Gold Nanoparticles Allow Optoplasmonic Evaporation from Open Silica Cells with a Logarithmic Approach to Steady-State Thermal Profiles

In this work, plasmonically heated solid-state gold nanoparticle (AuNP) arrays are investigated under novel conditions that include large (>35 °C) steady-state (SS) temperature increases (ΔT) dominated by conduction in open environments that allow vapor−liquid phase change. Evaporative cooling fr...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 114; no. 22; pp. 10132 - 10139
Main Authors Russell, Aaron G, McKnight, Matthew D, Sharp, Adam C, Hestekin, Jamie A, Roper, D. Keith
Format Journal Article
LanguageEnglish
Published American Chemical Society 10.06.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, plasmonically heated solid-state gold nanoparticle (AuNP) arrays are investigated under novel conditions that include large (>35 °C) steady-state (SS) temperature increases (ΔT) dominated by conduction in open environments that allow vapor−liquid phase change. Evaporative cooling from the open system decreases SS ΔT of the system by as much as (11.6 ± 0.33) °C (45%), consistent with predictions from an energy balance model expanded in this work to account for evaporative cooling and associated decreasing thermal mass. Comparing dynamic and steady temperature profiles from water evaporating from a AuNP-coated Si cell at 50 mW laser irradiation with the model yielded an average accumulated residual sum of squares of 2.95 °C2 over 200 s. Temperature increases that distribute nonuniformly across sample cell surfaces due to high laser power (≤150 mW) and conductive heat transfer are accurately and uniformly (<0.7% difference) represented by an infinite fin model at laser powers from 50 to 150 mW, resulting in R 2 values near unity. Overall heat transfer coefficients for air cells estimated from both dynamic and steady-state models agree within 2.05 to 11.45%. This model independence allows predicting temporal evolution or steady-state distribution of temperatures from just two measured values. The improved models and increased understanding of these systems will play an important role in implementing plasmonically heated structures in sustainable energy applications, biomedical applications and many others.
AbstractList In this work, plasmonically heated solid-state gold nanoparticle (AuNP) arrays are investigated under novel conditions that include large (>35 °C) steady-state (SS) temperature increases (ΔT) dominated by conduction in open environments that allow vapor−liquid phase change. Evaporative cooling from the open system decreases SS ΔT of the system by as much as (11.6 ± 0.33) °C (45%), consistent with predictions from an energy balance model expanded in this work to account for evaporative cooling and associated decreasing thermal mass. Comparing dynamic and steady temperature profiles from water evaporating from a AuNP-coated Si cell at 50 mW laser irradiation with the model yielded an average accumulated residual sum of squares of 2.95 °C2 over 200 s. Temperature increases that distribute nonuniformly across sample cell surfaces due to high laser power (≤150 mW) and conductive heat transfer are accurately and uniformly (<0.7% difference) represented by an infinite fin model at laser powers from 50 to 150 mW, resulting in R 2 values near unity. Overall heat transfer coefficients for air cells estimated from both dynamic and steady-state models agree within 2.05 to 11.45%. This model independence allows predicting temporal evolution or steady-state distribution of temperatures from just two measured values. The improved models and increased understanding of these systems will play an important role in implementing plasmonically heated structures in sustainable energy applications, biomedical applications and many others.
