Gold Nanoparticles Allow Optoplasmonic Evaporation from Open Silica Cells with a Logarithmic Approach to Steady-State Thermal Profiles
In this work, plasmonically heated solid-state gold nanoparticle (AuNP) arrays are investigated under novel conditions that include large (>35 °C) steady-state (SS) temperature increases (ΔT) dominated by conduction in open environments that allow vapor−liquid phase change. Evaporative cooling fr...
Saved in:
Published in | Journal of physical chemistry. C Vol. 114; no. 22; pp. 10132 - 10139 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
10.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, plasmonically heated solid-state gold nanoparticle (AuNP) arrays are investigated under novel conditions that include large (>35 °C) steady-state (SS) temperature increases (ΔT) dominated by conduction in open environments that allow vapor−liquid phase change. Evaporative cooling from the open system decreases SS ΔT of the system by as much as (11.6 ± 0.33) °C (45%), consistent with predictions from an energy balance model expanded in this work to account for evaporative cooling and associated decreasing thermal mass. Comparing dynamic and steady temperature profiles from water evaporating from a AuNP-coated Si cell at 50 mW laser irradiation with the model yielded an average accumulated residual sum of squares of 2.95 °C2 over 200 s. Temperature increases that distribute nonuniformly across sample cell surfaces due to high laser power (≤150 mW) and conductive heat transfer are accurately and uniformly (<0.7% difference) represented by an infinite fin model at laser powers from 50 to 150 mW, resulting in R 2 values near unity. Overall heat transfer coefficients for air cells estimated from both dynamic and steady-state models agree within 2.05 to 11.45%. This model independence allows predicting temporal evolution or steady-state distribution of temperatures from just two measured values. The improved models and increased understanding of these systems will play an important role in implementing plasmonically heated structures in sustainable energy applications, biomedical applications and many others. |
---|---|
AbstractList | In this work, plasmonically heated solid-state gold nanoparticle (AuNP) arrays are investigated under novel conditions that include large (>35 °C) steady-state (SS) temperature increases (ΔT) dominated by conduction in open environments that allow vapor−liquid phase change. Evaporative cooling from the open system decreases SS ΔT of the system by as much as (11.6 ± 0.33) °C (45%), consistent with predictions from an energy balance model expanded in this work to account for evaporative cooling and associated decreasing thermal mass. Comparing dynamic and steady temperature profiles from water evaporating from a AuNP-coated Si cell at 50 mW laser irradiation with the model yielded an average accumulated residual sum of squares of 2.95 °C2 over 200 s. Temperature increases that distribute nonuniformly across sample cell surfaces due to high laser power (≤150 mW) and conductive heat transfer are accurately and uniformly (<0.7% difference) represented by an infinite fin model at laser powers from 50 to 150 mW, resulting in R 2 values near unity. Overall heat transfer coefficients for air cells estimated from both dynamic and steady-state models agree within 2.05 to 11.45%. This model independence allows predicting temporal evolution or steady-state distribution of temperatures from just two measured values. The improved models and increased understanding of these systems will play an important role in implementing plasmonically heated structures in sustainable energy applications, biomedical applications and many others. |
