Shape-Constrained Statistical Inference
Statistical models defined by shape constraints are a valuable alternative to parametric models or nonparametric models defined in terms of quantitative smoothness constraints. While the latter two classes of models are typically difficult to justify a priori, many applications involve natural shape...
Saved in:
Published in | Annual review of statistics and its application Vol. 11; no. 1; pp. 373 - 391 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Annual Reviews
22.04.2024
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Statistical models defined by shape constraints are a valuable alternative to parametric models or nonparametric models defined in terms of quantitative smoothness constraints. While the latter two classes of models are typically difficult to justify a priori, many applications involve natural shape constraints, for instance, monotonicity of a density or regression function. We review some of the history of this subject and recent developments, with special emphasis on algorithmic aspects, adaptivity, honest confidence bands for shape-constrained curves, and distributional regression, i.e., inference about the conditional distribution of a real-valued response given certain covariates. |
---|---|
AbstractList | Statistical models defined by shape constraints are a valuable alternative to parametric models or nonparametric models defined in terms of quantitative smoothness constraints. While the latter two classes of models are typically difficult to justify a priori, many applications involve natural shape constraints, for instance, monotonicity of a density or regression function. We review some of the history of this subject and recent developments, with special emphasis on algorithmic aspects, adaptivity, honest confidence bands for shape-constrained curves, and distributional regression, i.e., inference about the conditional distribution of a real-valued response given certain covariates. |
Author | Dümbgen, Lutz |
AuthorAffiliation | Institute of Mathematical Statistics and Actuarial Science, Department of Mathematics and Statistics, University of Bern, Bern, Switzerland; email lutz.duembgen@unibe.ch |
AuthorAffiliation_xml | – name: Institute of Mathematical Statistics and Actuarial Science, Department of Mathematics and Statistics, University of Bern, Bern, Switzerland; email – name: lutz.duembgen@unibe.ch |
Author_xml | – sequence: 1 givenname: Lutz surname: Dümbgen fullname: Dümbgen, Lutz |
BookMark | eNpF0EFLAzEQBeAgFay1_6E3vUQzkzSbHGWptlDwUAVvYczO4sqals2q-O9t2RZP85jDg_ddilHaJhbiBtQtgLF3lNJXx98y99Q3uW9ilkprhSAVGK-LMzFGjVY6Da-jU0bvLsQ05w-lFIAyc49jcb15px3Lcpty31GTuJptTqXUzlap5o5T5CtxXlObeXq8E_HysHgul3L99Lgq79eS0GIv3zxAzUhV4ZDJY6w82f1zjhxJsYm2ctFbh4YYClc4o1x0WJs6alOhx4lYDL2HidTuRzb8k8Ouaz6p-w2gwgEgHAHCP0AYAMIAgH9XMFf2 |
ContentType | Journal Article |
DBID | ZYWBE |
DOI | 10.1146/annurev-statistics-033021-014937 |
DatabaseName | Annual Reviews Subscribe to Open for non-subscribers |
DatabaseTitleList | |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2326-831X |
EndPage | 391 |
ExternalDocumentID | n/a |
GroupedDBID | -QD 0R~ 1KX 4.4 51A AAGWO AALUV AARJV AAWJP AAZCL ABDOG ABGCZ ABGRM ABJNI ABJZP ABMRD ABVYV ACGFS ACQCJ ACRLM ADCZP ADGCW ADGWB ADLON ADNJN AEAIQ AEKBM AENEX AEWIE AEWNI AFCZG AFERR AGBCJ AHKZM AICBU ALMA_UNASSIGNED_HOLDINGS AMTJG AOUBY AQQLW ATAUN BCFVH BFVWR BHKIP BJPMW BMYRD BVIZK EBS EJD F-Q F-S F-T F-U F-V F-X F-Y F-Z F.1 FT0 FU. FV. FW- FXG HZ~ M22 O9- RAR ZYWBE |
ID | FETCH-LOGICAL-a262t-b911fe2ad782ea92cd9a6b9152eca0e4c6d8c96824ae17878408c82f4fc34d292 |
