Shape-Constrained Statistical Inference

Statistical models defined by shape constraints are a valuable alternative to parametric models or nonparametric models defined in terms of quantitative smoothness constraints. While the latter two classes of models are typically difficult to justify a priori, many applications involve natural shape...

Full description

Saved in:
Bibliographic Details
Published inAnnual review of statistics and its application Vol. 11; no. 1; pp. 373 - 391
Main Author Dümbgen, Lutz
Format Journal Article
LanguageEnglish
Published Annual Reviews 22.04.2024
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Statistical models defined by shape constraints are a valuable alternative to parametric models or nonparametric models defined in terms of quantitative smoothness constraints. While the latter two classes of models are typically difficult to justify a priori, many applications involve natural shape constraints, for instance, monotonicity of a density or regression function. We review some of the history of this subject and recent developments, with special emphasis on algorithmic aspects, adaptivity, honest confidence bands for shape-constrained curves, and distributional regression, i.e., inference about the conditional distribution of a real-valued response given certain covariates.
AbstractList Statistical models defined by shape constraints are a valuable alternative to parametric models or nonparametric models defined in terms of quantitative smoothness constraints. While the latter two classes of models are typically difficult to justify a priori, many applications involve natural shape constraints, for instance, monotonicity of a density or regression function. We review some of the history of this subject and recent developments, with special emphasis on algorithmic aspects, adaptivity, honest confidence bands for shape-constrained curves, and distributional regression, i.e., inference about the conditional distribution of a real-valued response given certain covariates.
Author Dümbgen, Lutz
AuthorAffiliation Institute of Mathematical Statistics and Actuarial Science, Department of Mathematics and Statistics, University of Bern, Bern, Switzerland; email
lutz.duembgen@unibe.ch
AuthorAffiliation_xml – name: Institute of Mathematical Statistics and Actuarial Science, Department of Mathematics and Statistics, University of Bern, Bern, Switzerland; email
– name: lutz.duembgen@unibe.ch
Author_xml – sequence: 1
  givenname: Lutz
  surname: Dümbgen
  fullname: Dümbgen, Lutz
BookMark eNpF0EFLAzEQBeAgFay1_6E3vUQzkzSbHGWptlDwUAVvYczO4sqals2q-O9t2RZP85jDg_ddilHaJhbiBtQtgLF3lNJXx98y99Q3uW9ilkprhSAVGK-LMzFGjVY6Da-jU0bvLsQ05w-lFIAyc49jcb15px3Lcpty31GTuJptTqXUzlap5o5T5CtxXlObeXq8E_HysHgul3L99Lgq79eS0GIv3zxAzUhV4ZDJY6w82f1zjhxJsYm2ctFbh4YYClc4o1x0WJs6alOhx4lYDL2HidTuRzb8k8Ouaz6p-w2gwgEgHAHCP0AYAMIAgH9XMFf2
ContentType Journal Article
DBID ZYWBE
DOI 10.1146/annurev-statistics-033021-014937
DatabaseName Annual Reviews Subscribe to Open for non-subscribers
DatabaseTitleList
DeliveryMethod no_fulltext_linktorsrc
Discipline Mathematics
EISSN 2326-831X
EndPage 391
ExternalDocumentID n/a
GroupedDBID -QD
0R~
1KX
4.4
51A
AAGWO
AALUV
AARJV
AAWJP
AAZCL
ABDOG
ABGCZ
ABGRM
ABJNI
ABJZP
ABMRD
ABVYV
ACGFS
ACQCJ
ACRLM
ADCZP
ADGCW
ADGWB
ADLON
ADNJN
AEAIQ
AEKBM
AENEX
AEWIE
AEWNI
AFCZG
AFERR
AGBCJ
AHKZM
AICBU
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AOUBY
AQQLW
ATAUN
BCFVH
BFVWR
BHKIP
BJPMW
BMYRD
BVIZK
EBS
EJD
F-Q
F-S
F-T
F-U
F-V
F-X
F-Y
F-Z
F.1
FT0
FU.
FV.
FW-
FXG
HZ~
M22
O9-
RAR
ZYWBE
