多様なクチクラを構成する多様なクチクラタンパク質

Saved in:
Bibliographic Details
Published inSanshi, konchū baiotekku Vol. 93; no. 1; pp. 1_013 - 1_020
Main Author 外川, 徹
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本蚕糸学会 2024
Online AccessGet full text
ISSN1881-0551
1884-7943
DOI10.11416/konchubiotec.93.1_013

Cover

Author 外川, 徹
Author_xml – sequence: 1
  fullname: 外川, 徹
  organization: 日本大学 文理学部 生命科学科
BackLink https://agriknowledge.affrc.go.jp/RN/2010951402$$DView record in AgriKnowledge
BookMark eNp1kMFKw0AQhhepYFt9Bd8gdSe7m80epagVCl70vGw2mzZpTUoSEY9tL0Iv6kk9C8VePPQBfJjF4mMYWxEvXv6ZYf5_YL4GqqVZahDaB9wCoOAdDLJU96-COCuNbgnSAomBbKE6-D51uKCktu7BwYzBDmoURYIx8wThddT5eHlezR_teGEnb3Y6XuurnTys5rPV7Z0dP9nJ7B_Pu50u7fS-Gj-Xi120HalhYfZ-ahNdHB-dtztO9-zktH3YdZTrEeZwrT0KQJRrQCjsAgmIYcI1HlMiwgHXlIRGAw659hXVPg2E75OQ-sCwhz3SRHxzV0VRHpdS9fJ4kGbXQxP2jMxULL8XWvYymYwqEBJjwatvWZXsbJJJUarKO8rjS5XfSJWXsR4a-RejFETCRiqWvxbdV7lMFPkC-1CLwA
ContentType Journal Article
Copyright 2024 社団法人 日本蚕糸学会
Copyright_xml – notice: 2024 社団法人 日本蚕糸学会
DBID N5S
DOI 10.11416/konchubiotec.93.1_013
DatabaseName AgriKnowledge(アグリナレッジ)AGROLib
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1884-7943
EndPage 1_020
ExternalDocumentID oai_affrc_go_jp_01_00970565
article_konchubiotec_93_1_93_1_013_article_char_ja
GroupedDBID 2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
N5S
ID FETCH-LOGICAL-a2635-7cc64113a2e19a0213b3e592e65a9f0b7c43dec10d7c8a4c84b9883d481506063
ISSN 1881-0551
IngestDate Fri Aug 15 12:19:35 EDT 2025
Thu Jul 17 14:00:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a2635-7cc64113a2e19a0213b3e592e65a9f0b7c43dec10d7c8a4c84b9883d481506063
Notes ZZ20023854
951402
OpenAccessLink https://agriknowledge.affrc.go.jp/RN/2010951402
PageCount 8
ParticipantIDs affrit_agriknowledge_oai_affrc_go_jp_01_00970565
jstage_primary_article_konchubiotec_93_1_93_1_013_article_char_ja
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Sanshi, konchū baiotekku
PublicationTitleAlternate 蚕糸・昆虫バイオテック
PublicationYear 2024
Publisher 一般社団法人 日本蚕糸学会
Publisher_xml – name: 一般社団法人 日本蚕糸学会
References Andersen, SO (2000) Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochem. Mol. Biol. 30: 569-577.
Tang, L, Liang, J, Zhan, Z, Xiang, Z and He, N (2010) Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 40: 228-234.
Rebers, JE and Riddiford, LM (1988) Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J. Mol. Biol. 203: 411-423.
Andersen, SO, Hojrup, P and Roepstorff, P (1995) Insect cuticular proteins. Insect Biochem. Mol. Biol. 25: 153-176.
Togawa, T, Dunn, WA, Emmons, AC, Nagao, J and Willis, JH (2008) Developmental expression patterns of cuticular protein genes with the R&R Consensus from Anopheles gambiae. Insect Biochem. Mol. Biol. 38: 508-519.
Jasrapuria, S, Arakane, Y, Osman, G, Kramer, KJ, Beeman, RW and Muthukrishnan, S (2010) Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem. Mol. Biol. 40: 214-227.
Wright, HT, Sandrasegaram, G and Wright, CS (1991) Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin. J. Mol. Evol. 33: 283-294.
