Concentration-Dependent Impact of Alkali Li Metal Doped Mesoporous TiO2 Electron Transport Layer on the Performance of CH3NH3PbI3 Perovskite Solar Cells

TiO2 is most commonly employed as an electron transport layer (ETL) in mesoscopic n–i–p perovskite solar cells (PSCs). However, the low electron mobility, low electrical conductivity, and high electronic trap states of TiO2 may have negative impacts on further enhancement of PSC performance. Metal d...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 123; no. 32; pp. 19376 - 19384
Main Authors Peter Amalathas, Amalraj, Landová, Lucie, Conrad, Brianna, Holovský, Jakub
Format Journal Article
LanguageEnglish
Published American Chemical Society 15.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TiO2 is most commonly employed as an electron transport layer (ETL) in mesoscopic n–i–p perovskite solar cells (PSCs). However, the low electron mobility, low electrical conductivity, and high electronic trap states of TiO2 may have negative impacts on further enhancement of PSC performance. Metal doping is an efficient way to improve the electronic properties of TiO2 films. In this work, we investigate the concentration-dependent impact of alkali lithium metal doping of the mesoporous TiO2 ETL on the performance of mesoscopic CH3NH3PbI3 PSCs. It was found that Li doping results in remarkable improvement in electrical conductivity and electron mobility and reduces the number of electronic trap states arising due to the oxygen vacancies within TiO2 lattice. Such enhancements led to an enhanced charge extraction and transport and reduced charge recombination rate at the perovskite/mesoporous TiO2 interface as revealed by steady-state photoluminescence (PL) and time-resolved PL (TRPL) spectra, and resulted in an increase in the V OC, J SC, and FF of the PSCs. Moreover, the J–V curve hysteresis behavior after Li doping was effectively suppressed due to the reduced charge accumulation and recombination at the TiO2/perovskite interface. Consequently, the device performance relies on the concentration of alkali lithium metal doping, and the power conversion efficiency (PCE) of the PSC was significantly improved from 13.64% to 17.59% with reduced the J–V curve hysteresis behavior for a Li doped mesoporous TiO2 layer with an optimized concentration of 30 mg/mL.
AbstractList TiO2 is most commonly employed as an electron transport layer (ETL) in mesoscopic n–i–p perovskite solar cells (PSCs). However, the low electron mobility, low electrical conductivity, and high electronic trap states of TiO2 may have negative impacts on further enhancement of PSC performance. Metal doping is an efficient way to improve the electronic properties of TiO2 films. In this work, we investigate the concentration-dependent impact of alkali lithium metal doping of the mesoporous TiO2 ETL on the performance of mesoscopic CH3NH3PbI3 PSCs. It was found that Li doping results in remarkable improvement in electrical conductivity and electron mobility and reduces the number of electronic trap states arising due to the oxygen vacancies within TiO2 lattice. Such enhancements led to an enhanced charge extraction and transport and reduced charge recombination rate at the perovskite/mesoporous TiO2 interface as revealed by steady-state photoluminescence (PL) and time-resolved PL (TRPL) spectra, and resulted in an increase in the V OC, J SC, and FF of the PSCs. Moreover, the J–V curve hysteresis behavior after Li doping was effectively suppressed due to the reduced charge accumulation and recombination at the TiO2/perovskite interface. Consequently, the device performance relies on the concentration of alkali lithium metal doping, and the power conversion efficiency (PCE) of the PSC was significantly improved from 13.64% to 17.59% with reduced the J–V curve hysteresis behavior for a Li doped mesoporous TiO2 layer with an optimized concentration of 30 mg/mL.
TiO₂ is most commonly employed as an electron transport layer (ETL) in mesoscopic n–i–p perovskite solar cells (PSCs). However, the low electron mobility, low electrical conductivity, and high electronic trap states of TiO₂ may have negative impacts on further enhancement of PSC performance. Metal doping is an efficient way to improve the electronic properties of TiO₂ films. In this work, we investigate the concentration-dependent impact of alkali lithium metal doping of the mesoporous TiO₂ ETL on the performance of mesoscopic CH₃NH₃PbI₃ PSCs. It was found that Li doping results in remarkable improvement in electrical conductivity and electron mobility and reduces the number of electronic trap states arising due to the oxygen vacancies within TiO₂ lattice. Such enhancements led to an enhanced charge extraction and transport and reduced charge recombination rate at the perovskite/mesoporous TiO₂ interface as revealed by steady-state photoluminescence (PL) and time-resolved PL (TRPL) spectra, and resulted in an increase in the VOC, JSC, and FF of the PSCs. Moreover, the J–V curve hysteresis behavior after Li doping was effectively suppressed due to the reduced charge accumulation and recombination at the TiO₂/perovskite interface. Consequently, the device performance relies on the concentration of alkali lithium metal doping, and the power conversion efficiency (PCE) of the PSC was significantly improved from 13.64% to 17.59% with reduced the J–V curve hysteresis behavior for a Li doped mesoporous TiO₂ layer with an optimized concentration of 30 mg/mL.