Author | McKnight, Matthew D Russell, Aaron G Hestekin, Jamie A Roper, D. Keith Sharp, Adam C |
Author_xml | – sequence: 1 givenname: Aaron G surname: Russell fullname: Russell, Aaron G – sequence: 2 givenname: Matthew D surname: McKnight fullname: McKnight, Matthew D – sequence: 3 givenname: Adam C surname: Sharp fullname: Sharp, Adam C – sequence: 4 givenname: Jamie A surname: Hestekin fullname: Hestekin, Jamie A – sequence: 5 givenname: D. Keith surname: Roper fullname: Roper, D. Keith email: dkroper@uark.edu |
BookMark | eNptkM9OAjEQxhuDiYgefINePHhYbbt_gCMhiCZETMDzZtidSkm3bdoq4QV8bkswnDzNl8w3M9_8rknPWIOE3HH2yJngTzvHGR9WwlyQPh_nIhsWZdk762J4Ra5D2DFW5oznffIzt7qlb2CsAx9VozHQidZ2T5cuWqchdNaohs6-wVkPUVlDpbddaqOhK6VVA3SKWge6V3FLgS7sJ_gkuzQ1cc5baLY0WrqKCO0hW0WISNdb9B1o-u6tVOnmDbmUoAPe_tUB-Xieracv2WI5f51OFhmIchyPz6TYfCRFXuKGy03LRuMKcVw2XCBrhcCyYmKTF9AwLIBVKFnFuKxGCYpk-YA8nPY23obgUdbOqw78oeasPgKszwCT9_7khSbUO_vlTUr2j-8XBfZyuA |
CitedBy_id | crossref_primary_10_1557_opl_2015_672 crossref_primary_10_1007_s10973_020_09331_5 crossref_primary_10_1021_jp4112124 crossref_primary_10_1021_la200078j crossref_primary_10_1039_C7RA03892E crossref_primary_10_1039_C8NR00977E crossref_primary_10_1039_C5RA00682A crossref_primary_10_1088_0957_4484_23_37_375703 crossref_primary_10_3390_polym2040690 crossref_primary_10_1039_c2jm34208a crossref_primary_10_1039_C4RA03351E crossref_primary_10_1038_s41598_018_33347_5 crossref_primary_10_1155_2017_2753934 crossref_primary_10_1021_la304154u crossref_primary_10_1364_OME_4_000375 crossref_primary_10_1021_jp512701v crossref_primary_10_1039_C4NR01266F crossref_primary_10_1166_jbn_2022_3229 crossref_primary_10_2174_1568026619666191023125020 crossref_primary_10_1021_am4018785 |
Cites_doi | 10.1021/jp020581+ 10.1016/j.ijheatmasstransfer.2008.08.010 10.1021/nl9007425 10.1016/j.cplett.2004.05.016 10.1364/OL.31.002429 10.1103/PhysRevB.68.035424 10.1016/j.apsusc.2007.01.112 10.1021/jp905216t 10.1002/adma.200701974 10.1063/1.2187476 10.1007/s10973-009-0316-9 10.1016/j.aca.2009.10.003 10.1021/nl902711n 10.1111/j.1749-6632.2009.04090.x 10.1021/nl8036905 10.1021/jp0038153 10.1021/jp036222b 10.1021/jp905247j 10.1021/nl050693n 10.1021/jp908387y 10.1021/jp064341w 10.1016/j.rser.2009.06.003 10.1021/jp0606208 10.1021/la703064m 10.1364/OE.17.002538 10.1016/j.tibtech.2005.12.004 10.1117/12.582207 10.1021/nl0722370 10.1021/jp905186g 10.1016/j.ijheatmasstransfer.2004.08.012 10.1002/ejic.200900275 10.1021/jp905291h 10.1021/jp802497v 10.1002/smll.200900497 10.1021/jp9003592 10.1021/jp810544b 10.1063/1.2909965 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/jp101762n |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | AuNP in Optoplasmonic Evaporation from Silica |
EISSN | 1932-7455 |
EndPage | 10139 |
ExternalDocumentID | 10_1021_jp101762n a007093695 |
GroupedDBID | .K2 4.4 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL UI2 UKR VF5 VG9 VQA W1F AAYXX ABJNI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a259t-74530118f235eb1fbd0896ee95c12e0d22e5602b34ac0e4a06ef0601f68176f03 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Fri Aug 23 01:43:59 EDT 2024 Thu Aug 27 13:42:37 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a259t-74530118f235eb1fbd0896ee95c12e0d22e5602b34ac0e4a06ef0601f68176f03 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1021_jp101762n acs_journals_10_1021_jp101762n |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20100610 2010-06-10 |