Author McKnight, Matthew D
Russell, Aaron G
Hestekin, Jamie A
Roper, D. Keith
Sharp, Adam C
Author_xml – sequence: 1
  givenname: Aaron G
  surname: Russell
  fullname: Russell, Aaron G
– sequence: 2
  givenname: Matthew D
  surname: McKnight
  fullname: McKnight, Matthew D
– sequence: 3
  givenname: Adam C
  surname: Sharp
  fullname: Sharp, Adam C
– sequence: 4
  givenname: Jamie A
  surname: Hestekin
  fullname: Hestekin, Jamie A
– sequence: 5
  givenname: D. Keith
  surname: Roper
  fullname: Roper, D. Keith
  email: dkroper@uark.edu
BookMark eNptkM9OAjEQxhuDiYgefINePHhYbbt_gCMhiCZETMDzZtidSkm3bdoq4QV8bkswnDzNl8w3M9_8rknPWIOE3HH2yJngTzvHGR9WwlyQPh_nIhsWZdk762J4Ra5D2DFW5oznffIzt7qlb2CsAx9VozHQidZ2T5cuWqchdNaohs6-wVkPUVlDpbddaqOhK6VVA3SKWge6V3FLgS7sJ_gkuzQ1cc5baLY0WrqKCO0hW0WISNdb9B1o-u6tVOnmDbmUoAPe_tUB-Xieracv2WI5f51OFhmIchyPz6TYfCRFXuKGy03LRuMKcVw2XCBrhcCyYmKTF9AwLIBVKFnFuKxGCYpk-YA8nPY23obgUdbOqw78oeasPgKszwCT9_7khSbUO_vlTUr2j-8XBfZyuA
CitedBy_id crossref_primary_10_1557_opl_2015_672
crossref_primary_10_1007_s10973_020_09331_5
crossref_primary_10_1021_jp4112124
crossref_primary_10_1021_la200078j
crossref_primary_10_1039_C7RA03892E
crossref_primary_10_1039_C8NR00977E
crossref_primary_10_1039_C5RA00682A
crossref_primary_10_1088_0957_4484_23_37_375703
crossref_primary_10_3390_polym2040690
crossref_primary_10_1039_c2jm34208a
crossref_primary_10_1039_C4RA03351E
crossref_primary_10_1038_s41598_018_33347_5
crossref_primary_10_1155_2017_2753934
crossref_primary_10_1021_la304154u
crossref_primary_10_1364_OME_4_000375
crossref_primary_10_1021_jp512701v
crossref_primary_10_1039_C4NR01266F
crossref_primary_10_1166_jbn_2022_3229
crossref_primary_10_2174_1568026619666191023125020
crossref_primary_10_1021_am4018785
Cites_doi 10.1021/jp020581+
10.1016/j.ijheatmasstransfer.2008.08.010
10.1021/nl9007425
10.1016/j.cplett.2004.05.016
10.1364/OL.31.002429
10.1103/PhysRevB.68.035424
10.1016/j.apsusc.2007.01.112
10.1021/jp905216t
10.1002/adma.200701974
10.1063/1.2187476
10.1007/s10973-009-0316-9
10.1016/j.aca.2009.10.003
10.1021/nl902711n
10.1111/j.1749-6632.2009.04090.x
10.1021/nl8036905
10.1021/jp0038153
10.1021/jp036222b
10.1021/jp905247j
10.1021/nl050693n
10.1021/jp908387y
10.1021/jp064341w
10.1016/j.rser.2009.06.003
10.1021/jp0606208
10.1021/la703064m
10.1364/OE.17.002538
10.1016/j.tibtech.2005.12.004
10.1117/12.582207
10.1021/nl0722370
10.1021/jp905186g
10.1016/j.ijheatmasstransfer.2004.08.012
10.1002/ejic.200900275
10.1021/jp905291h
10.1021/jp802497v
10.1002/smll.200900497
10.1021/jp9003592
10.1021/jp810544b
10.1063/1.2909965
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/jp101762n
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate AuNP in Optoplasmonic Evaporation from Silica
EISSN 1932-7455
EndPage 10139
ExternalDocumentID 10_1021_jp101762n
a007093695
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
AAYXX
ABJNI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a259t-74530118f235eb1fbd0896ee95c12e0d22e5602b34ac0e4a06ef0601f68176f03
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Fri Aug 23 01:43:59 EDT 2024
Thu Aug 27 13:42:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a259t-74530118f235eb1fbd0896ee95c12e0d22e5602b34ac0e4a06ef0601f68176f03
PageCount 8
ParticipantIDs crossref_primary_10_1021_jp101762n
acs_journals_10_1021_jp101762n
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20100610
2010-06-10
PublicationDateYYYYMMDD 2010-06-10
PublicationDate_xml – month: 06
  year: 2010
  text: 20100610
  day: 10
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Jang G. (ref37/cit37) 2009; 113
Lapotko D. (ref26/cit26) 2009; 17
Volkov A. N. (ref24/cit24) 2007; 253
Pissuwan D. (ref12/cit12) 2006; 24
Centi G. (ref6/cit6) 2009
Yen C. (ref22/cit22) 2009; 113
Kotaidis V. (ref27/cit27) 2006; 124
Halabica A. (ref18/cit18) 2008; 103
Lukianova-Hleb E. Y. (ref28/cit28) 2009; 9
Voisin C. (ref11/cit11) 2001; 105
Hashimoto S. (ref17/cit17) 2009; 113
Roper D. K. (ref3/cit3)
Hoepfner M. P. (ref34/cit34) 2009; 98
Yu J. (ref21/cit21) 2009; 113
Seol Y. (ref16/cit16) 2006; 31
Chen C. (ref4/cit4) 2010; 114
Grua P. (ref10/cit10) 2003; 68
Aguirre C. M. (ref19/cit19) 2004; 108
Ahn W. (ref36/cit36) 2008; 24
Serrano E. (ref5/cit5) 2009; 13
Richardson H. H. (ref32/cit32) 2009; 9
Avedisian C. T. (ref13/cit13) 2009; 1161
Lapotko D. (ref31/cit31) 2004; 48
Skirtach A. G. (ref15/cit15) 2005; 5
Cole J. R. (ref38/cit38) 2009; 113
Adleman J. R. (ref8/cit8) 2009; 9
Cengel Y. A. (ref39/cit39) 2007
Cao L. (ref20/cit20) 2007; 7
Hu M. (ref29/cit29) 2004; 391
Harris N. (ref23/cit23) 2006; 110
Ahn W. (ref35/cit35) 2008; 112
Yuan J. (ref1/cit1) 2009; 656
Tong L. (ref14/cit14) 2007; 19
Cortie M. B. (ref7/cit7) 2005; 5649
Storti B. (ref9/cit9) 2009; 113
Vogel N. (ref2/cit2) 2010; 6
Roper D. K. (ref33/cit33) 2007; 111
Hu M. (ref25/cit25) 2002; 106
Lapotko D. (ref30/cit30) 2009; 52
References_xml – volume: 106
  start-page: 7029
  year: 2002
  ident: ref25/cit25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp020581+
  contributor:
    fullname: Hu M.
– ident: ref3/cit3
  publication-title: IEEE Sensors
  contributor:
    fullname: Roper D. K.
– volume: 52
  start-page: 1540
  year: 2009
  ident: ref30/cit30
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.08.010
  contributor:
    fullname: Lapotko D.
– volume: 9
  start-page: 2160
  year: 2009
  ident: ref28/cit28
  publication-title: Nano Lett.
  doi: 10.1021/nl9007425
  contributor:
    fullname: Lukianova-Hleb E. Y.
– volume: 391
  start-page: 220
  year: 2004
  ident: ref29/cit29
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.05.016
  contributor:
    fullname: Hu M.
– volume: 31
  start-page: 2429
  year: 2006
  ident: ref16/cit16
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.002429
  contributor:
    fullname: Seol Y.
– volume: 68
  start-page: 035424/1
  year: 2003
  ident: ref10/cit10
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.68.035424
  contributor:
    fullname: Grua P.
– volume: 253
  start-page: 6394
  year: 2007
  ident: ref24/cit24
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.01.112
  contributor:
    fullname: Volkov A. N.
– volume: 113
  start-page: 19228
  year: 2009
  ident: ref37/cit37
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp905216t
  contributor:
    fullname: Jang G.
– volume: 19
  start-page: 3136
  year: 2007
  ident: ref14/cit14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701974
  contributor:
    fullname: Tong L.
– volume: 124
  start-page: 184702/1
  year: 2006
  ident: ref27/cit27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2187476
  contributor:
    fullname: Kotaidis V.
– volume: 98
  start-page: 197
  year: 2009
  ident: ref34/cit34
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-009-0316-9
  contributor:
    fullname: Hoepfner M. P.
– volume: 656
  start-page: 63
  year: 2009
  ident: ref1/cit1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.10.003
  contributor:
    fullname: Yuan J.
– volume: 9
  start-page: 4417
  year: 2009
  ident: ref8/cit8
  publication-title: Nano Lett.
  doi: 10.1021/nl902711n
  contributor:
    fullname: Adleman J. R.
– volume: 1161
  start-page: 62
  year: 2009
  ident: ref13/cit13
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2009.04090.x
  contributor:
    fullname: Avedisian C. T.
– volume: 9
  start-page: 1139
  year: 2009
  ident: ref32/cit32
  publication-title: Nano Lett.
  doi: 10.1021/nl8036905
  contributor:
    fullname: Richardson H. H.
– volume: 105
  start-page: 2264
  year: 2001
  ident: ref11/cit11
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0038153
  contributor:
    fullname: Voisin C.
– volume: 108
  start-page: 7040
  year: 2004
  ident: ref19/cit19
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp036222b
  contributor:
    fullname: Aguirre C. M.
– volume: 113
  start-page: 16394
  year: 2009
  ident: ref21/cit21
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp905247j
  contributor:
    fullname: Yu J.
– volume: 5
  start-page: 1371
  year: 2005
  ident: ref15/cit15
  publication-title: Nano Lett.
  doi: 10.1021/nl050693n
  contributor:
    fullname: Skirtach A. G.
– volume: 114
  start-page: 799
  year: 2010
  ident: ref4/cit4
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908387y
  contributor:
    fullname: Chen C.
– volume: 111
  start-page: 3636
  year: 2007
  ident: ref33/cit33
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp064341w
  contributor:
    fullname: Roper D. K.
– volume: 13
  start-page: 2373
  year: 2009
  ident: ref5/cit5
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2009.06.003
  contributor:
    fullname: Serrano E.
– volume: 110
  start-page: 10701
  year: 2006
  ident: ref23/cit23
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0606208
  contributor:
    fullname: Harris N.
– volume: 24
  start-page: 4174
  year: 2008
  ident: ref36/cit36
  publication-title: Langmuir
  doi: 10.1021/la703064m
  contributor:
    fullname: Ahn W.
– volume: 17
  start-page: 2538
  year: 2009
  ident: ref26/cit26
  publication-title: Opt. Express
  doi: 10.1364/OE.17.002538
  contributor:
    fullname: Lapotko D.
– volume: 24
  start-page: 62
  year: 2006
  ident: ref12/cit12
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2005.12.004
  contributor:
    fullname: Pissuwan D.
– volume: 5649
  start-page: 565
  year: 2005
  ident: ref7/cit7
  publication-title: Proc. SPIE
  doi: 10.1117/12.582207
  contributor:
    fullname: Cortie M. B.
– volume: 7
  start-page: 3523
  year: 2007
  ident: ref20/cit20
  publication-title: Nano Lett.
  doi: 10.1021/nl0722370
  contributor:
    fullname: Cao L.
– volume: 113
  start-page: 19585
  year: 2009
  ident: ref22/cit22
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp905186g
  contributor:
    fullname: Yen C.
– volume: 48
  start-page: 227
  year: 2004
  ident: ref31/cit31
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.08.012
  contributor:
    fullname: Lapotko D.
– start-page: 3851
  year: 2009
  ident: ref6/cit6
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200900275
  contributor:
    fullname: Centi G.
– volume: 113
  start-page: 20640
  year: 2009
  ident: ref17/cit17
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp905291h
  contributor:
    fullname: Hashimoto S.
– volume: 112
  start-page: 12214
  year: 2008
  ident: ref35/cit35
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp802497v
  contributor:
    fullname: Ahn W.
– volume: 6
  start-page: 104
  year: 2010
  ident: ref2/cit2
  publication-title: Small
  doi: 10.1002/smll.200900497
  contributor:
    fullname: Vogel N.
– volume: 113
  start-page: 12090
  year: 2009
  ident: ref38/cit38
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9003592
  contributor:
    fullname: Cole J. R.
– volume-title: Heat and Mass Transfer: A Practical Approach
  year: 2007
  ident: ref39/cit39
  contributor:
    fullname: Cengel Y. A.
– volume: 113
  start-page: 7516
  year: 2009
  ident: ref9/cit9
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp810544b
  contributor:
    fullname: Storti B.
– volume: 103
  start-page: 083545/1
  year: 2008
  ident: ref18/cit18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2909965
  contributor:
    fullname: Halabica A.
SSID ssj0053013
Score 2.151877
Snippet In this work, plasmonically heated solid-state gold nanoparticle (AuNP) arrays are investigated under novel conditions that include large (>35 °C) steady-state...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 10132
SubjectTerms C: Nanops and Nanostructures
Title Gold Nanoparticles Allow Optoplasmonic Evaporation from Open Silica Cells with a Logarithmic Approach to Steady-State Thermal Profiles
URI http://dx.doi.org/10.1021/jp101762n
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwELWgHODCjihLNQKuKYnjpMkxCpQKsUmlUm-V49hsaRORVAg-gO9m3CRSpQq4x1Y0fp55s3iGkDMEruUrzzLQPMcGUx4zItURhmXx2KaS2orr0MDtndsbsOuhM1wip79k8Kl1_ppp1Lh0skxWaMf09XyGIOzX6tZBhNpl6hipImOdun3Q_FJtekQ-Z3rmbEh3g1zUL3HK0pG39rSI2uJrsTHjX7-3SdYrDglBeehbZElOtslqWI9u2yHfV2kSAypO9IirwjcIkiT9gPusSDMkzGPdEReQRmcVBEC_MwFdXgL9Fx3Ig1AmSQ46TgscbtIndKqL5zGuCqo25FCkoMuB409jRlkBIYdqPoGHcg54vksG3cvHsGdUAxcMjl5QgeLT0rQ8RW0HdbiKYtPzXSl9R1hUmjGlEgkSjWzGhSkZN12pdD8X5XooAmXae6QxSSdynwDyOM5NoXwkRKyDbogbCdxLOJYQjLO4SVp4IqPqwuSjWS6coi9Si7NJTurDGmVl443Fjw7-2-WQrJXpfhftzRFpFO9TeYwsoohaMxT9AHY7weI
link.rule.ids 315,783,787,2774,27090,27938,27939,57072,57122
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDuXCjihLGSGugcRxtmNUUQqURSpI3CrHsdnSJiJBCD6A72acRVRwgHtsWZPnmTf2-A0hBwhcK1C-ZWB4jg2mfGZEyhOGZfHYppLaiuujgYtLt3_Lzu6cu1omR7-FwUXkOFNeXuJ_qwtYR0-ZBo9LJ7Nk3vFMT3crCLvDxus6CFS7ukFGxsiY16gITQ_VEUjkUxFoKpT0lqqeROUiygqS58PXIjoUHz_0Gf-3ymWyWDNKCCsIrJAZOVklrW7TyG2NfJ6kSQzoRjE_rsvgIEyS9A2usiLNkD6PtT4uIKnOakCAfnUCutgEho_6WA-6Mkly0Ke2wGGQ3mOKXTyMcVRYi5JDkYIuDo7fjZLAAgIQnX4C11VX8Hyd3PaOb7p9o26_YHDMiQq0ojaq5StqO-jRVRSbfuBKGTjCotKMKZVIl2hkMy5MybjpSqXVXZTrowmUaW-QuUk6kZsEkNVxbgoVID1iHiYlbiRwLuFYQjDO4jbpoDVH9fbJR-XNOMXMpDFnm-w3_2yUVTIcvz_a-muWPdLq31wMRoPTy_NtslAVArgYiXbIXPHyKneRXxRRpwTWF7BWyks
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYJODCjtgZIa4pseMsPVaFspVFAqTeKsex2dImIqkQfADfzTgLquAA99iyJs8zb-zxG0IOELi0qQNqYXiOLK4DboXalxalInKYYo4W5mjg8so7vefnPbdXJYrmLQwuIsOZsuIS3-zqNNKVwgA9fE4NgDw2nCTTrk-Z6VjQat_WntdFsDrlLTKyRs79WklofKiJQjIbi0Jj4aSzQK6_F1JUkbw0RnnYkB8_NBr_v9JFMl8xS2iVUFgiE2q4TGbbdUO3FfJ5ksQRoDvFPLkqh4NWHCdvcJ3mSYo0emB0cgHJdVoBA8zrEzBFJ3D7ZI73oK3iOANzegsCuskDptr54wBHtSpxcsgTMEXC0btVEFlAIKLzj-Gm7A6erZL7zvFd-9Sq2jBYAnOjHC1pDEsDzRwXPbsOIztoeko1XUmZsiPGFNImFjpcSFtxYXtKG5UX7QVoAm07a2RqmAzVOgFkd0LYUjeRJnEfkxMvlDiXdKmUXPBog-yiRfvVNsr6xQ05wwylNucG2a__Wz8t5Th-f7T51yx7ZObmqNPvnl1dbJG5sh7Aw4C0Taby15HaQZqRh7sFtr4AU0XMxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+Nanoparticles+Allow+Optoplasmonic+Evaporation+from+Open+Silica+Cells+with+a+Logarithmic+Approach+to+Steady-State+Thermal+Profiles&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Russell%2C+Aaron+G&rft.au=McKnight%2C+Matthew+D&rft.au=Sharp%2C+Adam+C&rft.au=Hestekin%2C+Jamie+A&rft.date=2010-06-10&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=114&rft.issue=22&rft.spage=10132&rft.epage=10139&rft_id=info:doi/10.1021%2Fjp101762n&rft.externalDocID=a007093695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon