昆虫脱皮にともなう表皮キチン分解におけるキチナーゼと溶解性多糖モノオキシゲナーゼの役割
Saved in:
Published in | Sanshi, konchū baiotekku Vol. 93; no. 1; pp. 1_021 - 1_030 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Japanese |
Published |
一般社団法人 日本蚕糸学会
2024
|
Online Access | Get full text |
ISSN | 1881-0551 1884-7943 |
DOI | 10.11416/konchubiotec.93.1_021 |
Cover
Author | Noh, Mi Young 荒金, 靖之 |
---|---|
Author_xml | – sequence: 1 fullname: 荒金, 靖之 organization: 韓国全南大学農学生命科学部応用生物学科 – sequence: 1 fullname: Noh, Mi Young organization: 韓国全南大学農学生命科学部森林資源学科 |
BackLink | https://agriknowledge.affrc.go.jp/RN/2010951403$$DView record in AgriKnowledge |
BookMark | eNpNkctKw0AUhgdR0Kqv4BukznQmk8xSilqh4EbXw3QyadPWRtKKuDOJFC8guBF15wWUFgUtKIo-zdDLY5i2Km7OOZz_-8_iPykwWfNrCoAFBNMIEUQXK35NlnYKnt9QMs1wGnGYQRNgBtk2MSxG8ORoRgY0TTQNUvV6GUKTMmzNgLB30RxctgcHz_2rJx22dfigo0iHLR02B9cPw2X0qONQx53uYXNwfztijnV4pqOTX-lYx586-ky8vY_XhOnt33fvrvqdcx3f6PhUR60hGb3p6OUf_NT9eu8evcyBKVdU62r-p8-CzZXljWzOyK-vrmWX8obIUGwZlgWRUlIUbGIil5iOYNTFBdM1KSIZkmGOTaRDmXKkMm3hEmkjJm1KXYYgFgU8C6zxXeG6gdfgohh4lZq_W1VOUXFfeHwoSF70eXmbwyREyKwkJpo4c2Nnud4QCbsdeFsi2OMiaHiyqvj__DnDHI1L8oQ_RJZEwMsCfwP1JrSN |
ContentType | Journal Article |
Copyright | 2024 社団法人 日本蚕糸学会 |
Copyright_xml | – notice: 2024 社団法人 日本蚕糸学会 |
DBID | N5S |
DOI | 10.11416/konchubiotec.93.1_021 |
DatabaseName | AgriKnowledge(アグリナレッジ)AGROLib |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1884-7943 |
EndPage | 1_030 |
ExternalDocumentID | oai_affrc_go_jp_01_00970566 article_konchubiotec_93_1_93_1_021_article_char_ja |
GroupedDBID | 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS JSF KQ8 OK1 RJT N5S |
ID | FETCH-LOGICAL-a2637-7701eecab8451f45da96f3b5f56142429d84cd69edce58af4c819c866f9103ab3 |
ISSN | 1881-0551 |
IngestDate | Fri Aug 15 12:19:35 EDT 2025 Wed Sep 03 06:30:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a2637-7701eecab8451f45da96f3b5f56142429d84cd69edce58af4c819c866f9103ab3 |
Notes | 951403 ZZ20023854 |
OpenAccessLink | https://agriknowledge.affrc.go.jp/RN/2010951403 |
PageCount | 10 |
ParticipantIDs | affrit_agriknowledge_oai_affrc_go_jp_01_00970566 jstage_primary_article_konchubiotec_93_1_93_1_021_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | Sanshi, konchū baiotekku |
PublicationTitleAlternate | 蚕糸・昆虫バイオテック |
PublicationYear | 2024 |
Publisher | 一般社団法人 日本蚕糸学会 |
Publisher_xml | – name: 一般社団法人 日本蚕糸学会 |
References | Kim M, Noh MY, Mun S, Muthukrishnan S, Kramer KJ, Arakane Y. (2024) Functional importance of groups I and II chitinases, CHT5 and CHT10, in turnover of chitinous cuticle during embryo hatching and post-embryonic molting in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 166, 104087. Garcia-Gonzalez E, Poppinga L, Funfhaus A, et al. (2014) Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American Foulbrood of honey bees. PLoS Pathog 10, e1004284. Lee Y, Muthukrishnan S, Kramer KJ, et al. (2023) Functional importance of groups I and II chitinases in cuticle chitin turnover during molting in a wood-boring beetle, Monochamus alternatus. Pestic Biochem Physiol 194, 105496. Vaaje-Kolstad G, Westereng B, Horn SJ, et al. (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219-222. Lu Y, Zen KC, Muthukrishnan S, Kramer KJ. (2002) Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol 32, 1369-1382. Liu HW, Wang LL, Tang X, et al. (2018) Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process. J Proteomics 173, 115-125. Su C, Tu G, Huang S, Yang Q, Shahzad MF, Li F. (2016) Genomewide analysis of chitinase genes and their varied functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis. Insect Mol Biol 25, 401-412. Zhang T, Liu W, Li D, et al. (2018) LmCht5-1 promotes pronymphal molting during locust embryonic development. Insect Biochem Mol Biol 101, 124-130. Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. (2005) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280, 28492-28497. Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. (2008) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci USA 105, 6650-6655. Franco Cairo JPL, Cannella D, Oliveira LC, et al. (2020) On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi. J Inorg Biochem 216, 111316. Pesch YY, Riedel D, Patil KR, Loch G, Behr M. (2016) Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep 6, 18340. Sabbadin F, Urresti S, Henrissat B, et al. (2021) Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. Science 373, 774-779. Chiu E, Hijnen M, Bunker RD, et al. (2015) Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc Natl Acad Sci USA 112, 3973-3978. Chen W, Qu M, Zhou Y, Yang Q. (2018) Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects. J Biol Chem 293, 2652-2660. Watanabe T, Kobori K, Miyashita K, et al. (1993) Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem 268, 18567-18572. Arakane Y, Taira T, Ohnuma T, Fukamizo T. (2012) Chitin-related enzymes in agro-biosciences. Curr Drug Targets 13, 442-470. Forsberg Z, Sorlie M, Petrovic D, et al. (2019) Polysaccharide degradation by lytic polysaccharide monooxygenases. Curr Opin Struct Biol 59, 54-64. Couturier M, Ladeveze S, Sulzenbacher G, et al. (2018) Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol 14, 306-310. Qu M, Guo XX, Kong L, Hou LJ, Yang Q. (2022b) A midgut-specific lytic polysaccharide monooxygenase of Locusta migratoria is indispensable for the deconstruction of the peritrophic matrix. Insect Sci 29, 1287-1298. Kramer KJ, Hopkins TL, Schaefer J. (1995) Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 25, 1067-1080. Omar MAA, Ao Y, Li M, et al. (2019) The functional difference of eight chitinase genes between male and female of the cotton mealybug, Phenacoccus solenopsis. Insect Mol Biol 28, 550-567. Shoseyov O, Shani Z, Levy I. (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70, 283-295. Chen W, Jiang X, Yang Q. (2020) Glycoside hydrolase family 18 chitinases: the known and the unknown. Biotechnol Adv 43, 107553. Sabbadin F, Hemsworth GR, Ciano L, et al. (2018) An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat Commun 9, 756. Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ. (2012) Chitin metabolism in insects. In Insect Molecular Biology and Biochemistry (Gilbert LI ed), pp. 193-235, Elsevier, https://doi.org/10.1016/C2009-0-62118-8. Lo Leggio L, Simmons TJ, Poulsen JC, et al. (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6, 5961. Chylenski P, Bissaro B, Sørlie M, et al. (2019) Lytic polysaccharide monooxygenases in enzymatic processing of lignocellulosic biomass. ACS Catal 9, 4970-4991. Zhang X, Wang Y, Zhang S, Kong X, Liu F, Zhang Z. (2021) RNAi-mediated silencing of the Chitinase 5 gene for Fall webworm (Hyphantria cunea) can inhibit larval molting depending on the timing of dsRNA injection. Insects 12. Filiatrault-Chastel