Author Holovský, Jakub
Landová, Lucie
Conrad, Brianna
Peter Amalathas, Amalraj
AuthorAffiliation Institute of Physics
Czech Academy of Sciences
Centre for Advanced Photovoltaics, Faculty of Electrical Engineering
AuthorAffiliation_xml – name: Institute of Physics
– name: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering
– name: Czech Academy of Sciences
Author_xml – sequence: 1
  givenname: Amalraj
  orcidid: 0000-0002-9252-1975
  surname: Peter Amalathas
  fullname: Peter Amalathas, Amalraj
  email: peterama@fel.cvut.cz
  organization: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering
– sequence: 2
  givenname: Lucie
  surname: Landová
  fullname: Landová, Lucie
  organization: Czech Academy of Sciences
– sequence: 3
  givenname: Brianna
  surname: Conrad
  fullname: Conrad, Brianna
  organization: Centre for Advanced Photovoltaics, Faculty of Electrical Engineering
– sequence: 4
  givenname: Jakub
  surname: Holovský
  fullname: Holovský, Jakub
  organization: Czech Academy of Sciences
BookMark eNo9UU1PAjEQbQwmInr32KMHF_tBu_RIFhQSFBLxvCllNi4s7doWE_-JP9cixNO8efMyX-8adayzgNAdJX1KGH3UJvS3rTF9tSaCC3GBulRxluUDITr_eJBfoesQtiRpCOVd9FM4a8BGr2PtbDaGFuwm5Xi2b7WJ2FV41Ox0U-N5jV8g6gaPXQubhINrnXeHgFf1guFJAyZ6Z_HKaxtSJeK5_gaPExU_AC_BV87vdZp2bFpM-euUL9czfqy4r7CrI-A312iPC2iacIMuK90EuD3HHnp_mqyKaTZfPM-K0TzTTLKYcQ5sA_lQMc4VNZTmcigol1wTJSEhJgdiDVqDYUpWVOVEVHlFqVHaDCXwHro_9W29-zxAiOW-DiZtoC2k40rGqWCKMUmS9OEkTb8ut-7gbVqspKQ8GlD-kcmA8mwA_wVYJHyA
ContentType Journal Article
DBID 7S9
L.6
DOI 10.1021/acs.jpcc.9b05355
DatabaseName AGRICOLA
AGRICOLA - Academic
DatabaseTitle AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 19384
ExternalDocumentID b141546635
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
7S9
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CUPRZ
GGK
L.6
ID FETCH-LOGICAL-a262t-33e2de78923391c1176851363a096e5132645beaaec296f19705f7f11c9ac86e3
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Fri Jul 11 04:41:40 EDT 2025
Thu Aug 27 13:43:28 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a262t-33e2de78923391c1176851363a096e5132645beaaec296f19705f7f11c9ac86e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9252-1975
PQID 2315292260
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2315292260
acs_journals_10_1021_acs_jpcc_9b05355
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-08-15
PublicationDateYYYYMMDD 2019-08-15
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0053013
Score 2.4709482
Snippet TiO2 is most commonly employed as an electron transport layer (ETL) in mesoscopic n–i–p perovskite solar cells (PSCs). However, the low electron mobility, low...
TiO₂ is most commonly employed as an electron transport layer (ETL) in mesoscopic n–i–p perovskite solar cells (PSCs). However, the low electron mobility, low...
