Machine Learning for Cyber-Physical Systems Selected papers from the International Conference ML4CPS 2023

This open access proceedings presents new approaches to Machine Learning for Cyber-Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber-Physical Systems, which was held in Hamburg (Germany), March 29th to 31...

Full description

Saved in:
Bibliographic Details
Main Authors Niggemann, Oliver, Beyerer, Jürgen, Krantz, Maria, Kühnert, Christian
Format eBook
LanguageEnglish
Published Cham Springer Nature 2024
Springer
Edition1
SeriesTechnologien für die intelligente Automation
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This open access proceedings presents new approaches to Machine Learning for Cyber-Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber-Physical Systems, which was held in Hamburg (Germany), March 29th to 31st, 2023. Cyber-physical systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. This is an open access book.
AbstractList This open access proceedings presents new approaches to Machine Learning for Cyber-Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber-Physical Systems, which was held in Hamburg (Germany), March 29th to 31st, 2023. Cyber-physical systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. This is an open access book.
Author Niggemann, Oliver
Kühnert, Christian
Beyerer, Jürgen
Krantz, Maria
Author_xml – sequence: 1
  fullname: Niggemann, Oliver
– sequence: 2
  fullname: Beyerer, Jürgen
– sequence: 3
  fullname: Krantz, Maria
– sequence: 4
  fullname: Kühnert, Christian
BookMark eNpVj8tOwzAQRY14CFr6AUgsskRCgfH4kXjBAqLykIpAArG1bMdpA2lcnLLI35NSFrCamTP33tGMyF4bWk_ICYULCpBdqixPWQqMpjwDiSnukMnA2EB-AO7-m6k4ICPKOQNAxcQhmXTdOwAwpDlDdkTOH41b1K1PZt7Etm7nSRViUvTWx_R50Xe1M03y0ndrv-yOyX5lms5PfuuYvN1OX4v7dPZ091Bcz1KDEhBT5SpbWs4ym5eVBeWwhLxkHLgZFLkQEjLlnLSUVwptJr0UpjSmVBI5rRwbk7Nt8CqGzy_frbW3IXw4366jafT0pmBUDA-hGKRXW2kwK9_qVayXJvY6mFo3tY3bfrMJca4RtADQFKXItEJUcvCf_vWXwWwudZpy5Eyxb98saeM
ContentType eBook
DBID V1H
A7I
DOI 10.1007/978-3-031-47062-2
DatabaseName DOAB: Directory of Open Access Books
OAPEN
DatabaseTitleList

Database_xml – sequence: 1
  dbid: V1H
  name: DOAB: Directory of Open Access Books
  url: https://directory.doabooks.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISBN 9783031470622
3031470621
Edition 1
Editor Niggemann, Oliver
Kühnert, Christian
Beyerer, Jürgen
Krantz, Maria
Editor_xml – sequence: 1
  fullname: Niggemann, Oliver
– sequence: 2
  fullname: Beyerer, Jürgen
– sequence: 3
  fullname: Krantz, Maria
– sequence: 4
  fullname: Kühnert, Christian
ExternalDocumentID EBC31502925
oai_library_oapen_org_20_500_12657_92296
142439
GroupedDBID A7I
AABBV
AAHEH
AAKKN
AALJR
AAQKC
ABEEZ
ABHYI
ABLGM
ADZDO
AEKFX
AFHEQ
AGWHU
AIQUZ
ALMA_UNASSIGNED_HOLDINGS
ALNDD
AMYHB
BBABE
CZZ
EIXGO
IEZ
SBO
TPJZQ
V1H
Z83
ID FETCH-LOGICAL-a26022-9cfbdb437b8dfb09c2d08d3404aa268556079cc6b14f92b76e65adaad96241fc3
IEDL.DBID A7I
ISBN 9783031470615
3031470613
9783031470622
3031470621
IngestDate Wed Jun 11 00:19:25 EDT 2025
Sat Aug 30 21:13:31 EDT 2025
Tue Jul 08 19:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TK7895.E42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a26022-9cfbdb437b8dfb09c2d08d3404aa268556079cc6b14f92b76e65adaad96241fc3
OCLC 1443002935
OpenAccessLink https://library.oapen.org/handle/20.500.12657/92296
PQID EBC31502925
PageCount 129
ParticipantIDs proquest_ebookcentral_EBC31502925
oapen_primary_oai_library_oapen_org_20_500_12657_92296
oapen_doabooks_142439
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Technologien für die intelligente Automation
PublicationYear 2024
Publisher Springer Nature
Springer
Publisher_xml – name: Springer Nature
– name: Springer
SSID ssj0003218323
Score 2.3904934
Snippet This open access proceedings presents new approaches to Machine Learning for Cyber-Physical Systems, experiences and visions. It contains some selected papers...
