Metaheuristics for Robotics

This book is dedicated to the application of metaheuristic optimization in trajectory generation and control issues in robotics. In this area, as in other fields of application, the algorithmic tools addressed do not require a comprehensive list of eligible solutions to effectively solve an optimiza...

Full description

Saved in:
Bibliographic Details
Main Authors Oulhadj, Hamouche, Daachi, Boubaker, Menasri, Riad
Format eBook
LanguageEnglish
Published Newark John Wiley & Sons, Incorporated 2020
Wiley-Blackwell
Edition1
Subjects
Online AccessGet full text
ISBN9781786303806
1786303809
DOI10.1002/9781119707011

Cover

Table of Contents:
  • 5.2. The system and the problem under consideration -- 5.2.1. Representation and model of the system under consideration -- 5.2.2. The problem under consideration -- 5.3. Proposed control algorithm -- 5.3.1. The standard PSO algorithm -- 5.3.2. Proposed control approach -- 5.4. Experimental results -- 5.5. Conclusion -- 5.6. Bibliography -- Conclusion -- Index -- Other titles from iSTE in Computer Engineering -- EULA
  • Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction -- 1. Optimization: Theoretical Foundations and Methods -- 1.1. The formalization of an optimization problem -- 1.2. Constrained optimization methods -- 1.2.1. The method of Lagrange multipliers -- 1.2.2. Method of the quadratic penalization -- 1.2.3. Methods of interior penalties -- 1.2.4. Methods of exterior penalties -- 1.2.5. Augmented Lagrangian method -- 1.3. Classification of optimization methods -- 1.3.1. Deterministic methods -- 1.3.2. Stochastic methods -- 1.4. Conclusion -- 1.5. Bibliography -- 2. Metaheuristics for Robotics -- 2.1. Introduction -- 2.2. Metaheuristics for trajectory planning problems -- 2.2.1. Path planning -- 2.2.2. Trajectory generation -- 2.3. Metaheuristics for automatic control problems -- 2.4. Conclusion -- 2.5. Bibliography -- 3. Metaheuristics for Constrained and Unconstrained Trajectory Planning -- 3.1. Introduction -- 3.2. Obstacle avoidance -- 3.3. Bilevel optimization problem -- 3.4. Formulation of the trajectory planning problem -- 3.4.1. Objective functions -- 3.4.2. Constraints -- 3.5. Resolution with a bigenetic algorithm -- 3.6. Simulation with the model of the Neuromate robot -- 3.6.1. Geometric model of the Neuromate robot -- 3.6.2. Kinematic model of the Neuromate robot -- 3.6.3. Simulation results -- 3.7. Conclusion -- 3.8. Bibliography -- 4. Metaheuristics for Trajectory Generation by Polynomial Interpolation -- 4.1. Introduction -- 4.2. Description of the problem addressed -- 4.3. Formalization -- 4.3.1. Criteria -- 4.3.2. Constraints -- 4.4. Resolution -- 4.4.1. Augmented Lagrangian -- 4.4.2. Genetic operators -- 4.4.3. Solution coding -- 4.5. Simulation results -- 4.6. Conclusion -- 4.7. Bibliography -- 5. Particle Swarm Optimization for Exoskeleton Control -- 5.1. Introduction