SourceID proquest
acs
SourceType Aggregation Database
Publisher
StartPage 19376
SubjectTerms electrical conductivity
electron transfer
hysteresis
lithium
oxygen
photoluminescence
physical chemistry
porous media
solar cells
titanium dioxide
volatile organic compounds
Title Concentration-Dependent Impact of Alkali Li Metal Doped Mesoporous TiO2 Electron Transport Layer on the Performance of CH3NH3PbI3 Perovskite Solar Cells
URI http://dx.doi.org/10.1021/acs.jpcc.9b05355
https://www.proquest.com/docview/2315292260
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbxYNe_G3EX6mJHodrux_0SAZkGEASIOG2dF2XIGQjbnjwL_HP9XUMScQDt6ZLuuW1az-vr31fhJ64aQqYek1DMMkMi4amwZVjQYdEDPCb0LhQUej1HX9svU7sySZNzt8IPiUvQma194WUNR7qXCT2PjqgTt3VjlbDG65nXRsGKltFkIEYLcstQ5L_taAXIpltTb7FitI-WUkTZUUiQn2QZFZb5mFNfm2nadzhY0_RcQmWuLEaCWdoTyXn6NBb67ldoG9P31BMyjS5RrNUv81xp7goidMYN-YzwHLcneKeAijHzXShIihnKVB6uszwaPpGcatUzsG_idFxVwC5Y6gCnMSDzV0E3ajns77PBmGH6SfpZ6b3i_FQu9TYU_N5donG7dbI841Sl8EQ1KG5wZiikXLrwIaME0kIuCw2YQ4T4A8pKAFk2aESQknKnZhw17RjNyZEciHrjmJXqJKkibpGWMsERzqjPmChBV3I65ZwBbyGOCoGlqmiZzBpUP5XWVCEzCkJikqwc1DauYoe150ZgFl10EMkCgwTAL_alANkmjc7tnWLjoCKuN44JvYdquQfS3UP5JGHD8WQ-wF4f9Ig
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigX3oiWl5HoMUts57E-cFhlW2Xp7lKpW6m34GQdqXSVVDhbBL-EK3-FX8bnNGkl4MClEjfLkSbWzHj8jcczQ_RG-b6G6fU9LQvpBSL3PWWiAAJZSsBvLsq2i8JsHqXHwfuT8GSDfvS5MFiEBSXbBvGvqwvwt27u03lRDFTuSpL07ygPzNcv8NLsu8kYIt0VYn9vkaRe10jA0yISjSelEUsTDwFmpOIF58DYIZeR1ADwBiOggjA3WptCqKjkKvbDMi45L5QuhpGRoHuLbgP7COffjZKj3tiH2B_yMnANoBoEcRcJ_duK3flX2D9sfnuQ7d-jn1csaN-vnA3WTT4ovv1WHfK_5tF9utvBaDa61PsHtGGqh7SV9N3rHtH3xOVjVl1RYG_c9fpt2KRNC2V1yUarMzghbHrKZgYuCBvX52aJsa3hk9RryxanHwTb6_oEsasy8Gyq4acwTAE8s8PrzAtHNEnlPJWH-US6L_WFdbfj7MhdILDErFb2MR3fCGOe0GZVV-YpMdcUeen6BwAEB9AcNQx0rPEbHpkSyG2bdiHCrLMiNmsfCAietZOQa9bJdZte9zqUga0uxKMrA8ZkQOuhUIDU_s4_0npFW-liNs2mk_nBM7oDPKjclTkPn9Nm83ltXgBzNfnLVusZfbxpFfoFW6QxuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIgEX_ivK7yDRY5bYzs_6wGGV7WqXbpeV2kq9BcdxpNJVssJZEDwJL8Cr8FyMU6dIwIFLJW6WI02smfH4G49nBuCVDENFpjcMlNAiiHgRBtIkEQmkFAS_Ga-6LgqHi2R6Er09jU-34HufC0OLsETJdkF8t6vXZeUrDLDXbv7DWuuBLFxZkv4t5YH58pk8NftmNiax7nE-2T_OpoFvJhAonvA2EMLw0qRDAjRCMs0Y4eyYiUQoAvGGRoQM4sIoZTSXScVkGsZVWjGmpdLDxAiiew2uuyih8_FG2VFv8GPaI-IieE1gNYpSHw3924rdGajtH3a_O8wmd-DHJRu6Nyzng01bDPTX3ypE_vd8ugu3PZzG0YX-34MtU9-Hm1nfxe4BfMtcXmbtiwMHY9_zt8VZlx6KTYWj1Tk5Izg_w0NDrgiOm7UpaWwb8k2ajcXjs3cc932_ILwsB49zRf4K0hSBaFz-ysBwRLOpWEzFspgJ96X5ZN0tOR65iwTMzGplH8LJlTBmB7brpjaPAF1z5NL1ESAwHJH2yGGkUkW_YYmpCMHtwh6JMPfWxObdQwHO8m6S5Jp7ue7Cy16PcmKrC_Wo2hBjckLtMZcErcPH_0jrBdxYjif5fLY4eAK3CBZKd3PO4qew3X7cmGcEvdrieaf4CO-vWoN-ArJDNDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentration-Dependent+Impact+of+Alkali+Li+Metal+Doped+Mesoporous+TiO%E2%82%82+Electron+Transport+Layer+on+the+Performance+of+CH%E2%82%83NH%E2%82%83PbI%E2%82%83+Perovskite+Solar+Cells&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Peter+Amalathas%2C+Amalraj&rft.au=Landov%C3%A1%2C+Lucie&rft.au=Conrad%2C+Brianna&rft.au=Holovsk%C3%BD%2C+Jakub&rft.date=2019-08-15&rft.issn=1932-7455&rft.volume=123&rft.issue=32+p.19376-19384&rft.spage=19376&rft.epage=19384&rft_id=info:doi/10.1021%2Facs.jpcc.9b05355&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon