多様なクチクラを構成する多様なクチクラタンパク質
Saved in:
Published in | Sanshi, konchū baiotekku Vol. 93; no. 1; pp. 1_013 - 1_020 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
一般社団法人 日本蚕糸学会
2024
|
Online Access | Get full text |
ISSN | 1881-0551 1884-7943 |
DOI | 10.11416/konchubiotec.93.1_013 |
Cover
Author | 外川, 徹 |
---|---|
Author_xml | – sequence: 1 fullname: 外川, 徹 organization: 日本大学 文理学部 生命科学科 |
BackLink | https://agriknowledge.affrc.go.jp/RN/2010951402$$DView record in AgriKnowledge |
BookMark | eNp1kMFKw0AQhhepYFt9Bd8gdSe7m80epagVCl70vGw2mzZpTUoSEY9tL0Iv6kk9C8VePPQBfJjF4mMYWxEvXv6ZYf5_YL4GqqVZahDaB9wCoOAdDLJU96-COCuNbgnSAomBbKE6-D51uKCktu7BwYzBDmoURYIx8wThddT5eHlezR_teGEnb3Y6XuurnTys5rPV7Z0dP9nJ7B_Pu50u7fS-Gj-Xi120HalhYfZ-ahNdHB-dtztO9-zktH3YdZTrEeZwrT0KQJRrQCjsAgmIYcI1HlMiwgHXlIRGAw659hXVPg2E75OQ-sCwhz3SRHxzV0VRHpdS9fJ4kGbXQxP2jMxULL8XWvYymYwqEBJjwatvWZXsbJJJUarKO8rjS5XfSJWXsR4a-RejFETCRiqWvxbdV7lMFPkC-1CLwA |
ContentType | Journal Article |
Copyright | 2024 社団法人 日本蚕糸学会 |
Copyright_xml | – notice: 2024 社団法人 日本蚕糸学会 |
DBID | N5S |
DOI | 10.11416/konchubiotec.93.1_013 |
DatabaseName | AgriKnowledge(アグリナレッジ)AGROLib |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1884-7943 |
EndPage | 1_020 |
ExternalDocumentID | oai_affrc_go_jp_01_00970565 article_konchubiotec_93_1_93_1_013_article_char_ja |
GroupedDBID | 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS JSF KQ8 OK1 RJT N5S |
ID | FETCH-LOGICAL-a2635-7cc64113a2e19a0213b3e592e65a9f0b7c43dec10d7c8a4c84b9883d481506063 |
ISSN | 1881-0551 |
IngestDate | Fri Aug 15 12:19:35 EDT 2025 Thu Jul 17 14:00:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a2635-7cc64113a2e19a0213b3e592e65a9f0b7c43dec10d7c8a4c84b9883d481506063 |
Notes | ZZ20023854 951402 |
OpenAccessLink | https://agriknowledge.affrc.go.jp/RN/2010951402 |
PageCount | 8 |
ParticipantIDs | affrit_agriknowledge_oai_affrc_go_jp_01_00970565 jstage_primary_article_konchubiotec_93_1_93_1_013_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | Sanshi, konchū baiotekku |
PublicationTitleAlternate | 蚕糸・昆虫バイオテック |
PublicationYear | 2024 |
Publisher | 一般社団法人 日本蚕糸学会 |
Publisher_xml | – name: 一般社団法人 日本蚕糸学会 |
References | Andersen, SO (2000) Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochem. Mol. Biol. 30: 569-577. Tang, L, Liang, J, Zhan, Z, Xiang, Z and He, N (2010) Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 40: 228-234. Rebers, JE and Riddiford, LM (1988) Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J. Mol. Biol. 203: 411-423. Andersen, SO, Hojrup, P and Roepstorff, P (1995) Insect cuticular proteins. Insect Biochem. Mol. Biol. 25: 153-176. Togawa, T, Dunn, WA, Emmons, AC, Nagao, J and Willis, JH (2008) Developmental expression patterns of cuticular protein genes with the R&R Consensus from Anopheles gambiae. Insect Biochem. Mol. Biol. 38: 508-519. Jasrapuria, S, Arakane, Y, Osman, G, Kramer, KJ, Beeman, RW and Muthukrishnan, S (2010) Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem. Mol. Biol. 40: 214-227. Wright, HT, Sandrasegaram, G and Wright, CS (1991) Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin. J. Mol. Evol. 33: 283-294. Nisole, A, Stewart, D, Bowman, S, Zhang, D, Krell, PJ, Doucet, D and Cusson, M (2010) Cloning and characterization of a Gasp homolog from the spruce budworm, Choristoneura fumiferana, and its putative role in cuticle formation. J. Insect Physiol. 56: 1427-1435. Graham, GJ (1995) Tandem genes and clustered genes. J. Theor. Biol. 175: 71-87. Ikeya, T, Persson, P, Kono, M and Watanabe, T (2001) The DD5 gene of the decapod crustacean Penaeus japonicus encodes a putative exoskeletal protein with a novel tandem repeat structure. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 128: 379-388. Klowden, MJ (2007) Physiological systems in insects. Elsevier. Futahashi, R, Okamoto, S, Kawasaki, H, Zhong, YS, Iwanaga, M, Mita, K and Fujiwara, H (2008) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 38: 1138-1146. Hamodrakas, SJ, Willis, JH and Iconomidou, VA (2002) A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem. Mol. Biol. 32: 1577-1583. Barry, MK, Triplett, AA and Christensen, AC (1999) A peritrophin-like protein expressed in the embryonic tracheae of Drosophila melanogaster. Insect Biochem. Mol. Biol. 29: 319-327. Guan, X, Middlebrooks, BW, Alexander, S and Wasserman, SA (2006) Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 103: 16794-16799. Togawa, T, Augustine Dunn, W, Emmons, AC and Willis, JH (2007) CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochem. Mol. Biol. 37: 675-688. Asano, T, Seto, Y, Hashimoto, K and Kurushima, H (2019) Mini-review an insect-specific system for terrestrialization: Laccasemediated cuticle formation. Insect Biochem. Mol. Biol. 108: 61-70. He, N, Botelho, JM, McNall, RJ, Belozerov, V, Dunn, WA, Mize, T, Orlando, R and Willis, JH (2007) Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem. Mol. Biol. 37: 135-146. Dittmer, NT, Hiromasa, Y, Tomich, JM, Lu, N, Beeman, RW, Kramer, KJ and Kanost, MR (2012) Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum. J. Proteome Res. 11: 269-278. Magkrioti, CK, Spyropoulos, IC, Iconomidou, VA, Willis, JH and Hamodrakas, SJ (2004) cuticleDB: a relational database of Arthropod cuticular proteins. BMC Bioinformatics 5: 138. Willis, JH, Iconomidou, VA, Smith, RF and Hamodrakas, SJ (2005) Cuticular proteins. In: Comprehensive Molecular Insect Science (Gilbert, LI, Iatrou, K and Gill, SS, eds.). Vol. 4, pp. 79-109. Elsevier Ltd., Oxford. Cornman, RS, Togawa, T, Dunn, WA, He, N, Emmons, AC and Willis, JH (2008) Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. BMC Genomics 9: 22. Noh, MY, Muthukrishnan S, Kramer, KJ and Arakane, Y (2016) Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 17: 1-9. Iijima, M, Hashimoto, T, Matsuda, Y, Nagai, T, Yamano, Y, Ichi, T, Osaki, T and Kawabata, S (2005) Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. FEBS J. 272: 4774-4786. Cornman, RS (2009) Molecular evolution of Drosophila cuticular protein genes. PLoS One 4: e8345. Andersen, SO (1998) Amino acid sequence studies on endocuticular proteins from the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 28: 421-434. Tetreau, G, Dittmer, NT, Cao, X, Agrawal, S, Chen, YR, Muthukrishnan, S, Haobo, J, Blissard, GW, Kanost, MR and Wang, P (2015) Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochem. Mol. Biol. 62: 127-141. Ohkubo, S, Shintaku, T, Mine, S, Yamamoto, DS and Togawa, T (2023) Mosquitoes Possess Specialized Cuticular Proteins That Are Evolutionarily Related to the Elastic Protein Resilin. Insects 14: 941. Willis, JH, Papandreou, NC, Iconomidou, VA and Hamodrakas, SJ (2012) Cuticular Proteins. In: Insect Molecular Biology and Biochemistry (Gilbert, LI, ed., pp. 134-166. Academic Press, Cambridge. Zhou, Y, Badgett, MJ, Orlando, R and Willis, JH (2019) Proteomics reveals localization of cuticular proteins in Anopheles gambiae. Insect Biochem. Mol. Biol. 104: 91-105. Cornman, RS and Willis, JH (2009) Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol. Biol. 18: 607-622. Iconomidou, VA, Willis, JH and Hamodrakas, SJ (2005) Unique features of the structural model of ʻhardʼ cuticle