Nisole, A, Stewart, D, Bowman, S, Zhang, D, Krell, PJ, Doucet, D and Cusson, M (2010) Cloning and characterization of a Gasp homolog from the spruce budworm, Choristoneura fumiferana, and its putative role in cuticle formation. J. Insect Physiol. 56: 1427-1435.
Graham, GJ (1995) Tandem genes and clustered genes. J. Theor. Biol. 175: 71-87.
Ikeya, T, Persson, P, Kono, M and Watanabe, T (2001) The DD5 gene of the decapod crustacean Penaeus japonicus encodes a putative exoskeletal protein with a novel tandem repeat structure. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 128: 379-388.
Klowden, MJ (2007) Physiological systems in insects. Elsevier.
Futahashi, R, Okamoto, S, Kawasaki, H, Zhong, YS, Iwanaga, M, Mita, K and Fujiwara, H (2008) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 38: 1138-1146.
Hamodrakas, SJ, Willis, JH and Iconomidou, VA (2002) A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem. Mol. Biol. 32: 1577-1583.
Barry, MK, Triplett, AA and Christensen, AC (1999) A peritrophin-like protein expressed in the embryonic tracheae of Drosophila melanogaster. Insect Biochem. Mol. Biol. 29: 319-327.
Guan, X, Middlebrooks, BW, Alexander, S and Wasserman, SA (2006) Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 103: 16794-16799.
Togawa, T, Augustine Dunn, W, Emmons, AC and Willis, JH (2007) CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochem. Mol. Biol. 37: 675-688.
Asano, T, Seto, Y, Hashimoto, K and Kurushima, H (2019) Mini-review an insect-specific system for terrestrialization: Laccasemediated cuticle formation. Insect Biochem. Mol. Biol. 108: 61-70.
He, N, Botelho, JM, McNall, RJ, Belozerov, V, Dunn, WA, Mize, T, Orlando, R and Willis, JH (2007) Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem. Mol. Biol. 37: 135-146.
Dittmer, NT, Hiromasa, Y, Tomich, JM, Lu, N, Beeman, RW, Kramer, KJ and Kanost, MR (2012) Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum. J. Proteome Res. 11: 269-278.
Magkrioti, CK, Spyropoulos, IC, Iconomidou, VA, Willis, JH and Hamodrakas, SJ (2004) cuticleDB: a relational database of Arthropod cuticular proteins. BMC Bioinformatics 5: 138.
Willis, JH, Iconomidou, VA, Smith, RF and Hamodrakas, SJ (2005) Cuticular proteins. In: Comprehensive Molecular Insect Science (Gilbert, LI, Iatrou, K and Gill, SS, eds.). Vol. 4, pp. 79-109. Elsevier Ltd., Oxford.
Cornman, RS, Togawa, T, Dunn, WA, He, N, Emmons, AC and Willis, JH (2008) Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. BMC Genomics 9: 22.
Noh, MY, Muthukrishnan S, Kramer, KJ and Arakane, Y (2016) Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 17: 1-9.
Iijima, M, Hashimoto, T, Matsuda, Y, Nagai, T, Yamano, Y, Ichi, T, Osaki, T and Kawabata, S (2005) Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. FEBS J. 272: 4774-4786.
Cornman, RS (2009) Molecular evolution of Drosophila cuticular protein genes. PLoS One 4: e8345.
Andersen, SO (1998) Amino acid sequence studies on endocuticular proteins from the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 28: 421-434.
Tetreau, G, Dittmer, NT, Cao, X, Agrawal, S, Chen, YR, Muthukrishnan, S, Haobo, J, Blissard, GW, Kanost, MR and Wang, P (2015) Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochem. Mol. Biol. 62: 127-141.
Ohkubo, S, Shintaku, T, Mine, S, Yamamoto, DS and Togawa, T (2023) Mosquitoes Possess Specialized Cuticular Proteins That Are Evolutionarily Related to the Elastic Protein Resilin. Insects 14: 941.
Willis, JH, Papandreou, NC, Iconomidou, VA and Hamodrakas, SJ (2012) Cuticular Proteins. In: Insect Molecular Biology and Biochemistry (Gilbert, LI, ed., pp. 134-166. Academic Press, Cambridge.
Zhou, Y, Badgett, MJ, Orlando, R and Willis, JH (2019) Proteomics reveals localization of cuticular proteins in Anopheles gambiae. Insect Biochem. Mol. Biol. 104: 91-105.