PublicationDateYYYYMMDD | 2010-06-10 |
PublicationDate_xml | – month: 06 year: 2010 text: 20100610 day: 10 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Jang G. (ref37/cit37) 2009; 113 Lapotko D. (ref26/cit26) 2009; 17 Volkov A. N. (ref24/cit24) 2007; 253 Pissuwan D. (ref12/cit12) 2006; 24 Centi G. (ref6/cit6) 2009 Yen C. (ref22/cit22) 2009; 113 Kotaidis V. (ref27/cit27) 2006; 124 Halabica A. (ref18/cit18) 2008; 103 Lukianova-Hleb E. Y. (ref28/cit28) 2009; 9 Voisin C. (ref11/cit11) 2001; 105 Hashimoto S. (ref17/cit17) 2009; 113 Roper D. K. (ref3/cit3) Hoepfner M. P. (ref34/cit34) 2009; 98 Yu J. (ref21/cit21) 2009; 113 Seol Y. (ref16/cit16) 2006; 31 Chen C. (ref4/cit4) 2010; 114 Grua P. (ref10/cit10) 2003; 68 Aguirre C. M. (ref19/cit19) 2004; 108 Ahn W. (ref36/cit36) 2008; 24 Serrano E. (ref5/cit5) 2009; 13 Richardson H. H. (ref32/cit32) 2009; 9 Avedisian C. T. (ref13/cit13) 2009; 1161 Lapotko D. (ref31/cit31) 2004; 48 Skirtach A. G. (ref15/cit15) 2005; 5 Cole J. R. (ref38/cit38) 2009; 113 Adleman J. R. (ref8/cit8) 2009; 9 Cengel Y. A. (ref39/cit39) 2007 Cao L. (ref20/cit20) 2007; 7 Hu M. (ref29/cit29) 2004; 391 Harris N. (ref23/cit23) 2006; 110 Ahn W. (ref35/cit35) 2008; 112 Yuan J. (ref1/cit1) 2009; 656 Tong L. (ref14/cit14) 2007; 19 Cortie M. B. (ref7/cit7) 2005; 5649 Storti B. (ref9/cit9) 2009; 113 Vogel N. (ref2/cit2) 2010; 6 Roper D. K. (ref33/cit33) 2007; 111 Hu M. (ref25/cit25) 2002; 106 Lapotko D. (ref30/cit30) 2009; 52 |
References_xml | – volume: 106 start-page: 7029 year: 2002 ident: ref25/cit25 publication-title: J. Phys. Chem. B doi: 10.1021/jp020581+ contributor: fullname: Hu M. – ident: ref3/cit3 publication-title: IEEE Sensors contributor: fullname: Roper D. K. – volume: 52 start-page: 1540 year: 2009 ident: ref30/cit30 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.08.010 contributor: fullname: Lapotko D. – volume: 9 start-page: 2160 year: 2009 ident: ref28/cit28 publication-title: Nano Lett. doi: 10.1021/nl9007425 contributor: fullname: Lukianova-Hleb E. Y. – volume: 391 start-page: 220 year: 2004 ident: ref29/cit29 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.05.016 contributor: fullname: Hu M. – volume: 31 start-page: 2429 year: 2006 ident: ref16/cit16 publication-title: Opt. Lett. doi: 10.1364/OL.31.002429 contributor: fullname: Seol Y. – volume: 68 start-page: 035424/1 year: 2003 ident: ref10/cit10 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.68.035424 contributor: fullname: Grua P. – volume: 253 start-page: 6394 year: 2007 ident: ref24/cit24 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.01.112 contributor: fullname: Volkov A. N. – volume: 113 start-page: 19228 year: 2009 ident: ref37/cit37 publication-title: J. Phys. Chem. C doi: 10.1021/jp905216t contributor: fullname: Jang G. – volume: 19 start-page: 3136 year: 2007 ident: ref14/cit14 publication-title: Adv. Mater. doi: 10.1002/adma.200701974 contributor: fullname: Tong L. – volume: 124 start-page: 184702/1 year: 2006 ident: ref27/cit27 publication-title: J. Chem. Phys. doi: 10.1063/1.2187476 contributor: fullname: Kotaidis V. – volume: 98 start-page: 197 year: 2009 ident: ref34/cit34 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-009-0316-9 contributor: fullname: Hoepfner M. P. – volume: 656 start-page: 63 year: 2009 ident: ref1/cit1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2009.10.003 contributor: fullname: Yuan J. – volume: 9 start-page: 4417 year: 2009 ident: ref8/cit8 publication-title: Nano Lett. doi: 10.1021/nl902711n contributor: fullname: Adleman J. R. – volume: 1161 start-page: 62 year: 2009 ident: ref13/cit13 publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/j.1749-6632.2009.04090.x contributor: fullname: Avedisian C. T. – volume: 9 start-page: 1139 year: 2009 ident: ref32/cit32 publication-title: Nano Lett. doi: 10.1021/nl8036905 contributor: fullname: Richardson H. H. – volume: 105 start-page: 2264 year: 2001 ident: ref11/cit11 publication-title: J. Phys. Chem. B doi: 10.1021/jp0038153 contributor: fullname: Voisin C. – volume: 108 start-page: 7040 year: 2004 ident: ref19/cit19 publication-title: J. Phys. Chem. B doi: 10.1021/jp036222b contributor: fullname: Aguirre C. M. – volume: 113 start-page: 16394 year: 2009 ident: ref21/cit21 publication-title: J. Phys. Chem. C doi: 10.1021/jp905247j contributor: fullname: Yu J. – volume: 5 start-page: 1371 year: 2005 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl050693n contributor: fullname: Skirtach A. G. – volume: 114 start-page: 799 year: 2010 ident: ref4/cit4 publication-title: J. Phys. Chem. C doi: 10.1021/jp908387y contributor: fullname: Chen C. – volume: 111 start-page: 3636 year: 2007 ident: ref33/cit33 publication-title: J. Phys. Chem. C doi: 10.1021/jp064341w contributor: fullname: Roper D. K. – volume: 13 start-page: 2373 year: 2009 ident: ref5/cit5 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2009.06.003 contributor: fullname: Serrano E. – volume: 110 start-page: 10701 year: 2006 ident: ref23/cit23 publication-title: J. Phys. Chem. B doi: 10.1021/jp0606208 contributor: fullname: Harris N. – volume: 24 start-page: 4174 year: 2008 ident: ref36/cit36 publication-title: Langmuir doi: 10.1021/la703064m contributor: fullname: Ahn W. – volume: 17 start-page: 2538 year: 2009 ident: ref26/cit26 publication-title: Opt. Express doi: 10.1364/OE.17.002538 contributor: fullname: Lapotko D. – volume: 24 start-page: 62 year: 2006 ident: ref12/cit12 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2005.12.004 contributor: fullname: Pissuwan D. – volume: 5649 start-page: 565 year: 2005 ident: ref7/cit7 publication-title: Proc. SPIE doi: 10.1117/12.582207 contributor: fullname: Cortie M. B. – volume: 7 start-page: 3523 year: 2007 ident: ref20/cit20 publication-title: Nano Lett. doi: 10.1021/nl0722370 contributor: fullname: Cao L. – volume: 113 start-page: 19585 year: 2009 ident: ref22/cit22 publication-title: J. Phys. Chem. C doi: 10.1021/jp905186g contributor: fullname: Yen C. – volume: 48 start-page: 227 year: 2004 ident: ref31/cit31 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.08.012 contributor: fullname: Lapotko D. – start-page: 3851 year: 2009 ident: ref6/cit6 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200900275 contributor: fullname: Centi G. – volume: 113 start-page: 20640 year: 2009 ident: ref17/cit17 publication-title: J. Phys. Chem. C doi: 10.1021/jp905291h contributor: fullname: Hashimoto S. – volume: 112 start-page: 12214 year: 2008 ident: ref35/cit35 publication-title: J. Phys. Chem. C doi: 10.1021/jp802497v contributor: fullname: Ahn W. – volume: 6 start-page: 104 year: 2010 ident: ref2/cit2 publication-title: Small doi: 10.1002/smll.200900497 contributor: fullname: Vogel N. – volume: 113 start-page: 12090 year: 2009 ident: ref38/cit38 publication-title: J. Phys. Chem. C doi: 10.1021/jp9003592 contributor: fullname: Cole J. R. – volume-title: Heat and Mass Transfer: A Practical Approach year: 2007 ident: ref39/cit39 contributor: fullname: Cengel Y. A. – volume: 113 start-page: 7516 year: 2009 ident: ref9/cit9 publication-title: J. Phys. Chem. C doi: 10.1021/jp810544b contributor: fullname: Storti B. – volume: 103 start-page: 083545/1 year: 2008 ident: ref18/cit18 publication-title: J. Appl. Phys. doi: 10.1063/1.2909965 contributor: fullname: Halabica A. |
