Advanced Structured Prediction

The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields includ...

Full description

Saved in:
Bibliographic Details
Main Authors Nowozin, Sebastian, Gehler, Peter V., Jancsary, Jeremy, Lampert, Christoph H.
Format eBook Book
LanguageEnglish
Published Cambridge, MA MIT Press 2014
The MIT Press
Edition1
SeriesNeural Information Processing series
Subjects
Online AccessGet full text
ISBN0262028379
9780262028370
DOI10.7551/mitpress/9969.001.0001

Cover

Abstract The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning. Sebastian Nowozin is a Researcher in the Machine Learning and Perception group (MLP) at Microsoft Research, Cambridge, England. Peter V. Gehler is a Senior Researcher in the Perceiving Systems group at the Max Planck Institute for Intelligent Systems, Tübingen, Germany. Jeremy Jancsary is a Senior Research Scientist at Nuance Communications, Vienna. Christoph H. Lampert is Assistant Professor at the Institute of Science and Technology Austria, where he heads a group for Computer Vision and Machine Learning. Contributors Jonas Behr, Yutian Chen, Fernando De La Torre, Justin Domke, Peter V. Gehler, Andrew E. Gelfand, Sébastien Giguère, Amir Globerson, Fred A. Hamprecht, Minh Hoai, Tommi Jaakkola, Jeremy Jancsary, Joseph Keshet, Marius Kloft, Vladimir Kolmogorov, Christoph H. Lampert, François Laviolette, Xinghua Lou, Mario Marchand, André F. T. Martins, Ofer Meshi, Sebastian Nowozin, George Papandreou, Daniel Pruša, Gunnar Rätsch, Amélie Rolland, Bogdan Savchynskyy, Stefan Schmidt, Thomas Schoenemann, Gabriele Schweikert, Ben Taskar, Sinisa Todorovic, Max Welling, David Weiss, Thomáš Werner, Alan Yuille, Stanislav Živný
AbstractList The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.Sebastian Nowozin is a Researcher in the Machine Learning and Perception group (MLP) at Microsoft Research, Cambridge, England. Peter V. Gehler is a Senior Researcher in the Perceiving Systems group at the Max Planck Institute for Intelligent Systems, Tübingen, Germany. Jeremy Jancsary is a Senior Research Scientist at Nuance Communications, Vienna. Christoph H. Lampert is Assistant Professor at the Institute of Science and Technology Austria, where he heads a group for Computer Vision and Machine Learning. Contributors Jonas Behr, Yutian Chen, Fernando De La Torre, Justin Domke, Peter V. Gehler, Andrew E. Gelfand, Sébastien Giguère, Amir Globerson, Fred A. Hamprecht, Minh Hoai, Tommi Jaakkola, Jeremy Jancsary, Joseph Keshet, Marius Kloft, Vladimir Kolmogorov, Christoph H. Lampert, François Laviolette, Xinghua Lou, Mario Marchand, André F. T. Martins, Ofer Meshi, Sebastian Nowozin, George Papandreou, Daniel Pruša, Gunnar Rätsch, Amélie Rolland, Bogdan Savchynskyy, Stefan Schmidt, Thomas Schoenemann, Gabriele Schweikert, Ben Taskar, Sinisa Todorovic, Max Welling, David Weiss, Thomáš Werner, Alan Yuille, Stanislav Živný
The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.Sebastian Nowozin is a Researcher in the Machine Learning and Perception group (MLP) at Microsoft Research, Cambridge, England. Peter V. Gehler is a Senior Researcher in the Perceiving Systems group at the Max Planck Institute for Intelligent Systems, Tübingen, Germany. Jeremy Jancsary is a Senior Research Scientist at Nuance Communications, Vienna. Christoph H. Lampert is Assistant Professor at the Institute of Science and Technology Austria, where he heads a group for Computer Vision and Machine Learning. Contributors Jonas Behr, Yutian Chen, Fernando De La Torre, Justin Domke, Peter V. Gehler, Andrew E. Gelfand, Sébastien Giguère, Amir Globerson, Fred A. Hamprecht, Minh Hoai, Tommi Jaakkola, Jeremy Jancsary, Joseph Keshet, Marius Kloft, Vladimir Kolmogorov, Christoph H. Lampert, François Laviolette, Xinghua Lou, Mario Marchand, André F. T. Martins, Ofer Meshi, Sebastian Nowozin, George Papandreou, Daniel Pruša, Gunnar Rätsch, Amélie Rolland, Bogdan Savchynskyy, Stefan Schmidt, Thomas Schoenemann, Gabriele Schweikert, Ben Taskar, Sinisa Todorovic, Max Welling, David Weiss, Thomáš Werner, Alan Yuille, Stanislav Živný
Author Jancsary, Jeremy
Gehler, Peter V.