Cornman, RS and Willis, JH (2009) Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol. Biol. 18: 607-622.
Iconomidou, VA, Willis, JH and Hamodrakas, SJ (2005) Unique features of the structural model of ʻhardʼ cuticle proteins: implications for chitin-protein interactions and cross-linking in cuticle. Insect Biochem. Mol. Biol. 35: 553-560.
Willis, JH (2010) Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem. Mol. Biol. 40: 189-204.
Shen, Z and Jacobs-Lorena, M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J. Biol. Chem. 273: 17665-17670.
Tamura, K, Stecher, G and Kumar, S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38: 3022-3027.
Nakato, H, Takekoshi, M, Togawa, T, Izumi, S and Tomino, S (1997) Purification and cDNA cloning of evolutionally conserved larval cuticle proteins of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 27: 701-709.
Andersen, SO, Rafn, K and Roepstorff, P (1997) Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor. Insect Biochem. Mol. Biol. 27: 121-131.
Rebers, JE and Willis, JH (2001) A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem. Mol. Biol. 31: 1083-1093.
Behr, M and Hoch, M (2005) Identification of the novel evolutionary conserved obstructor multigene family in invertebrates. FEBS Lett. 579: 6827-6833.
Togawa, T, Nakato, H and Izumi, S (2004) Analysis of the chitin recognition mechanism of cuticle proteins from the soft cuticle of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 34: 1059-1067.
Zhou, Y, Badgett, MJ, Bowen, JH, Vannini, L, Orlando, R and Willis, JH (2016) Distribution of cuticular proteins in different structures of adult Anopheles gambiae. Insect Biochem. Mol. Biol. 75: 45-57.
Komori, N, Usukura, J and Matsumoto, H (1992) Drosocrystallin, a major 52 kDa glycoprotein of the Drosophila melanogaster corneal lens. Purification, biochemical characterization, and subcellular localization. J. Cell Sci. 102: 191-201.
Qiao, L, Xiong, G, Wang, RX, He, SZ, Chen, J, Tong, XL, Hu, H, Li, CL, Gai, TT, Xin, YQ, Liu, XF, Chen, B, Xiang, ZH, Lu, C and Dai, FY (2014) Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics 196: 1103-1115.
Cornman, RS and Willis, JH (2008) Extensive gene amplification and concerted evolution within the CPR family of cuticular proteins in mosquitoes. Insect Biochem. Mol. Biol. 38: 661-676.
Gullan, PJ and Cranston, PS (2014) The insects: an outline of entomology, fifth edition edn. Wiley.
Karouzou, MV, Spyropoulos, Y, Iconomidou, VA, Cornman, RS, Hamodrakas, SJ and Willis, JH (2007) Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem. Mol. Biol. 37: 754-760.
Dittmer, NT, Tetreau, G, Cao, X, Jiang, H, Wang, P and Kanost, MR (2015) Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 62: 100-113.
Suetake, T, Tsuda, S, Kawabata, S, Miura, K, Iwanaga, S, Hikichi, K, Nitta, K and Kawano, K (2000) Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J. Biol. Chem. 275: 17929-17932.
Locke, M (2001) The Wigglesworth Lecture: Insects for studying fundamental problems in biology. J. Insect Physiol. 47: 495-507.
Arakane, Y, Zhu, Q, Matsumiya, M, Muthukrishnan, S and Kramer, KJ (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem. Mol. Biol. 33: 631-648.
Janssens, H and Gehring, WJ (1999) Isolation and characterization of drosocrystallin, a lens crystallin gene of Drosophila melanogaster. Dev Biol 207: 204-214.
References_xml – reference: Barry, MK, Triplett, AA and Christensen, AC (1999) A peritrophin-like protein expressed in the embryonic tracheae of Drosophila melanogaster. Insect Biochem. Mol. Biol. 29: 319-327.
– reference: Rebers, JE and Willis, JH (2001) A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem. Mol. Biol. 31: 1083-1093.
– reference: Futahashi, R, Okamoto, S, Kawasaki, H, Zhong, YS, Iwanaga, M, Mita, K and Fujiwara, H (2008) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 38: 1138-1146.
– reference: He, N, Botelho, JM, McNall, RJ, Belozerov, V, Dunn, WA, Mize, T, Orlando, R and Willis, JH (2007) Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem. Mol. Biol. 37: 135-146.