SourceID proquest
oapen
SourceType Publisher
SubjectTerms Applied mathematics
Artificial intelligence
Automatic validation
Computer hardware
Computer science
Computing and Information Technology
Cyber-physical systems
Cybernetics and systems theory
Electronics and communications engineering
Electronics engineering
Information theory
Machine learning
Mathematical modelling
Mathematics
Mathematics and Science
Network architecture
Neural networks
Reference, Information and Interdisciplinary subjects
Research and information: general
Technology, Engineering, Agriculture, Industrial processes
Subtitle Selected papers from the International Conference ML4CPS 2023
TableOfContents Intro -- Preface -- Contents -- Causal Structure Learning Using PCMCI+ and Path Constraints from Wavelet-Based Soft Interventions -- 1 Introduction -- 2 Related Work -- 3 Fundamentals -- 3.1 Causal Graphs -- 3.2 Causal Structure Learning -- 4 Wavelet-Based Soft Interventions -- 5 Applying Wavelet Injections -- 6 Summary and Conclusion -- Reinforcement Learning from Human Feedback for Cyber-Physical Systems: On the Potential of Self-Supervised Pretraining -- 1 Introduction -- 2 The Potential of Pretraining -- 3 Discussion and Conclusion -- Using ML-Based Models in Simulation of CPPSs: A Case Study of Smart Meter Production -- 1 Introduction and Problem Statement -- 2 Use Case -- 3 Proposed Approach -- 4 Experiments -- 5 Conclusions and Future Work -- Deploying Machine Learning in High Pressure Resin Transfer Molding and Part Post Processing: A Case Study -- 1 Introduction -- 1.1 Composite Manufacturing by RTM -- 1.2 Knowledge Extraction in a Complex Network of Cyber-Physical Systems -- 2 Implemented Approach -- 2.1 Data Management and Analysis -- 2.2 Process Monitoring and Predictive Maintenance for serial HP-RTM Production -- 2.3 Process Monitoring and Quality Assurance in Post-Processing -- 3 Preliminary Results -- 3.1 Comparison of Physical to Date-Centric Modelling -- 4 Conclusions &amp -- Outlook -- References -- Development of a Robotic Bin Picking Approach Based on Reinforcement Learning -- 1 Introduction -- 2 Related Work -- 2.1 Research Issue -- 2.2 Selection of a Machine Learning Technique -- 3 Approach -- 3.1 Robotic Bin Picking Based on Reinforcement Learning -- 3.2 Training Procedure -- 3.3 Training Environment -- 4 Conclusion -- Control Reconfiguration of CPS via Online Identification Using Sparse Regression (SINDYc) -- 1 Introduction -- 2 Related Work -- 2.1 Model-Based Fault Tolerant Control
3.2 Selection of Preferred Standards -- 3.3 Retrofitting a Standardized Data Acquisition System -- 3.4 Concept Evaluation -- 4 Summary and Outlook -- References -- A Digital Twin Design for Conveyor Belts Predictive Maintenance -- 1 Introduction -- 2 Related Work -- 3 Framework -- 3.1 Data Flow -- 3.2 PLC and Sensors-Physical Twin -- 3.3 Data Connectivity and Collection-Cyber-Physical System -- 3.4 Virtual Twin -- 4 Discussion and Future Work -- Augmenting Explainable Data-Driven Models in Energy Systems: A Python Framework for Feature Engineering -- 1 Introduction -- 1.1 Main Contribution -- 2 Method -- 3 Case Study -- 4 Conclusion -- Correction to: Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories -- Correction to: Chapter 9 in: O. Niggemann et al. (eds.), Machine Learning for Cyber-Physical Systems, Technologien für die intelligente Automation, https://doi.org/10.1007/978-3-031-47062-2_9