proteins: implications for chitin-protein interactions and cross-linking in cuticle. Insect Biochem. Mol. Biol. 35: 553-560. Willis, JH (2010) Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem. Mol. Biol. 40: 189-204. Shen, Z and Jacobs-Lorena, M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J. Biol. Chem. 273: 17665-17670. Tamura, K, Stecher, G and Kumar, S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38: 3022-3027. Nakato, H, Takekoshi, M, Togawa, T, Izumi, S and Tomino, S (1997) Purification and cDNA cloning of evolutionally conserved larval cuticle proteins of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 27: 701-709. Andersen, SO, Rafn, K and Roepstorff, P (1997) Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor. Insect Biochem. Mol. Biol. 27: 121-131. Rebers, JE and Willis, JH (2001) A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem. Mol. Biol. 31: 1083-1093. Behr, M and Hoch, M (2005) Identification of the novel evolutionary conserved obstructor multigene family in invertebrates. FEBS Lett. 579: 6827-6833. Togawa, T, Nakato, H and Izumi, S (2004) Analysis of the chitin recognition mechanism of cuticle proteins from the soft cuticle of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 34: 1059-1067. Zhou, Y, Badgett, MJ, Bowen, JH, Vannini, L, Orlando, R and Willis, JH (2016) Distribution of cuticular proteins in different structures of adult Anopheles gambiae. Insect Biochem. Mol. Biol. 75: 45-57. Komori, N, Usukura, J and Matsumoto, H (1992) Drosocrystallin, a major 52 kDa glycoprotein of the Drosophila melanogaster corneal lens. Purification, biochemical characterization, and subcellular localization. J. Cell Sci. 102: 191-201. Qiao, L, Xiong, G, Wang, RX, He, SZ, Chen, J, Tong, XL, Hu, H, Li, CL, Gai, TT, Xin, YQ, Liu, XF, Chen, B, Xiang, ZH, Lu, C and Dai, FY (2014) Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics 196: 1103-1115. Cornman, RS and Willis, JH (2008) Extensive gene amplification and concerted evolution within the CPR family of cuticular proteins in mosquitoes. Insect Biochem. Mol. Biol. 38: 661-676. Gullan, PJ and Cranston, PS (2014) The insects: an outline of entomology, fifth edition edn. Wiley. Karouzou, MV, Spyropoulos, Y, Iconomidou, VA, Cornman, RS, Hamodrakas, SJ and Willis, JH (2007) Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem. Mol. Biol. 37: 754-760. Dittmer, NT, Tetreau, G, Cao, X, Jiang, H, Wang, P and Kanost, MR (2015) Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 62: 100-113. Suetake, T, Tsuda, S, Kawabata, S, Miura, K, Iwanaga, S, Hikichi, K, Nitta, K and Kawano, K (2000) Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J. Biol. Chem. 275: 17929-17932. Locke, M (2001) The Wigglesworth Lecture: Insects for studying fundamental problems in biology. J. Insect Physiol. 47: 495-507. Arakane, Y, Zhu, Q, Matsumiya, M, Muthukrishnan, S and Kramer, KJ (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem. Mol. Biol. 33: 631-648. Janssens, H and Gehring, WJ (1999) Isolation and characterization of drosocrystallin, a lens crystallin gene of Drosophila melanogaster. Dev Biol 207: 204-214. |
References_xml | – reference: Barry, MK, Triplett, AA and Christensen, AC (1999) A peritrophin-like protein expressed in the embryonic tracheae of Drosophila melanogaster. Insect Biochem. Mol. Biol. 29: 319-327. – reference: Rebers, JE and Willis, JH (2001) A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem. Mol. Biol. 31: 1083-1093. – reference: Futahashi, R, Okamoto, S, Kawasaki, H, Zhong, YS, Iwanaga, M, Mita, K and Fujiwara, H (2008) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 38: 1138-1146. – reference: He, N, Botelho, JM, McNall, RJ, Belozerov, V, Dunn, WA, Mize, T, Orlando, R and Willis, JH (2007) Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem. Mol. Biol. 37: 135-146. – reference: Ohkubo, S, Shintaku, T, Mine, S, Yamamoto, DS and Togawa, T (2023) Mosquitoes Possess Specialized Cuticular Proteins That Are Evolutionarily Related to the Elastic Protein Resilin. Insects 14: 941. – reference: Locke, M (2001) The Wigglesworth Lecture: Insects for studying fundamental problems in biology. J. Insect Physiol. 47: 495-507. – reference: Magkrioti, CK, Spyropoulos, IC, Iconomidou, VA, Willis, JH and Hamodrakas, SJ (2004) cuticleDB: a relational database of Arthropod cuticular proteins. BMC Bioinformatics 5: 138. – reference: Willis, JH, Papandreou, NC, Iconomidou, VA and Hamodrakas, SJ (2012) Cuticular Proteins. In: Insect Molecular Biology and Biochemistry (Gilbert, LI, ed., pp. 134-166. Academic Press, Cambridge. – reference: Andersen, SO, Rafn, K and Roepstorff, P (1997) Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor. Insect Biochem. Mol. Biol. 27: 121-131. – reference: Wright, HT, Sandrasegaram, G and Wright, CS (1991) Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin. J. Mol. Evol. 33: 283-294. – reference: Hamodrakas, SJ, Willis, JH and Iconomidou, VA (2002) A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem. Mol. Biol. 32: 1577-1583. – reference: Tang, L, Liang, J, Zhan, Z, Xiang, Z and He, N (2010) Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 40: 228-234. – reference: Willis, JH, Iconomidou, VA, Smith, RF and Hamodrakas, SJ (2005) Cuticular proteins. In: Comprehensive Molecular Insect Science (Gilbert, LI, Iatrou, K and Gill, SS, eds.). Vol. 4, pp. 79-109. Elsevier Ltd., Oxford. – reference: Togawa, T, Augustine Dunn, W, Emmons, AC and Willis, JH (2007) CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochem. Mol. Biol. 37: 675-688. – reference: Nakato, H, Takekoshi, M, Togawa, T, Izumi, S and Tomino, S (1997) Purification and cDNA cloning of evolutionally conserved larval cuticle proteins of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 27: 701-709. – reference: Andersen, SO (1998) Amino acid sequence studies on endocuticular proteins from the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 28: 421-434. – reference: Shen, Z and Jacobs-Lorena, M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J. Biol. Chem. 273: 17665-17670. – reference: Cornman, RS and Willis, JH (2009) Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol. Biol. 18: 607-622. – reference: Karouzou, MV, Spyropoulos, Y, Iconomidou, VA, Cornman, RS, Hamodrakas, SJ and Willis, JH (2007) Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem. Mol. Biol. 37: 754-760. – reference: Cornman, RS, Togawa, T, Dunn, WA, He, N, Emmons, AC and Willis, JH (2008) Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. BMC Genomics 9: 22. – reference: Noh, MY, Muthukrishnan S, Kramer, KJ and Arakane, Y (2016) Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 17: 1-9. – reference: Zhou, Y, Badgett, MJ, Bowen, JH, Vannini, L, Orlando, R and Willis, JH (2016) Distribution of cuticular proteins in different structures of adult Anopheles gambiae. Insect Biochem. Mol. Biol. 75: 45-57. – reference: Dittmer, NT, Hiromasa, Y, Tomich, JM, Lu, N, Beeman, RW, Kramer, KJ and Kanost, MR (2012) Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum. J. Proteome Res. 11: 269-278. – reference: Andersen, SO (2000) Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochem. Mol. Biol. 