Nowozin, Sebastian
Lampert, Christoph H.
Author_xml – sequence: 1
  fullname: Nowozin, Sebastian
– sequence: 2
  fullname: Gehler, Peter V.
– sequence: 3
  fullname: Jancsary, Jeremy
– sequence: 4
  fullname: Lampert, Christoph H.
BackLink https://cir.nii.ac.jp/crid/1130282272914843392$$DView record in CiNii
BookMark eNqNkEtPwkAQx9coRkA-gBfiwcR4AHZn9tE5IsFHQqKJxmuz3W5jBVvtFvz6LtaDRw_zSn7zn8eAHVV15RkbCz41SonZe9l-ND6EGZGmKeciGhcHbEQm4aABAUjRIRvsCw4JGuqxAXAhuUBAdcz6xJUkRE4nbBTC275fKlQS-2w8z3e2cj4_f2qbrWu3TUwfoytdW9bVKesVdhP86DcO2cvN8nlxN1k93N4v5quJBS0AJ1Z6Cw4w15occulzU3DtnSukyZ3JMqLMF8JoMAp5AqTzQmY2E0USl_YCh-yqE7Zh7b_Ca71pQ7rb-Kyu1yH9c6rW_2cVRfayYz-a-nPrQ5v-YM5XbWM36fJ6oaKkUiqSFx1ZlWXqyr0XAuNDAQyQkIlEJIjYWYeV3vu0G2k4T4Tm-A2vz3fe
ContentType eBook
Book
Copyright 2014 Massachusetts Institute of Technology
Copyright_xml – notice: 2014 Massachusetts Institute of Technology
DBID RYH
DEWEY 006.3/1
DOI 10.7551/mitpress/9969.001.0001
DatabaseName CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780262322959
0262322951
9780262322966
026232296X
Edition 1
Editor Gehler, Peter V
Jancsary, Jeremy
Nowozin, Sebastian
Lampert, Christoph H
Editor_xml – sequence: 1
  givenname: Sebastian
  surname: Nowozin
  fullname: Nowozin, Sebastian
– sequence: 2
  givenname: Peter V
  surname: Gehler
  fullname: Gehler, Peter V
– sequence: 3
  givenname: Jeremy
  surname: Jancsary
  fullname: Jancsary, Jeremy
– sequence: 4
  givenname: Christoph H
  surname: Lampert
  fullname: Lampert, Christoph H
ExternalDocumentID 9780262322966
9780262322959
EBC5966555
BB17474033
7008160
GroupedDBID -D2
38.
6IK
AABBV
AAOBU
ABAZT
ABFEK
AEFEZ
AEGYG
AGMVS
AHWGJ
ALMA_UNASSIGNED_HOLDINGS
BBABE
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBRZX
ECNEQ
MICIX
MIJRL
OCL
RYH
ID FETCH-LOGICAL-a26123-a4ea2c23d669c304ed7f06eccf47dc7bb99bef176275308296df4bab1f8620e13
IEDL.DBID -D2
ISBN 0262028379
9780262028370
IngestDate Wed Feb 05 01:58:43 EST 2025
Thu Mar 20 12:07:31 EDT 2025
Wed Jun 04 00:00:55 EDT 2025
Thu Jun 26 23:18:03 EDT 2025
Sun Apr 21 09:07:52 EDT 2024
IsPeerReviewed false
IsScholarly false
LCCN 2014013235
LCCallNum_Ident Q325.5$b.N696 2014
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a26123-a4ea2c23d669c304ed7f06eccf47dc7bb99bef176275308296df4bab1f8620e13
Notes Includes bibliographical references
Other editors : Peter V. Gehler, Jeremy Jancsary, Christoph H. Lampert
OCLC 905493309
PQID EBC5966555
PageCount 432
ParticipantIDs askewsholts_vlebooks_9780262322966
askewsholts_vlebooks_9780262322959
proquest_ebookcentral_EBC5966555
nii_cinii_1130282272914843392
ieee_books_7008160
PublicationCentury 2000
PublicationDate 2014
c2014
2015-01-16
2014-11-21
PublicationDateYYYYMMDD 2014-01-01
2015-01-16
2014-11-21
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationPlace Cambridge, MA
PublicationPlace_xml – name: Cambridge, MA
– name: Cambridge
PublicationSeriesTitle Neural Information Processing series
PublicationYear 2014
2015
Publisher MIT Press
The MIT Press
Publisher_xml – name: MIT Press
– name: The MIT Press
SSID ssj0001453543
Score 1.9324222
Snippet The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of...
The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of...