ID FETCH-LOGICAL-a262t-b911fe2ad782ea92cd9a6b9152eca0e4c6d8c96824ae17878408c82f4fc34d292
IEDL.DBID ZYWBE
ISSN 2326-8298
IngestDate Thu Oct 03 04:29:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a262t-b911fe2ad782ea92cd9a6b9152eca0e4c6d8c96824ae17878408c82f4fc34d292
OpenAccessLink http://dx.doi.org/10.1146/annurev-statistics-033021-014937
PageCount 19
ParticipantIDs annualreviews_primary_10_1146_annurev_statistics_033021_014937
PublicationCentury 2000
PublicationDate 2024-04-22
PublicationDateYYYYMMDD 2024-04-22
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-22
  day: 22
PublicationDecade 2020
PublicationTitle Annual review of statistics and its application
PublicationYear 2024
Publisher Annual Reviews
Publisher_xml – name: Annual Reviews
SSID ssj0001104592
Score 2.2868161
Snippet Statistical models defined by shape constraints are a valuable alternative to parametric models or nonparametric models defined in terms of quantitative...
SourceID annualreviews
SourceType Publisher
StartPage 373
SubjectTerms adaptivity
convexity
distributional regression
honest confidence region
log-concavity
monotonicity
regression quantile
Title Shape-Constrained Statistical Inference
URI http://dx.doi.org/10.1146/annurev-statistics-033021-014937
Volume 11
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UguhBfOKbHgS9LLTT3c3uRVCxVKFearF6CZPsBE9pweLvd_KofZwEr4FMyCyz833ZzPcBXHEh6EEYVMcTKc2JUT4ypDiQwA_WwZQSG_0X2xvq55EZzf-qXDnBX7BjUcWATaVdrFpCwrFgwVqa6zo0MLJeirLx8f52v_CFRZiGKV2RBTVY5dC7Tbj5a9hVVdCFrtPdhZ0aLjbvqvXdgzXO92G7_6u1-nUA14NPmrAqnDdLvwcOzcHsaXLr02yi7xCG3cfXh56q7Q8UocWpSmQfyhgpSBNn8pgGT1YuGuSUJI2pDS711qEmbkvdCVVzqcNMZ2lHB_R4BBv5OOdjaApOSLTEabWzgjNl3ukgQKNtmCNNtnUCt0svG08qqYt4eWz5O55nK66yFVfZOv1vgDPYQoELxTkN4jk0Mik-vpB-P00u64X9AZ5iqVU
linkProvider Annual Reviews
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VVmI5IFaxkwMILhbt1EnjA0hsVUuXS1tRuAQ3nohTqdQKxBfyW4yzQMsJCXGNlHE8nmTeiz1vAI7ICnpoNKKstBaSBq5QFVcLMprhB0njxhIbrbZX68m7vtvPwUdWC2OPVc6occa7-fbYNn-Dz1L_jjOR26xXi7DVN4mwsSgyQ0dLkSVn3vS0ZYPe35jLjc_rN7zwx4jV2-51TaTtBoRGDydiwO99RKgNJ03SCkOjtMcXXaRQ82OHnvFD5fkoNZU4zpka-aGPkYzCsjSokO3OQcGmXJmHwuPD_dXU7x6mPW7copkhjCd8VP48nP52Gj8lSqdSYHUFllPs6lwmwbYKORquwVLrS_h1vA4nnWc9ImHbgMbNJ8g4nWw0vrWelRduQO9fnLMJ-eHLkLbAYdAykGynWIosgYuULw2jnpJLVJHaK27Dxcxkg1GiuxHM1lC_Bt_eChJvBYm3dv5q4BAWat1WM2jW241dWETGMXYDCXEPChGHH-0zEJkMDtJFduDpv-PqE-0T8rs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB7UQtGD-MS3Ofi6LG3HTUwOKmotrbVFUPFxiZvsBAWtxVbFH-1_cDYPbT0J0msgs8xkduebzM43AGtkCD0UarHtKSUkBbbwdmwlSCuGHyS1HVNsNJpO9VKeXNvXQ_CZ9cKYa5V9bJxxNd9c2-YzuJDat5OR3GazWoTpvkmIjUWRM3Q0KbLkyLsfvqj3R_aJ7ssrbTw9PFHMRdRTHC60dZT2gdTp450zvs5urczusY5YOb44qop0KIFQ6GBXBHw6RIRKc2gl5WGoPeXwQxspVKxc6Gg39BwXpaIS7wZOoNzQxUhG4bbU6CHLHYacafDkTZi7vbk67PkpxMmRHQ9yZqDjCBc9Nw9bf1X2N5FpT6CsTMB4inCtg8QlJ2GIWlMw1vimh-1Mw-b5vWqTMMNC4xEVpK3zbDV-tZY1Ic7A5UCMMwsjrecWzYHF0CaQLKdYikyaF3mu1IyNSjbRjlROcR72-pT12wk7h9_faf3m_1jLT6zlJ9Za-K-AVciflSv-aa1ZX4RRZLBjqkyIS5CL2EdpmdFKN1hJv7EFd4N2qy9OLAF0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape-Constrained+Statistical+Inference&rft.jtitle=Annual+review+of+statistics+and+its+application&rft.au=D%C3%BCmbgen%2C+Lutz&rft.date=2024-04-22&rft.pub=Annual+Reviews&rft.issn=2326-8298&rft.eissn=2326-831X&rft.volume=11&rft.issue=1&rft.spage=373&rft.epage=391&rft_id=info:doi/10.1146%2Fannurev-statistics-033021-014937&rft.externalDBID=ZYWBE&rft.externalDocID=n%2Fa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-8298&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-8298&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-8298&client=summon