2.2 Online, Closed-Loop System Identification -- 3 System Description and Modeling -- 4 Closed-Loop System Identification with SINDYc -- 4.1 Sparse Identification-SINDYc -- 4.2 Identifiability in Closed-Loop Systems -- 5 Control Reconfiguration -- 6 Results -- 6.1 Closed-Loop Identification Parameter Study -- 6.2 Closed-Loop Identification and Control Reconfiguration -- 7 Limitations and Outlook -- Using Forest Structures for Passive Automata Learning -- 1 Introduction -- 2 Preliminaries -- 3 Algorithms for Learning of Automata Forests -- 3.1 Forest Structure -- 3.2 Forest with Cross Validation (ForestCV) -- 3.3 Forest with Majority Voting (ForestMV) -- 4 Experimental Evaluation -- 4.1 Hyperparameter Tuning -- 4.2 Analyzing DFAs -- 4.3 Analyzing Mealy Machines -- 5 Conclusion -- Domain Knowledge Injection Guidance for Predictive Maintenance -- 1 Introduction -- 2 Related Work -- 3 Guidance Development -- 3.1 Knowledge Injection Framework -- 3.2 Literature Study and Construction of the Knowledge Base -- 3.3 Guidance Creation -- 4 Examples for the Application of the Guidance -- 5 Discussion -- 6 Conclusion -- Towards a Systematic Approach for Prescriptive Analytics Use Cases in Smart Factories -- 1 Introduction -- 2 State of the Art -- 2.1 Formalization of Data Analytics Use Cases in Smart Factories -- 2.2 Product, Process and Resource in Smart Factories -- 3 Structuring Prescriptive Analytics in a Smart Factory Environment -- 3.1 Data Analytics View on Use Cases -- 3.2 Smart Manufacturing View on Use Cases -- 4 Conclusion -- References -- Development of a Standardized Data Acquisition Prototype for Heterogeneous Sensor Environments as a Basis for ML Applications in Pultrusion -- 1 Introduction -- 2 Industrial Communication - State of the Art -- 3 Concept Development for Machine Data Acquisition -- 3.1 Requirements for a Standardized Data Acquisition
Title Machine Learning for Cyber-Physical Systems
URI https://directory.doabooks.org/handle/20.500.12854/142439
https://library.oapen.org/handle/20.500.12657/92296
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=31502925
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagXWABShHlpSCxunLOsROPUFEVpCIGqLpZduzA1KK2DPx7zolbithYolwusqI7P-6R-46QGybBiJLnVGVKUtz9eLiztHJcMi9EpaoQ0B8_ydFr9jgV01jHvfyJXfTnBr35OpPfoA2gk94XLIAhSHThFYCSu6QtIeNhWt_mD5vACg-HPoT-DTxAs-fhwNoiIG1gdzZM8ZsGWOc-I_wsp8ihNYtCaIsUvuzPzl0fR8ND0vahRuGI7PhZhxysOzMkcaF2yP4WzCBS4w026_KYhF5D78hMIrTqW4J2azL4sn5Bn6PWkghk3iWT4f3LYERjywRq0DFBv1KVlXU247ktXGWZKsGxwvGMZQbfKAQaOLkqS2nTrFJgc-mlMM4Yp1CWaVXyE9KazWf-lCSqAFXwkpkKB1TglMcVakweIO3BceiRbi0L7eYmeARLHarmuOoR2Tz_aPAydECwjnrVDQf1qoFpVKiuFaprhfbI9Vqouk4Vx_9T9f3dgKPhCgrE2X8HPyd7gPZIEz25IK3V4tNfoj2xslf1_MHrJB19AxAfvCc
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Machine+Learning+for+Cyber-Physical+Systems&rft.series=Technologien+f%C3%BCr+die+intelligente+Automation&rft.date=2024-01-01&rft.pub=Springer+Nature&rft.isbn=9783031470615&rft.volume=18&rft_id=info:doi/10.1007%2F978-3-031-47062-2&rft.externalDBID=A7I&rft.externalDocID=oai_library_oapen_org_20_500_12657_92296
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783031470615/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783031470615/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783031470615/sc.gif&client=summon&freeimage=true