30: 569-577. – reference: Behr, M and Hoch, M (2005) Identification of the novel evolutionary conserved obstructor multigene family in invertebrates. FEBS Lett. 579: 6827-6833. – reference: Suetake, T, Tsuda, S, Kawabata, S, Miura, K, Iwanaga, S, Hikichi, K, Nitta, K and Kawano, K (2000) Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J. Biol. Chem. 275: 17929-17932. – reference: Iijima, M, Hashimoto, T, Matsuda, Y, Nagai, T, Yamano, Y, Ichi, T, Osaki, T and Kawabata, S (2005) Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. FEBS J. 272: 4774-4786. – reference: Nisole, A, Stewart, D, Bowman, S, Zhang, D, Krell, PJ, Doucet, D and Cusson, M (2010) Cloning and characterization of a Gasp homolog from the spruce budworm, Choristoneura fumiferana, and its putative role in cuticle formation. J. Insect Physiol. 56: 1427-1435. – reference: Cornman, RS and Willis, JH (2008) Extensive gene amplification and concerted evolution within the CPR family of cuticular proteins in mosquitoes. Insect Biochem. Mol. Biol. 38: 661-676. – reference: Qiao, L, Xiong, G, Wang, RX, He, SZ, Chen, J, Tong, XL, Hu, H, Li, CL, Gai, TT, Xin, YQ, Liu, XF, Chen, B, Xiang, ZH, Lu, C and Dai, FY (2014) Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics 196: 1103-1115. – reference: Tetreau, G, Dittmer, NT, Cao, X, Agrawal, S, Chen, YR, Muthukrishnan, S, Haobo, J, Blissard, GW, Kanost, MR and Wang, P (2015) Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochem. Mol. Biol. 62: 127-141. – reference: Willis, JH (2010) Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem. Mol. Biol. 40: 189-204. – reference: Iconomidou, VA, Willis, JH and Hamodrakas, SJ (2005) Unique features of the structural model of ʻhardʼ cuticle proteins: implications for chitin-protein interactions and cross-linking in cuticle. Insect Biochem. Mol. Biol. 35: 553-560. – reference: Tamura, K, Stecher, G and Kumar, S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38: 3022-3027. – reference: Dittmer, NT, Tetreau, G, Cao, X, Jiang, H, Wang, P and Kanost, MR (2015) Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 62: 100-113. – reference: Komori, N, Usukura, J and Matsumoto, H (1992) Drosocrystallin, a major 52 kDa glycoprotein of the Drosophila melanogaster corneal lens. Purification, biochemical characterization, and subcellular localization. J. Cell Sci. 102: 191-201. – reference: Togawa, T, Nakato, H and Izumi, S (2004) Analysis of the chitin recognition mechanism of cuticle proteins from the soft cuticle of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 34: 1059-1067. – reference: Andersen, SO, Hojrup, P and Roepstorff, P (1995) Insect cuticular proteins. Insect Biochem. Mol. Biol. 25: 153-176. – reference: Asano, T, Seto, Y, Hashimoto, K and Kurushima, H (2019) Mini-review an insect-specific system for terrestrialization: Laccasemediated cuticle formation. Insect Biochem. Mol. Biol. 108: 61-70. – reference: Klowden, MJ (2007) Physiological systems in insects. Elsevier. – reference: Arakane, Y, Zhu, Q, Matsumiya, M, Muthukrishnan, S and Kramer, KJ (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem. Mol. Biol. 33: 631-648. – reference: Cornman, RS (2009) Molecular evolution of Drosophila cuticular protein genes. PLoS One 4: e8345. – reference: Togawa, T, Dunn, WA, Emmons, AC, Nagao, J and Willis, JH (2008) Developmental expression patterns of cuticular protein genes with the R&R Consensus from Anopheles gambiae. Insect Biochem. Mol. Biol. 38: 508-519. – reference: Zhou, Y, Badgett, MJ, Orlando, R and Willis, JH (2019) Proteomics reveals localization of cuticular proteins in Anopheles gambiae. Insect Biochem. Mol. Biol. 104: 91-105. – reference: Janssens, H and Gehring, WJ (1999) Isolation and characterization of drosocrystallin, a lens crystallin gene of Drosophila melanogaster. Dev Biol 207: 204-214. – reference: Jasrapuria, S, Arakane, Y, Osman, G, Kramer, KJ, Beeman, RW and Muthukrishnan, S (2010) Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem. Mol. Biol. 40: 214-227. – reference: Ikeya, T, Persson, P, Kono, M and Watanabe, T (2001) The DD5 gene of the decapod crustacean Penaeus japonicus encodes a putative exoskeletal protein with a novel tandem repeat structure. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 128: 379-388. – reference: Graham, GJ (1995) Tandem genes and clustered genes. J. Theor. Biol. 175: 71-87. – reference: Rebers, JE and Riddiford, LM (1988) Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J. Mol. Biol. 203: 411-423. – reference: Guan, X, Middlebrooks, BW, Alexander, S and Wasserman, SA (2006) Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 103: 16794-16799. – reference: Gullan, PJ and Cranston, PS (2014) The insects: an outline of entomology, fifth edition edn. Wiley. |
SSID | ssj0056937 ssib031740849 ssib001145747 ssib007876050 |
Score | 2.3401132 |
SourceID | affrit jstage |
SourceType | Open Access Repository Publisher |
StartPage | 1_013 |
Title | 多様なクチクラを構成する多様なクチクラタンパク質 |
URI | https://www.jstage.jst.go.jp/article/konchubiotec/93/1/93_1_013/_article/-char/ja https://agriknowledge.affrc.go.jp/RN/2010951402 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 蚕糸・昆虫バイオテック, 2024, Vol.93(1), pp.1_013-1_020 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQw0CrlAgfEU5SXesAnlJLEjmMfnW2qFUhISK3Um5Vks6V7aKtVe-ltdy9IvQCnwhmpohcO_QA-JmLFZzDjxEsKi0RRpZU1GduTscexZ7yeMSFP8ZqNMo9CL4e1x-OlDDxZsMxjfVhQSqEwyByetngluhv8xWa0uXDluHVq6WA_XykO5_qV_I9UAQdyRS_ZC0h2RhQQAIN8IQUJQ_pPMqZpRDWnStNUUB1TJWnKQDekWlsgpHrNAhb5G0arBqPCprpMEJCSKr-ho1wZzLqMdyUOk7AGUO3CEvFatzVmRMJLVUTTGHMT6ShYboENKWwZRXXiaPqOJneAdrwJB7DZe92gc00UCCTQxFUcgPYhpYlqb5CEv7ZGacqRKekjF9B5uoOcAh2oBFVVQjVDToF3bATgNfyeWeahXGSBjq32Z0uBoVWqha3WgdzWGiJhwPtRE0e3dDjuYSy-9sJTXw157gOrV5HA-LWDbqOSwLP1GJyz3nG79wK2RPHmIN_GyB4riq20CJyLJd6MVNMubxQzQZ1AJeOKoNOfGYDlcTWM4wAPy7583fp_NeBR2xCFaR_s4tnMD0op9yUa9rVOFMFHb685cl3T-Ooj-8_nMg8KYdbvD7fR3BuAneTOWFq1b_0mudHYa8u65vcWWRhkt8l1vTVsYtaUd0j3--dP05PjanRajb9Wk5FNv1TjD9OTo-nbd9XoYzU--kuZb9XkrJq8h8cfZ6d3ycZaut7pes0FJV6GMZy8uCgEDwKWhWWgMpjcWM7KSIWliDLV9_O44KxXFoHfiwuZ8ULyXEnJehggyRdgHNwjizu7O-V9sgyGAe9DP_WYhNkxy7I4ZDETPYwlJYVSS8Sv-8Nk0MLZfrux0eEhozBbu2awB11n0DULKEVLRNc9Z_bqwDXm4uJ_cAk0HpJr-FnW-5aPyOL-8KB8DJr8fv7EDqqfauvOKg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%9A%E6%A7%98%E3%81%AA%E3%82%AF%E3%83%81%E3%82%AF%E3%83%A9%E3%82%92%E6%A7%8B%E6%88%90%E3%81%99%E3%82%8B%E5%A4%9A%E6%A7%98%E3%81%AA%E3%82%AF%E3%83%81%E3%82%AF%E3%83%A9%E3%82%BF%E3%83%B3%E3%83%91%E3%82%AF%E8%B3%AA&rft.jtitle=%E8%9A%95%E7%B3%B8%E3%83%BB%E6%98%86%E8%99%AB%E3%83%90%E3%82%A4%E3%82%AA%E3%83%86%E3%83%83%E3%82%AF&rft.au=%E5%A4%96%E5%B7%9D%2C+%E5%BE%B9&rft.date=2024&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E8%9A%95%E7%B3%B8%E5%AD%A6%E4%BC%9A&rft.issn=1881-0551&rft.eissn=1884-7943&rft.volume=93&rft.issue=1&rft.spage=1_013&rft.epage=1_020&rft_id=info:doi/10.11416%2Fkonchubiotec.93.1_013&rft.externalDocID=article_konchubiotec_93_1_93_1_013_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-0551&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-0551&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-0551&client=summon |