C, Navarro D, Haon M, et al. (2019) AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes. Biotechnol Biofuels Bioprod 12, 55. Qu M, Ma L, Chen P, Yang Q. (2014) Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation. J Proteome Res 13, 2931-2940. Muthukrishnan S, Arakane Y, Noh MY, et al. (2022) Chapter OneChitin in insect cuticle. In Advances in Insect Physiology (Sugumaran M ed), 62, pp. 1-110, Elsevier, https://doi.org/10.1016/bs.aiip.2022.03.001. Daimon T, Hamada K, Mita K, et al. (2003) A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem Mol Biol 33, 749-759. Yang X, Zhou C, Long G, Yang H, Chen C, Jin D. (2021) Characterization and functional analysis of chitinase family genes involved in nymph-adult transition of Sogatella furcifera. Insect Sci 28, 901-916. Liu XY, Wang SS, Zhong F, et al. (2022) Chitinase (CHI) of Spodoptera frugiperda affects molting development by regulating the metabolism of chitin and trehalose. Front Physiol 13, 1034926. Shippy TD, Miller S, Tamayo B, et al. (2022) Manual curation and phylogenetic analysis of chitinase family genes in the Asian citrus psyllid, Diaphorina citri. GigaByte doi:10.46471/gigabyte.46. Kramer KJ, Corpuz L, Choi HK, Muthukrishnan S. (1993) Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem Mol Biol 23, 691-701. Qu M, Guo X, Tian S, et al. (2022a) AA15 lytic polysaccharide monooxygenase is required for efficient chitinous cuticle turnover during insect molting. Commun Biol 5, 518. Zhang D, Chen J, Yao Q, Pan Z, Chen J, Zhang W. (2012) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem Physiol 79, 220-234. Arakane Y, Muthukrishnan S. (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67, 201-216. Zhu B, Shan J, Li R, Liang P, Gao X. (2019) Identification and RNAi-based function analysis of chitinase family genes in diamondback moth, Plutella xylostella. Pest Manag Sci 75, 1951-1961. Kumar S, Stecher G, Tamura K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870-1874. Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77, 7007-7015. Kramer KJ, Muthukrishnan S. (2005) Chitin metabolism in insects. In Comprehensive Molecular Insect Science (Gilbert LI ed), pp. 111-144, Elsevier, https://doi.org/10.1016/B0-44-451924-6/00051-X. Li D, Zhang J, Yang Y, et al. (2022) Identification and RNAi-based functional analysis of chitinase family genes in Agrotis ipsilon. Pest Manag Sci 78, 4278-4287. Hemsworth GR, Henrissat B, Davies GJ, Walton PH. (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10, 122-126. An S, Liu W, Fu J, Zhang Z, Zhang R. (2023) Molecular identification of the chitinase genes in Aedes albopictus and essential roles of AaCht10 in pupal-adult transition. Parasit Vectors 16, 1-14. Dittmer NT, Hiromasa Y, Kanost MR. (2022) Proteomic analysis of pharate pupal molting fluid from the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 149, 103844. Zhang J, Zhang X, Arakane Y, et al. (2011) Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PLoS One 6, e19899. Agostoni M, Hangasky JA, Marletta MA. (2017) Physiological and molecular understanding of bacterial polysaccharide monooxy-genases. Microbiol Mol Biol Rev 81, e00015-00017. Zhang T, Huo Y, Dong Q, et al. (2022) LmCht5-1 and LmCht5-2 promote the degradation of serosal and pro-nymphal cuticles during Locust embryonic development. Biology 11, 1778. Muthukrishnan S, Mun S, Noh MY, Geisbrecht ER, Arakane Y. (2020) Insect cuticular chitin contributes to form and function. Curr Pharm Des 26, 3530-3545. Tetreau G, Cao X, Chen YR, et al. (2015b) Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem Mol Biol 62, 114-126. Zhang J, Lu A, Kong L, Zhang Q, Ling E. (2014) Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J Biol Chem 289, 35891-35906. Tetreau G, Dittmer NT, Cao X, et al. (2015a) Analysis of chitinbinding proteins from Manduca se |