SourceID askewsholts
proquest
nii
ieee
SourceType Aggregation Database
Publisher
SubjectTerms Computer algorithms
Computing and Processing
Data structures (Computer science)
General Topics for Engineers
Machine learning
TableOfContents Intro -- Contents -- Series Foreword -- Preface -- 1. Introduction to Structured Prediction -- 1.1 Structured Prediction -- 1.2 Recent Developments -- 1.3 Summary of the Chapters -- 1.4 Conclusion -- 1.5 References -- 2. The Power of LP Relaxation for MAP Inference -- 2.1 Valued Constraint Satisfaction Problem -- 2.2 Basic LP Relaxation -- 2.3 Languages Solved by the BLP -- 2.4 Universality of the BLP -- 2.5 Conclusions -- 2.6 References -- 3 AD3: A Fast Decoder for Structured Prediction -- 3.1 Introduction -- 3.2 Factor Graphs and MAP Decoding -- 3.3 Factor Graphs for NLP -- 3.4 LP-MAP Decoding -- 3.5 Alternating Directions Dual Decomposition -- 3.6 Local Subproblems in AD3 -- 3.7 Experiments -- 3.8 Related Work -- 3.9 Conclusions -- 3.10 References -- 4 Generalized Sequential Tree-Reweighted Message Passing -- 4.1 Introduction -- 4.2 Background and Notation -- 4.3 TRW-S Algorithm -- 4.4 Algorithm's Analysis -- 4.5 Experimental Results -- 4.6 Conclusions -- 4.7 Appendices -- 4.8 References -- 5 Smoothed Coordinate Descent for MAP Inference -- 5.1 Introduction -- 5.2 MAP and LP Relaxations -- 5.3 Coordinate Minimization Algorithms -- 5.4 Dual Convergence Rate Analysis -- 5.5 Primal Convergence -- 5.6 The Augmented Dual LP Algorithm -- 5.7 Experiments -- 5.8 Discussion -- 5.9 Appendix: Primal Convergence Rate -- 5.10 References -- 6 Getting Feasible Variable Estimates from Infeasible Ones: MRF Local Polytope Study -- 6.1 Introduction -- 6.2 Optimizing Projection -- 6.3 MRF Inference and Optimizing Projections -- 6.4 Optimizing Projection in Algorithmic Schemes -- 6.5 Experimental Analysis and Evaluation -- 6.6 Conclusions -- 6.7 References -- 7 Perturb-and-MAP Random Fields: Reducing Random Sampling to Optimization, with Applications in Computer Vision -- 7.1 Introduction
7.2 Energy-Based Modeling: Standard Deterministic and Probabilistic Approaches -- 7.3 Perturb-and-MAP for Gaussian and Sparse Continuous MRFs -- 7.4 Perturb-and-MAP for MRFs with Discrete Labels -- 7.5 Related Work and Recent Developments -- 7.6 Discussion -- 7.7 References -- 8 Herding for Structured Prediction -- 8.1 Introduction -- 8.2 Integrating Local Models Using Herding -- 8.3 Application: Image Segmentation -- 8.4 Application: Go Game Prediction -- 8.5 Conclusion -- 8.6 References -- 9 Training Structured Predictors Through Iterated Logistic Regression -- 9.1 Introduction -- 9.2 Linear vs. Nonlinear Learning -- 9.3 Overview -- 9.4 Loss Functions -- 9.5 Message-Passing Inference -- 9.6 Joint Learning and Inference -- 9.7 Logistic Regression -- 9.8 Reducing Structured Learning to Logistic Regression -- 9.9 Function Classes -- 9.10 Example -- 9.11 Conclusions -- 9.12 Appendix: Proofs -- 9.13 References -- 10 PAC-Bayesian Risk Bounds and Learning Algorithms for the Regression Approach to Structured Output Prediction -- 10.1 Introduction -- 10.2 From Structured Output Prediction to Vector-Valued Regression -- 10.3 A PAC-Bayesian Bound with Isotropic Gaussians -- 10.4 A Sample Compressed PAC-Bayesian Bound -- 10.5 Empirical Results -- 10.6 Conclusion -- 10.7 Appendix -- 10.8 References -- 11 Optimizing the Measure of Performance -- 11.1 Introduction -- 11.2 Structured Perceptron -- 11.3 Large Margin Structured Predictors -- 11.4 Conditional Random Fields -- 11.5 Direct Loss Minimization -- 11.6 Structured Ramp Loss -- 11.7 Structured Probit Loss -- 11.8 Risk Minimization Under Gibbs Distribution -- 11.9 Conclusions -- 11.10 References -- 12 Structured Learning from Cheap Data -- 12.1 Introduction -- 12.2 Running Example: Structured Learning for Cell Tracking -- 12.3 Strategy I: Structured Learning from Partial Annotations