– reference: Ohkubo, S, Shintaku, T, Mine, S, Yamamoto, DS and Togawa, T (2023) Mosquitoes Possess Specialized Cuticular Proteins That Are Evolutionarily Related to the Elastic Protein Resilin. Insects 14: 941.
– reference: Locke, M (2001) The Wigglesworth Lecture: Insects for studying fundamental problems in biology. J. Insect Physiol. 47: 495-507.
– reference: Magkrioti, CK, Spyropoulos, IC, Iconomidou, VA, Willis, JH and Hamodrakas, SJ (2004) cuticleDB: a relational database of Arthropod cuticular proteins. BMC Bioinformatics 5: 138.
– reference: Willis, JH, Papandreou, NC, Iconomidou, VA and Hamodrakas, SJ (2012) Cuticular Proteins. In: Insect Molecular Biology and Biochemistry (Gilbert, LI, ed., pp. 134-166. Academic Press, Cambridge.
– reference: Andersen, SO, Rafn, K and Roepstorff, P (1997) Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor. Insect Biochem. Mol. Biol. 27: 121-131.
– reference: Wright, HT, Sandrasegaram, G and Wright, CS (1991) Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin. J. Mol. Evol. 33: 283-294.
– reference: Hamodrakas, SJ, Willis, JH and Iconomidou, VA (2002) A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem. Mol. Biol. 32: 1577-1583.
– reference: Tang, L, Liang, J, Zhan, Z, Xiang, Z and He, N (2010) Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 40: 228-234.
– reference: Willis, JH, Iconomidou, VA, Smith, RF and Hamodrakas, SJ (2005) Cuticular proteins. In: Comprehensive Molecular Insect Science (Gilbert, LI, Iatrou, K and Gill, SS, eds.). Vol. 4, pp. 79-109. Elsevier Ltd., Oxford.
– reference: Togawa, T, Augustine Dunn, W, Emmons, AC and Willis, JH (2007) CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochem. Mol. Biol. 37: 675-688.
– reference: Nakato, H, Takekoshi, M, Togawa, T, Izumi, S and Tomino, S (1997) Purification and cDNA cloning of evolutionally conserved larval cuticle proteins of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 27: 701-709.
– reference: Andersen, SO (1998) Amino acid sequence studies on endocuticular proteins from the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 28: 421-434.
– reference: Shen, Z and Jacobs-Lorena, M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J. Biol. Chem. 273: 17665-17670.
– reference: Cornman, RS and Willis, JH (2009) Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol. Biol. 18: 607-622.
– reference: Karouzou, MV, Spyropoulos, Y, Iconomidou, VA, Cornman, RS, Hamodrakas, SJ and Willis, JH (2007) Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem. Mol. Biol. 37: 754-760.
– reference: Cornman, RS, Togawa, T, Dunn, WA, He, N, Emmons, AC and Willis, JH (2008) Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. BMC Genomics 9: 22.
– reference: Noh, MY, Muthukrishnan S, Kramer, KJ and Arakane, Y (2016) Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 17: 1-9.
– reference: Zhou, Y, Badgett, MJ, Bowen, JH, Vannini, L, Orlando, R and Willis, JH (2016) Distribution of cuticular proteins in different structures of adult Anopheles gambiae. Insect Biochem. Mol. Biol. 75: 45-57.
– reference: Dittmer, NT, Hiromasa, Y, Tomich, JM, Lu, N, Beeman, RW, Kramer, KJ and Kanost, MR (2012) Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum. J. Proteome Res. 11: 269-278.
– reference: Andersen, SO (2000) Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochem. Mol. Biol. 30: 569-577.
– reference: Behr, M and Hoch, M (2005) Identification of the novel evolutionary conserved obstructor multigene family in invertebrates. FEBS Lett. 579: 6827-6833.
– reference: Suetake, T, Tsuda, S, Kawabata, S, Miura, K, Iwanaga, S, Hikichi, K, Nitta, K and Kawano, K (2000) Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J. Biol. Chem. 275: 17929-17932.
– reference: Iijima, M, Hashimoto, T, Matsuda, Y, Nagai, T, Yamano, Y, Ichi, T, Osaki, T and Kawabata, S (2005) Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. FEBS J. 272: 4774-4786.
– reference: Nisole, A, Stewart, D, Bowman, S, Zhang, D, Krell, PJ, Doucet, D and Cusson, M (2010) Cloning and characterization of a Gasp homolog from the spruce budworm, Choristoneura fumiferana, and its putative role in cuticle formation. J. Insect Physiol. 56: 1427-1435.
– reference: Cornman, RS and Willis, JH (2008) Extensive gene amplification and concerted evolution within the CPR family of cuticular proteins in mosquitoes. Insect Biochem. Mol. Biol. 38: 661-676.
– reference: Qiao, L, Xiong, G, Wang, RX, He, SZ, Chen, J, Tong, XL, Hu, H, Li, CL, Gai, TT, Xin, YQ, Liu, XF, Chen, B, Xiang, ZH, Lu, C and Dai, FY (2014) Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics 196: 1103-1115.
– reference: Tetreau, G, Dittmer, NT, Cao, X, Agrawal, S, Chen, YR, Muthukrishnan, S, Haobo, J, Blissard, GW, Kanost, MR and Wang, P (2015) Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochem. Mol. Biol. 62: 127-141.
– reference: Willis, JH (2010) Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem. Mol. Biol. 40: 189-204.
– reference: Iconomidou, VA, Willis, JH and Hamodrakas, SJ (2005) Unique features of the structural model of ʻhardʼ cuticle proteins: implications for chitin-protein interactions and cross-linking in cuticle. Insect Biochem. Mol. Biol. 35: 553-560.
– reference: Tamura, K, Stecher, G and Kumar, S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38: 3022-3027.
– reference: Dittmer, NT, Tetreau, G, Cao, X, Jiang, H, Wang, P and Kanost, MR (2015) Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 62: 100-113.
– reference: Komori, N, Usukura, J and Matsumoto, H (1992) Drosocrystallin, a major 52 kDa glycoprotein of the Drosophila melanogaster corneal lens. Purification, biochemical characterization, and subcellular localization. J. Cell Sci. 102: 191-201.
– reference: Togawa, T, Nakato, H and Izumi, S (2004) Analysis of the chitin recognition mechanism of cuticle proteins from the soft cuticle of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 34: 1059-1067.
– reference: Andersen, SO, Hojrup, P and Roepstorff, P (1995) Insect cuticular proteins. Insect Biochem. Mol. Biol. 25: 153-176.
– reference: Asano, T, Seto, Y, Hashimoto, K and Kurushima, H (2019) Mini-review an insect-specific system for terrestrialization: Laccasemediated cuticle formation. Insect Biochem. Mol. Biol. 108: 61-70.
– reference: Klowden, MJ (2007) Physiological systems in insects. Elsevier.
– reference: Arakane, Y, Zhu, Q, Matsumiya, M, Muthukrishnan, S and Kramer, KJ (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem. Mol. Biol. 33: 631-648.
– reference: Cornman, RS (2009) Molecular evolution of Drosophila cuticular protein genes. PLoS One 4: e8345.
– reference: Togawa, T, Dunn, WA, Emmons, AC, Nagao, J and Willis, JH (2008) Developmental expression patterns of cuticular protein genes with the R&R Consensus from Anopheles gambiae. Insect Biochem. Mol. Biol. 38: 508-519.
– reference: Zhou, Y, Badgett, MJ, Orlando, R and Willis, JH (2019) Proteomics reveals localization of cuticular proteins in Anopheles gambiae. Insect Biochem. Mol. Biol. 104: 91-105.
– reference: Janssens, H and Gehring, WJ (1999) Isolation and characterization of drosocrystallin, a lens crystallin gene of Drosophila melanogaster. Dev Biol 207: 204-214.
– reference: Jasrapuria, S, Arakane, Y, Osman, G, Kramer, KJ, Beeman, RW and Muthukrishnan, S (2010) Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem. Mol. Biol. 40: 214-227.
– reference: Ikeya, T, Persson, P, Kono, M and Watanabe, T (2001) The DD5 gene of the decapod crustacean Penaeus japonicus encodes a putative exoskeletal protein with a novel tandem repeat structure. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 128: 379-388.
– reference: Graham, GJ (1995) Tandem genes and clustered genes. J. Theor. Biol. 175: 71-87.
– reference: Rebers, JE and Riddiford, LM (1988) Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J. Mol. Biol. 203: 411-423.