References_xml | – reference: Pesch YY, Riedel D, Patil KR, Loch G, Behr M. (2016) Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep 6, 18340. – reference: Kramer KJ, Hopkins TL, Schaefer J. (1995) Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 25, 1067-1080. – reference: Dittmer NT, Hiromasa Y, Kanost MR. (2022) Proteomic analysis of pharate pupal molting fluid from the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 149, 103844. – reference: Kumar S, Stecher G, Tamura K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870-1874. – reference: Qu M, Ma L, Chen P, Yang Q. (2014) Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation. J Proteome Res 13, 2931-2940. – reference: Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. (2008) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci USA 105, 6650-6655. – reference: Zhang T, Huo Y, Dong Q, et al. (2022) LmCht5-1 and LmCht5-2 promote the degradation of serosal and pro-nymphal cuticles during Locust embryonic development. Biology 11, 1778. – reference: Chen Y, Tang H, Zhou W, et al. (2024) Identification of chitinase genes and roles in the larval-pupal transition of Leptinotarsa decemlineata. Pest Manag Sci 80, 282-295. – reference: Shoseyov O, Shani Z, Levy I. (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70, 283-295. – reference: Kim M, Noh MY, Mun S, Muthukrishnan S, Kramer KJ, Arakane Y. (2024) Functional importance of groups I and II chitinases, CHT5 and CHT10, in turnover of chitinous cuticle during embryo hatching and post-embryonic molting in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 166, 104087. – reference: Tetreau G, Dittmer NT, Cao X, et al. (2015a) Analysis of chitinbinding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochem Mol Biol 62, 127-141. – reference: Sabbadin F, Urresti S, Henrissat B, et al. (2021) Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. Science 373, 774-779. – reference: Li D, Zhang J, Yang Y, et al. (2022) Identification and RNAi-based functional analysis of chitinase family genes in Agrotis ipsilon. Pest Manag Sci 78, 4278-4287. – reference: Qu M, Guo X, Tian S, et al. (2022a) AA15 lytic polysaccharide monooxygenase is required for efficient chitinous cuticle turnover during insect molting. Commun Biol 5, 518. – reference: Askarian F, Uchiyama S, Masson H, et al. (2021) The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun 12, 1230. – reference: Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. (2005) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280, 28492-28497. – reference: Yang X, Zhou C, Long G, Yang H, Chen C, Jin D. (2021) Characterization and functional analysis of chitinase family genes involved in nymph-adult transition of Sogatella furcifera. Insect Sci 28, 901-916. – reference: Forsberg Z, Sorlie M, Petrovic D, et al. (2019) Polysaccharide degradation by lytic polysaccharide monooxygenases. Curr Opin Struct Biol 59, 54-64. – reference: Garcia-Gonzalez E, Poppinga L, Funfhaus A, et al. (2014) Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American Foulbrood of honey bees. PLoS Pathog 10, e1004284. – reference: Kramer KJ, Corpuz L, Choi HK, Muthukrishnan S. (1993) Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem Mol Biol 23, 691-701. – reference: Zhang J, Zhang X, Arakane Y, et al. (2011) Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PLoS One 6, e19899. – reference: Muthukrishnan S, Arakane Y, Noh MY, et al. (2022) Chapter OneChitin in insect cuticle. In Advances in Insect Physiology (Sugumaran M ed), 62, pp. 1-110, Elsevier, https://doi.org/10.1016/bs.aiip.2022.03.001. – reference: Su C, Tu G, Huang S, Yang Q, Shahzad MF, Li F. (2016) Genomewide analysis of chitinase genes and their varied functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis. Insect Mol Biol 25, 401-412. – reference: Uchiyama T, Uchihashi T, Ishida T, et al. (2022) Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface. Sci Adv 8, eade5155. – reference: Zhang X, Wang Y, Zhang S, Kong X, Liu F, Zhang Z. (2021) RNAi-mediated silencing of the Chitinase 5 gene for Fall webworm (Hyphantria cunea) can inhibit larval molting depending on the timing of dsRNA injection. Insects 12. – reference: Agostoni M, Hangasky JA, Marletta MA. (2017) Physiological and molecular understanding of bacterial polysaccharide monooxy-genases. Microbiol Mol Biol Rev 81, e00015-00017. – reference: Zhang D, Chen J, Yao Q, Pan Z, Chen J, Zhang W. (2012) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem Physiol 79, 220-234. – reference: Muthukrishnan S, Mun S, Noh MY, Geisbrecht ER, Arakane Y. (2020) Insect cuticular chitin contributes to form and function. Curr Pharm Des 26, 3530-3545. – reference: Qu M, Guo XX, Kong L, Hou LJ, Yang Q. (2022b) A midgut-specific lytic polysaccharide monooxygenase of Locusta migratoria is indispensable for the deconstruction of the peritrophic matrix. Insect Sci 29, 1287-1298. – reference: Chylenski P, Bissaro B, Sørlie M, et al. (2019) Lytic polysaccharide monooxygenases in enzymatic processing of lignocellulosic biomass. ACS Catal 9, 4970-4991. – reference: Lo Leggio L, Simmons TJ, Poulsen JC, et al. (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6, 5961. – reference: Liu XY, Wang SS, Zhong F, et al. (2022) Chitinase (CHI) of Spodoptera frugiperda affects molting development by regulating the metabolism of chitin and trehalose. Front Physiol 13, 1034926. – reference: Li D, Zhang J, Wang Y, et al. (2015) Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation. Insect Biochem Mol Biol 58, 46-54. – reference: Fukamizo T, Kramer KJ. (1985) Mechanism of chitin hydrolysis by the binary chitinase system in insect moulting fluid. Insect Biochem 15, 141-145. – reference: Sabbadin F, Hemsworth GR, Ciano L, et al. (2018) An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat Commun 9, 756. – reference: Arakane Y, Muthukrishnan S. (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67, 201-216. – reference: Franco Cairo JPL, Cannella D, Oliveira LC, et al. (2020) On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi. J Inorg Biochem 216, 111316. – reference: Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77, 7007-7015. – reference: Hemsworth GR, Henrissat B, Davies GJ, Walton PH. (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10, 122-126. – reference: Chiu E, Hijnen M, Bunker RD, et al. (2015) Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc Natl Acad Sci USA 112, 3973-3978. – reference: Chen W, Jiang X, Yang Q. (2020) Glycoside hydrolase family 18 chitinases: the known and the unknown. Biotechnol Adv 43, 107553. – reference: Tetreau G, Cao X, Chen YR, et al. (2015b) Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem Mol Biol 62, 114-126. – reference: Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42, D490-495. – reference: Liu HW, Wang LL, Tang X, et al. (2018) Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process. J Proteomics 173, 115-125. – reference: Zhang J, Lu A, Kong L, Zhang Q, Ling E. (2014) Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J Biol Chem 289, 35891-35906. – reference: Zhu B, Shan J, Li R, Liang P, Gao X. (2019) Identification and RNAi-based function analysis of chitinase family genes in diamondback moth, Plutella xylostella. Pest Manag Sci 75, 1951-1961. – reference: Zhang T, Liu W, Li D, et al. (2018) LmCht5-1 promotes pronymphal molting during locust embryonic development. Insect Biochem Mol Biol 101, 124-130. – reference: An S, Liu W, Fu J, Zhang Z, Zhang R. (2023) Molecular identification of the chitinase genes in Aedes albopictus and essential roles of AaCht10 in pupal-adult transition. Parasit Vectors 16, 1-14. – reference: Vaaje-Kolstad G, Bohle LA, Gaseidnes S, et al. (2012) Characterization of the chitinolytic machinery of enterococcus faecalis V583 and hgigh-resolution structure of its oxidative CBM33 enzyme. J Mol Biol 416, 239-254. – reference: Lu Y, Zen KC, Muthukrishnan S, Kramer KJ. (2002) Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol 32, 1369-1382. – reference: Vaaje-Kolstad G, Westereng B, Horn SJ, et al. (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219-222. – reference: Chen W, Qu M, Zhou Y, Yang Q. (2018) Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects. J Biol Chem 293, 2652-2660. – reference: Xi Y, Pan PL, Ye YX, Yu B, Xu HJ, Zhang CX. (2015) Chitinaselike gene family in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 24, 29-40. – reference: Daimon T, Hamada K, Mita K, et al. (2003) A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem Mol Biol 33, 749-759. – reference: Shippy TD, Miller S, Tamayo B, et al. (2022) Manual curation and phylogenetic analysis of chitinase family genes in the Asian citrus psyllid, Diaphorina citri. GigaByte doi:10.46471/gigabyte.46. – reference: Arakane Y, Taira T, Ohnuma T, Fukamizo T. (2012) Chitin-related enzymes in agro-biosciences. Curr Drug Targets 13, 442-470. – reference: Couturier M, Ladeveze S, Sulzenbacher G, et al. (2018) Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol 14, 306-310. – reference: Lee Y, Muthukrishnan S, Kramer KJ, et al. (2023) Functional importance of groups I and II chitinases in cuticle chitin turnover during molting in a wood-boring beetle, Monochamus alternatus. Pestic Biochem Physiol 194, 105496. – reference: Kramer KJ, Muthukrishnan S. (2005) Chitin metabolism in insects. In Comprehensive Molecular Insect Science (Gilbert LI ed), pp. 111-144, Elsevier, https://doi.org/10.1016/B0-44-451924-6/00051-X. – reference: Omar MAA, Ao Y, Li M, et al. (2019) The functional difference of eight chitinase genes between male and female of the cotton mealybug, Phenacoccus solenopsis. Insect Mol Biol 28, 550-567. – reference: Watanabe T, Kobori K, Miyashita K, et al. (1993) Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem 268, 18567-18572. – reference: Filiatrault-Chastel C, Navarro D, Haon M, et al. (2019) AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes. Biotechnol Biofuels Bioprod 12, 55. – reference: Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ. (2012) Chitin metabolism in insects. In Insect Molecular Biology and Biochemistry (Gilbert LI ed), pp. 193-235, Elsevier, https://doi.org/10.1016/C2009-0-62118-8. |
SSID | ssj0056937 ssib031740849 ssib001145747 ssib007876050 |
Score | 2.3397648 |
SourceID | affrit jstage |
SourceType | Open Access Repository Publisher |
StartPage | 1_021 |
Title | 昆虫脱皮にともなう表皮キチン分解におけるキチナーゼと溶解性多糖モノオキシゲナーゼの役割 |
URI | https://www.jstage.jst.go.jp/article/konchubiotec/93/1/93_1_021/_article/-char/ja https://agriknowledge.affrc.go.jp/RN/2010951403 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 蚕糸・昆虫バイオテック, 2024, Vol.93(1), pp.1_021-1_030 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9RANJR60YP4id_04JzK1k0ymcwcJ7uRolgQWugt5LPtHtpS2osnNytFKwheRHvzA1paLNiCotRfM2y7P8M3M8matRVaEUJ4mXnz5s17mcx78_FiGHejxKVxlMpFVhLWwP4ntcgy5QS8hWkII5CTyMPJjybI-BR-MO1MDw3HlV1LK8vRWPzk2HMl_6JVSAO9ylOyp9BsnygkAAz6hTtoGO4n0jHyCWIUUYJ8ihhD3JMAxcgzke8ixhH3kW-DtaiyNEAVYMmrSOEFoOlwjVMtbiHeVIBC04BnI99BtKydu4jbf9ZFS8rMLCv1_kqwQAbKjQKnADQ_BHkcedW6iNylATCwwbHkFngGrhgp6HCrpNxvBR-sHapwS8A6ARu-rMtrIo-ptjMoVTXulRY4Yk7BiUdLUt5xmlJZrF6yhAeZtBWyBuwyq78NW-m5iRhwzRB1pYChr8gH1lQSwJJJ2l9Pm1iY1YckRtXnvTrXY_2e5VXFqBSrJA-CbsiWAGeeajnzCrlLKTsKGVTCR1XjAM9RQEMVOyoJR0qda9YakFsZDik1oRcXIYHTMg3XZFjB6hiq_3I58K3QA6IZ1C2zYl3Bs16HOzp0YzWNBG5RPLsSzckgJWPMHqsQGAiLXnS6oIofMDsw9Q0KBSWKPL8YtMCJOmO5rin3_T58XFkqNrFT9alhBAMXvz-IgX2N61TOUWjzziFMBeLti6YIOyDZv3cs82Dbhlm2NCc91xa4fOV2UWXBTl4wzheu5wjX_F40hlrhJeMcn1kqwu-kl432wdvV3rvt3rMvh-s7or0t2psiz0V7S7RXe-83ZWL-WXTaorPXfb7a2_iocNZE-7XIX5ZZa6KzL_J9KHvw4yvgHDzd6H5aP9x7IzofROeVyLckZv5N5LsV5J3uz-_dF7tXjKn7_mRjvFb8pKUWWsR2wTuvm2kahxHFjplhJwkZyezIyWSIYbD_WUJxnBAmd5s7NMxwDD5ITAnJwFGxw8i-agzPL8yn14wRl6axaVsJxkmM0yhjOLYiM6IOwUnoptZ1o64FGYQgmv6aQ6Ai5ENGHMwsBK3FoA5irzMXVEWuG1yLPFjUwXuC0783N_4DjZvGWdmf9dztLWN4eWklvQ3ezHJ0R72NvwDeziQC |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%98%86%E8%99%AB%E8%84%B1%E7%9A%AE%E3%81%AB%E3%81%A8%E3%82%82%E3%81%AA%E3%81%86%E8%A1%A8%E7%9A%AE%E3%82%AD%E3%83%81%E3%83%B3%E5%88%86%E8%A7%A3%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E3%82%AD%E3%83%81%E3%83%8A%E3%83%BC%E3%82%BC%E3%81%A8%E6%BA%B6%E8%A7%A3%E6%80%A7%E5%A4%9A%E7%B3%96%E3%83%A2%E3%83%8E%E3%82%AA%E3%82%AD%E3%82%B7%E3%82%B2%E3%83%8A%E3%83%BC%E3%82%BC%E3%81%AE%E5%BD%B9%E5%89%B2&rft.jtitle=%E8%9A%95%E7%B3%B8%E3%83%BB%E6%98%86%E8%99%AB%E3%83%90%E3%82%A4%E3%82%AA%E3%83%86%E3%83%83%E3%82%AF&rft.au=%E8%8D%92%E9%87%91%2C+%E9%9D%96%E4%B9%8B&rft.au=Noh%2C+Mi+Young&rft.date=2024&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E8%9A%95%E7%B3%B8%E5%AD%A6%E4%BC%9A&rft.issn=1881-0551&rft.eissn=1884-7943&rft.volume=93&rft.issue=1&rft.spage=1_021&rft.epage=1_030&rft_id=info:doi/10.11416%2Fkonchubiotec.93.1_021&rft.externalDocID=article_konchubiotec_93_1_93_1_021_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-0551&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-0551&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-0551&client=summon |