12.4 Strategy II: Structured Data Retrieval via Active Learning -- 12.5 Strategy III: Structured Transfer Learning -- 12.6 Discussion and Conclusions -- 12.7 References -- 13 Dynamic Structured Model Selection -- 13.1 Introduction -- 13.2 Meta-Learning a Myopic Value-Based Selector -- 13.3 Applications to Sequential Prediction -- 13.4 Meta-Learning a Feature Extraction Policy -- 13.5 Applications to Sequential Prediction Revisited -- 13.6 Conclusion -- 13.7 References -- 14 Structured Prediction for Event Detection -- 14.1 Introduction -- 14.2 Structured Prediction for Event Detection -- 14.3 Early Event Detection -- 14.4 Sequence Labeling -- 14.5 Experiments -- 14.6 Summary -- 14.7 References -- 15 Structured Prediction for Object Boundary Detection in Images -- 15.1 Introduction -- 15.2 Related Work -- 15.3 Edge Extraction and Properties -- 15.4 Sequential Labeling of Edges -- 15.5 HC-Search -- 15.6 Results -- 15.7 Conclusion -- 15.8 References -- 16 Genome Annotation with Structured Output Learning -- 16.1 Introduction: The Genome Annotation Problem -- 16.2 Inference -- 16.3 Learning -- 16.4 Experiments -- 16.5 Conclusions -- 16.6 References
Title Advanced Structured Prediction
URI https://ieeexplore.ieee.org/servlet/opac?bknumber=7008160
https://cir.nii.ac.jp/crid/1130282272914843392
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5966555
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780262322959&uid=none
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780262322966&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-yXdxFh4pVN4Z47dY2H21OotMxPIjgB8NLSdIEynDC1l38630v7XCoB_FSAg2heS_Ne7-Xl98j5CLLtEsi6-BHEjZkikehMpkOtUksVULGxvpsi3sxfWZ3Mz7bKvWFFU588pkdYtOf5WN4EibhUeSlnjelMlK0ZgLQehsQDMXFHd4kX-EVxilntL4TnIJbMHorK59aOgIP33NUInVh3CEdtZrDfgJ7TbVqSqyAnVmU5Y_d2ZucyR553XxsnWkyH64rPTQf33gc_zWbfdK2eMmhS3bs4oD0r5pEgMGjZ5NdL6H5sMQjHFTbIXmZ3D6Np2FTNyFUSAhGQ8WsSkxCCyGkoRGzReoiAcpyLC1MqrWU2ro4RYZipKuRonBMKx07wDeRjekRaS3eF_aYDFwilU6cplZyBtZeSp4WNs24NNA7YgE535JfDjNDcLDKkdgoAdcKq4XLP3QSIiBdlFFev2rkEZAeaCI3JT5jPGQFhwbwAIA4RsG1C8hgo6PcD9qktOa312MOg3LOT34b95TsgufD6ljKGWmBdG0PvItK9_06-gQJe8qp
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5SD9qLFhXrs4jXbXc3j22OPlrqqwhW6W1JshMo1Qpu9eCvdyZdUdSDlyWwISwz2cw3mZlvGDvudq1PY_D4IymIhJFxZFzXRtalwI3SiYOQbTFUg3txOZbj6r4j1MIAQEg-gzYNQyyf4GYnI-Ol0DlfRpsvaC9H5-nXbYqQXAq-KAHOEAV0nibzkEnaQUAfKCmJqTCps7opp3h84NEyL6uOKmhWZpPJr8M4WJj-2oLuqAzEhJRYMm2_zm3bvf-gbfzPx6-zZaAShgZbgtkGOzipwvytu8AV-_qCw9sXCtCQUjbZQ783OhtEVVeEyBDdF4-MAJO6lBdKacdjAUXmY4Wq8CIrXGat1hZ8khH_MJHRaFV4YY1NPHovMSR8i9VmzzPYZi2famNTbzloKdCWay2zArKu1A5nx6LJjr6JK397DBHcMifaohSBE_UC1_-YpFSTNUgk-eJVJY8m20fB525Cz4RCqAhXEO2jiyY4Arcma32qJA-LVgmree_0TOKiUsqdv9Y9ZCuD0c11fn0xvNplq4hxxOLWZI_VUNKwjzhibg_CFvoAzNy_2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Advanced+Structured+Prediction&rft.series=Neural+Information+Processing+series&rft.date=2014-01-01&rft.pub=MIT+Press&rft.isbn=9780262322959&rft_id=info:doi/10.7551%2Fmitpress%2F9969.001.0001&rft.externalDocID=7008160
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97802623%2F9780262322959.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97802623%2F9780262322966.jpg