IEDL.DBID | ZYWBE |
ISSN | 2326-8298 |
IngestDate | Thu Oct 03 04:29:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a262t-b911fe2ad782ea92cd9a6b9152eca0e4c6d8c96824ae17878408c82f4fc34d292 |
OpenAccessLink | http://dx.doi.org/10.1146/annurev-statistics-033021-014937 |
PageCount | 19 |
ParticipantIDs | annualreviews_primary_10_1146_annurev_statistics_033021_014937 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-22 |
PublicationDateYYYYMMDD | 2024-04-22 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Annual review of statistics and its application |
PublicationYear | 2024 |
Publisher | Annual Reviews |
Publisher_xml | – name: Annual Reviews |
SSID | ssj0001104592 |
Score | 2.2868161 |
Snippet | Statistical models defined by shape constraints are a valuable alternative to parametric models or nonparametric models defined in terms of quantitative... |
SourceID | annualreviews |
SourceType | Publisher |
StartPage | 373 |
SubjectTerms | adaptivity convexity distributional regression honest confidence region log-concavity monotonicity regression quantile |
Title | Shape-Constrained Statistical Inference |
URI | http://dx.doi.org/10.1146/annurev-statistics-033021-014937 |
Volume | 11 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UguhBfOKbHgS9LLTT3c3uRVCxVKFearF6CZPsBE9pweLvd_KofZwEr4FMyCyz833ZzPcBXHEh6EEYVMcTKc2JUT4ypDiQwA_WwZQSG_0X2xvq55EZzf-qXDnBX7BjUcWATaVdrFpCwrFgwVqa6zo0MLJeirLx8f52v_CFRZiGKV2RBTVY5dC7Tbj5a9hVVdCFrtPdhZ0aLjbvqvXdgzXO92G7_6u1-nUA14NPmrAqnDdLvwcOzcHsaXLr02yi7xCG3cfXh56q7Q8UocWpSmQfyhgpSBNn8pgGT1YuGuSUJI2pDS711qEmbkvdCVVzqcNMZ2lHB_R4BBv5OOdjaApOSLTEabWzgjNl3ukgQKNtmCNNtnUCt0svG08qqYt4eWz5O55nK66yFVfZOv1vgDPYQoELxTkN4jk0Mik-vpB-P00u64X9AZ5iqVU |
linkProvider | Annual Reviews |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VVmI5IFaxkwMILhbt1EnjA0hsVUuXS1tRuAQ3nohTqdQKxBfyW4yzQMsJCXGNlHE8nmTeiz1vAI7ICnpoNKKstBaSBq5QFVcLMprhB0njxhIbrbZX68m7vtvPwUdWC2OPVc6occa7-fbYNn-Dz1L_jjOR26xXi7DVN4mwsSgyQ0dLkSVn3vS0ZYPe35jLjc_rN7zwx4jV2-51TaTtBoRGDydiwO99RKgNJ03SCkOjtMcXXaRQ82OHnvFD5fkoNZU4zpka-aGPkYzCsjSokO3OQcGmXJmHwuPD_dXU7x6mPW7copkhjCd8VP48nP52Gj8lSqdSYHUFllPs6lwmwbYKORquwVLrS_h1vA4nnWc9ImHbgMbNJ8g4nWw0vrWelRduQO9fnLMJ-eHLkLbAYdAykGynWIosgYuULw2jnpJLVJHaK27Dxcxkg1GiuxHM1lC_Bt_eChJvBYm3dv5q4BAWat1WM2jW241dWETGMXYDCXEPChGHH-0zEJkMDtJFduDpv-PqE-0T8rs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB7UQtGD-MS3Ofi6LG3HTUwOKmotrbVFUPFxiZvsBAWtxVbFH-1_cDYPbT0J0msgs8xkduebzM43AGtkCD0UarHtKSUkBbbwdmwlSCuGHyS1HVNsNJpO9VKeXNvXQ_CZ9cKYa5V9bJxxNd9c2-YzuJDat5OR3GazWoTpvkmIjUWRM3Q0KbLkyLsfvqj3R_aJ7ssrbTw9PFHMRdRTHC60dZT2gdTp450zvs5urczusY5YOb44qop0KIFQ6GBXBHw6RIRKc2gl5WGoPeXwQxspVKxc6Gg39BwXpaIS7wZOoNzQxUhG4bbU6CHLHYacafDkTZi7vbk67PkpxMmRHQ9yZqDjCBc9Nw9bf1X2N5FpT6CsTMB4inCtg8QlJ2GIWlMw1vimh-1Mw-b5vWqTMMNC4xEVpK3zbDV-tZY1Ic7A5UCMMwsjrecWzYHF0CaQLKdYikyaF3mu1IyNSjbRjlROcR72-pT12wk7h9_faf3m_1jLT6zlJ9Za-K-AVciflSv-aa1ZX4RRZLBjqkyIS5CL2EdpmdFKN1hJv7EFd4N2qy9OLAF0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape-Constrained+Statistical+Inference&rft.jtitle=Annual+review+of+statistics+and+its+application&rft.au=D%C3%BCmbgen%2C+Lutz&rft.date=2024-04-22&rft.pub=Annual+Reviews&rft.issn=2326-8298&rft.eissn=2326-831X&rft.volume=11&rft.issue=1&rft.spage=373&rft.epage=391&rft_id=info:doi/10.1146%2Fannurev-statistics-033021-014937&rft.externalDBID=ZYWBE&rft.externalDocID=n%2Fa |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-8298&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-8298&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-8298&client=summon |