– reference: Guan, X, Middlebrooks, BW, Alexander, S and Wasserman, SA (2006) Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 103: 16794-16799.
– reference: Gullan, PJ and Cranston, PS (2014) The insects: an outline of entomology, fifth edition edn. Wiley.
SSID ssj0056937
ssib031740849
ssib001145747
ssib007876050
Score 2.3401132
SourceID affrit
jstage
SourceType Open Access Repository
Publisher
StartPage 1_013
Title 多様なクチクラを構成する多様なクチクラタンパク質
URI https://www.jstage.jst.go.jp/article/konchubiotec/93/1/93_1_013/_article/-char/ja
https://agriknowledge.affrc.go.jp/RN/2010951402
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 蚕糸・昆虫バイオテック, 2024, Vol.93(1), pp.1_013-1_020
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQw0CrlAgfEU5SXesAnlJLEjmMfnW2qFUhISK3Um5Vks6V7aKtVe-ltdy9IvQCnwhmpohcO_QA-JmLFZzDjxEsKi0RRpZU1GduTscexZ7yeMSFP8ZqNMo9CL4e1x-OlDDxZsMxjfVhQSqEwyByetngluhv8xWa0uXDluHVq6WA_XykO5_qV_I9UAQdyRS_ZC0h2RhQQAIN8IQUJQ_pPMqZpRDWnStNUUB1TJWnKQDekWlsgpHrNAhb5G0arBqPCprpMEJCSKr-ho1wZzLqMdyUOk7AGUO3CEvFatzVmRMJLVUTTGHMT6ShYboENKWwZRXXiaPqOJneAdrwJB7DZe92gc00UCCTQxFUcgPYhpYlqb5CEv7ZGacqRKekjF9B5uoOcAh2oBFVVQjVDToF3bATgNfyeWeahXGSBjq32Z0uBoVWqha3WgdzWGiJhwPtRE0e3dDjuYSy-9sJTXw157gOrV5HA-LWDbqOSwLP1GJyz3nG79wK2RPHmIN_GyB4riq20CJyLJd6MVNMubxQzQZ1AJeOKoNOfGYDlcTWM4wAPy7583fp_NeBR2xCFaR_s4tnMD0op9yUa9rVOFMFHb685cl3T-Ooj-8_nMg8KYdbvD7fR3BuAneTOWFq1b_0mudHYa8u65vcWWRhkt8l1vTVsYtaUd0j3--dP05PjanRajb9Wk5FNv1TjD9OTo-nbd9XoYzU--kuZb9XkrJq8h8cfZ6d3ycZaut7pes0FJV6GMZy8uCgEDwKWhWWgMpjcWM7KSIWliDLV9_O44KxXFoHfiwuZ8ULyXEnJehggyRdgHNwjizu7O-V9sgyGAe9DP_WYhNkxy7I4ZDETPYwlJYVSS8Sv-8Nk0MLZfrux0eEhozBbu2awB11n0DULKEVLRNc9Z_bqwDXm4uJ_cAk0HpJr-FnW-5aPyOL-8KB8DJr8fv7EDqqfauvOKg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%9A%E6%A7%98%E3%81%AA%E3%82%AF%E3%83%81%E3%82%AF%E3%83%A9%E3%82%92%E6%A7%8B%E6%88%90%E3%81%99%E3%82%8B%E5%A4%9A%E6%A7%98%E3%81%AA%E3%82%AF%E3%83%81%E3%82%AF%E3%83%A9%E3%82%BF%E3%83%B3%E3%83%91%E3%82%AF%E8%B3%AA&rft.jtitle=%E8%9A%95%E7%B3%B8%E3%83%BB%E6%98%86%E8%99%AB%E3%83%90%E3%82%A4%E3%82%AA%E3%83%86%E3%83%83%E3%82%AF&rft.au=%E5%A4%96%E5%B7%9D%2C+%E5%BE%B9&rft.date=2024&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E8%9A%95%E7%B3%B8%E5%AD%A6%E4%BC%9A&rft.issn=1881-0551&rft.eissn=1884-7943&rft.volume=93&rft.issue=1&rft.spage=1_013&rft.epage=1_020&rft_id=info:doi/10.11416%2Fkonchubiotec.93.1_013&rft.externalDocID=article_konchubiotec_93_1_93_1_013_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-0551&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-0551&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-0551&client=summon