SSID | ssj0053013 |
Score | 2.151877 |
Snippet | In this work, plasmonically heated solid-state gold nanoparticle (AuNP) arrays are investigated under novel conditions that include large (>35 °C) steady-state... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 10132 |
SubjectTerms | C: Nanops and Nanostructures |
Title | Gold Nanoparticles Allow Optoplasmonic Evaporation from Open Silica Cells with a Logarithmic Approach to Steady-State Thermal Profiles |
URI | http://dx.doi.org/10.1021/jp101762n |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELWgHODCjihLNQKuKYnjpMkxCpQKsUmlUm-V49hsaRORVAg-gO9m3CRSpQq4x1Y0fp55s3iGkDMEruUrzzLQPMcGUx4zItURhmXx2KaS2orr0MDtndsbsOuhM1wip79k8Kl1_ppp1Lh0skxWaMf09XyGIOzX6tZBhNpl6hipImOdun3Q_FJtekQ-Z3rmbEh3g1zUL3HK0pG39rSI2uJrsTHjX7-3SdYrDglBeehbZElOtslqWI9u2yHfV2kSAypO9IirwjcIkiT9gPusSDMkzGPdEReQRmcVBEC_MwFdXgL9Fx3Ig1AmSQ46TgscbtIndKqL5zGuCqo25FCkoMuB409jRlkBIYdqPoGHcg54vksG3cvHsGdUAxcMjl5QgeLT0rQ8RW0HdbiKYtPzXSl9R1hUmjGlEgkSjWzGhSkZN12pdD8X5XooAmXae6QxSSdynwDyOM5NoXwkRKyDbogbCdxLOJYQjLO4SVp4IqPqwuSjWS6coi9Si7NJTurDGmVl443Fjw7-2-WQrJXpfhftzRFpFO9TeYwsoohaMxT9AHY7weI |
link.rule.ids | 315,783,787,2774,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDuXCjihLGSGugcRxtmNUUQqURSpI3CrHsdnSJiJBCD6A72acRVRwgHtsWZPnmTf2-A0hBwhcK1C-ZWB4jg2mfGZEyhOGZfHYppLaiuujgYtLt3_Lzu6cu1omR7-FwUXkOFNeXuJ_qwtYR0-ZBo9LJ7Nk3vFMT3crCLvDxus6CFS7ukFGxsiY16gITQ_VEUjkUxFoKpT0lqqeROUiygqS58PXIjoUHz_0Gf-3ymWyWDNKCCsIrJAZOVklrW7TyG2NfJ6kSQzoRjE_rsvgIEyS9A2usiLNkD6PtT4uIKnOakCAfnUCutgEho_6WA-6Mkly0Ke2wGGQ3mOKXTyMcVRYi5JDkYIuDo7fjZLAAgIQnX4C11VX8Hyd3PaOb7p9o26_YHDMiQq0ojaq5StqO-jRVRSbfuBKGTjCotKMKZVIl2hkMy5MybjpSqXVXZTrowmUaW-QuUk6kZsEkNVxbgoVID1iHiYlbiRwLuFYQjDO4jbpoDVH9fbJR-XNOMXMpDFnm-w3_2yUVTIcvz_a-muWPdLq31wMRoPTy_NtslAVArgYiXbIXPHyKneRXxRRpwTWF7BWyks |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYJODCjtgZIa4pseMsPVaFspVFAqTeKsex2dImIqkQfADfzTgLquAA99iyJs8zb-zxG0IOELi0qQNqYXiOLK4DboXalxalInKYYo4W5mjg8so7vefnPbdXJYrmLQwuIsOZsuIS3-zqNNKVwgA9fE4NgDw2nCTTrk-Z6VjQat_WntdFsDrlLTKyRs79WklofKiJQjIbi0Jj4aSzQK6_F1JUkbw0RnnYkB8_NBr_v9JFMl8xS2iVUFgiE2q4TGbbdUO3FfJ5ksQRoDvFPLkqh4NWHCdvcJ3mSYo0emB0cgHJdVoBA8zrEzBFJ3D7ZI73oK3iOANzegsCuskDptr54wBHtSpxcsgTMEXC0btVEFlAIKLzj-Gm7A6erZL7zvFd-9Sq2jBYAnOjHC1pDEsDzRwXPbsOIztoeko1XUmZsiPGFNImFjpcSFtxYXtKG5UX7QVoAm07a2RqmAzVOgFkd0LYUjeRJnEfkxMvlDiXdKmUXPBog-yiRfvVNsr6xQ05wwylNucG2a__Wz8t5Th-f7T51yx7ZObmqNPvnl1dbJG5sh7Aw4C0Taby15HaQZqRh7sFtr4AU0XMxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+Nanoparticles+Allow+Optoplasmonic+Evaporation+from+Open+Silica+Cells+with+a+Logarithmic+Approach+to+Steady-State+Thermal+Profiles&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Russell%2C+Aaron+G&rft.au=McKnight%2C+Matthew+D&rft.au=Sharp%2C+Adam+C&rft.au=Hestekin%2C+Jamie+A&rft.date=2010-06-10&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=114&rft.issue=22&rft.spage=10132&rft.epage=10139&rft_id=info:doi/10.1021%2Fjp101762n&rft.externalDocID=a007093695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |