2/cit2
  doi: 10.1021/cr400710z
– ident: ref42/cit42
  doi: 10.1021/jacs.1c08877
– ident: ref7/cit7
  doi: 10.1002/celc.201600920
– ident: ref19/cit19
  doi: 10.1039/C7NR03382F
– ident: ref8/cit8
  doi: 10.1126/science.1069336
– ident: ref15/cit15
  doi: 10.1021/jacs.5b04210
– ident: ref50/cit50
  doi: 10.1002/adma.201004554
– ident: ref12/cit12
  doi: 10.1021/acs.analchem.8b02642
– ident: ref37/cit37
  doi: 10.1039/C5NJ02263K
– ident: ref25/cit25
  doi: 10.1002/celc.201901733
– ident: ref3/cit3
  doi: 10.1021/acsami.7b02446
– ident: ref52/cit52
  doi: 10.1016/j.ccr.2014.04.029
– ident: ref36/cit36
  doi: 10.1021/ja306199p
– ident: ref44/cit44
  doi: 10.1002/anie.201901970
– ident: ref38/cit38
  doi: 10.1039/C7QM00609H
– ident: ref54/cit54
  doi: 10.1039/C7CP01915G
– ident: ref6/cit6
  doi: 10.1039/C5CS00086F
– ident: ref10/cit10
  doi: 10.1021/acs.analchem.2c00475
– ident: ref48/cit48
  doi: 10.1039/C7NR06050E
– ident: ref26/cit26
  doi: 10.1039/C7CC09394B
– ident: ref21/cit21
  doi: 10.1021/acs.analchem.1c05047
– ident: ref22/cit22
  doi: 10.1039/D0CC02047H
– ident: ref41/cit41
  doi: 10.1021/jacs.0c10907
– ident: ref51/cit51
  doi: 10.1016/j.cej.2021.129761
– ident: ref5/cit5
  doi: 10.1021/acs.analchem.6b04675
– ident: ref45/cit45
  doi: 10.1016/j.chroma.2016.12.075
– ident: ref24/cit24
  doi: 10.1021/acs.analchem.1c00063
– ident: ref17/cit17
  doi: 10.1002/anie.201900115
– ident: ref1/cit1
  doi: 10.1021/cr020373d
– ident: ref49/cit49
  doi: 10.1021/acs.accounts.8b00495
– ident: ref13/cit13
  doi: 10.1021/acs.analchem.1c01601
– ident: ref16/cit16
  doi: 10.1021/acs.accounts.6b00441
SSID ssj0057876
Score 2.6062877
Snippet To determine the intrinsic effects of body elements on the electrochemiluminescence (ECL) of metal nanoclusters (NCs), herein, a valence-state engineering...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 355
SubjectTerms Electrochemical Techniques
Gold
Luminescent Measurements
Serum Albumin, Bovine
Title Valence-State-Engineered Electrochemiluminescence from Au Nanoclusters
URI http://dx.doi.org/10.1021/acsnano.2c08474
https://www.ncbi.nlm.nih.gov/pubmed/36534370
https://www.proquest.com/docview/2755800791
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4LDDwfpSXgtSBxcF52fFYVa0qBhYo6hY5F3uhShFJFn495zzKo6pgTmw5d77zd7nzd4T0QWpraBlVMjY0lDqmMTeMZjKLEd4LI9K6yveRT6bhwyyafZFF_87g-969giJX-cL1gaEnDTfJts9jYeOswfCpc7p23_EmgYwBMqKIJYvPygT2GILi5zG0BlvWZ8x4v6nOKmpqQlta8upWZerCxypx49_LPyB7LdJ0Bs3WOCQbOj8iu9_4B4_J-EXVd45oDTlp90xnzqjpjgOWTgDdl62NB_umY6-jOIPKQa-8gHllaRaKEzIdj56HE9o2VqDK50FJfYluzl6e9DPlobY0yo8rXF5sGGQsFIwbSDlkGKsBUxiiKTR0LYPA0ybKvOCUbOWLXJ8ThwkwofY0oJ3jOKkMR4cZAo-UAhmxHumjBJLWMIqkznn7XtKKJWnF0iNup44EWnJy2yNjvn7A3XLAW8PLsf7V206_CdqOTYioXC-qIvFFFCFgFtLrkbNG8cvJAh4FYSDYxf8-4JLs2Eb09ueMx67IVvle6WuEK2V6U2_UTzA65SY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB0VOAAH9qWsQSoSFxfHSZzkwKEqrVqWXljELbiOcwGliDRC8DX8Cn_GOEvZVIkLEtckHnkZz7zJeJ4BatJXeqOFRPheRGxfecTjESWhH3oI793I7WenfHu8c2Wf3Dg3FXgta2GwEwlKSrIk_ge7gHmIz2IRD-pMUjSodnGM8lQ9P2GQlhx1j3FF9xlrty6bHVLcI0AE49aQMB93ta4VZKEwsXMKMQoXKMWLqAyp7VIeyT6XIYYmkgqMSATqtcJQ31SRE5oWyp2AKYQ-TId3jeZFaeu1uvM8b41xOYKXEXnQjw5r7yeTr95vDKTNXFt7Ht5Gk5KdaLmrp8N-Xb5844v8z7O2AHMFrjYa-UZYhIqKl2D2E9viMrSvRVZhRTKATcp3KjRa-V1AUpMnoLHWlQBSf2no4hujkRrogwbyPtWkEskKXP3JQFZhMh7Eah0M6srIVqaSaNWwnS8iju7BltwRQvoOrUINZzwozEASZBl-ZgbFMgTFMlShXmpBIAsqdn0jyP34BgejBg85C8n4T_dKtQrQUuj0j4jVIE0C5joOhgeub1ZhLde3kTCLO5ZtuXTjdwPYhenO5flZcNbtnW7CDEPgp39LmXQLJoePqdpGoDbs72R7xYDbv1azdz_uRaM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1JS8QwFH64gOjBfRnXCgpeMqZpm7YHD4M6uCGCC95qJstF6YidIvp7_Cv-L1-6DC4MeBG8tk3I8pbv9eV9AdiSsbaKpoiII0P8WEck4oYSFasI4X1owk5xyvecH137J7fB7RC81bUwOIgMe8qKJL7V6kdlKoYBdxefpyLtNpmkaFT96ijlqX55xkAt2zs-wF3dZqx9eLV_RKq7BIhg3OsRFqNm23pBpoSLA9SIU7jAXiJDpaJ-SLmRHS4VhieSCoxKBMq2xnDf1SZQrof9DsOoTRLaEK-1f1nbeyvyvMxdY2yOAKZPIPRjwNYDyuyrBxwAawv31p6C9_7CFKda7pt5r9OUr984I__7yk3DZIWvnVapEDMwpNNZmPjEujgH7RtRVFqRAmiT-p1WzmF5J5C0JApotG1FgLRfOrYIx2nlDvqirnzILblENg_XfzKRBRhJu6leAoeG0vja1RKtG7aLheHoJnzJAyFkHNAGbOGKJ5U5yJIi08_cpNqGpNqGBjRrSUhkRclubwZ5GNxgp9_gsWQjGfzpZi1aCVoMmwYSqe7mWcLCIMAwIYzdBiyWMtfvzOOB53shXf7dBDZg7OKgnZwdn5-uwDhD_Gf_Trl0FUZ6T7leQ7zW66wX6uLA3V9L2Qcdn0gm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Valence-State-Engineered+Electrochemiluminescence+from+Au+Nanoclusters&rft.jtitle=ACS+nano&rft.au=Wang%2C+Dongyang&rft.au=Gao%2C+Xuwen&rft.au=Jia%2C+Jingna&rft.au=Zhang%2C+Bin&rft.date=2023-01-10&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=17&rft.issue=1&rft.spage=355&rft.epage=362&rft_id=info:doi/10.1021%2Facsnano.2c08474&rft.externalDocID=b399800227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon