On the Question of S–S Bond Cleavage of 2,2′-Dithiodipyridine on Selective Ru and Os Platforms. MLCT or Hydride or Solvent Mediated Event
This article deals with the S–S bond scission of the model substrate 2,2′-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors: RuII(acac)2, [RuIICl2(PPh3)3], [RuIIHCl(CO)(PPh3)3], [RuII(H)2(CO)(PPh3)3], [RuII(bpy)2Cl2], [RuII(pap)2Cl2], [OsII(bpy)2Cl2], and [OsII(pap)2C...
Saved in:
Published in | Inorganic chemistry Vol. 61; no. 36; pp. 14297 - 14312 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
12.09.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | This article deals with the S–S bond scission of the model substrate 2,2′-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors: RuII(acac)2, [RuIICl2(PPh3)3], [RuIIHCl(CO)(PPh3)3], [RuII(H)2(CO)(PPh3)3], [RuII(bpy)2Cl2], [RuII(pap)2Cl2], [OsII(bpy)2Cl2], and [OsII(pap)2Cl2] (acac, acetylacetonate; bpy, 2,2′-bipyridine; pap, 2-phenylazopyridine). This led to the eventual formation of the corresponding mononuclear complexes containing the cleaved pyridine-2-thiolate unit in 1–4/[5]ClO4–[8]ClO4. The formation of the complexes was ascertained by their single-crystal X-ray structures, which also established sterically constrained four-membered chelate (average N1–M–S1 angle of 67.89°) originated from the in situ-generated pyridine-2-thiolate unit. Ruthenium(III)-derived one-electron paramagnetic complexes 1–2 (S = 1/2, magnetic moment/B.M. = 1.82 (1)/1.81(2)) exhibited metal-based anisotropic electron paramagnetic resonance (EPR) (Δg: 1/2 = 0.64/0.93, ⟨g⟩: 1/2 = 2.173/2.189) and a broad 1H nuclear magnetic resonance (NMR) signature due to the contact shift effect. The spectroelectrochemical and electronic structural aspects of the complexes were analyzed experimentally in combination with theoretical calculations of density functional theory (DFT and TD-DFT). The unperturbed feature of DTDP even in refluxing ethanol over a period of 10 h can be attributed to the active participation of the metal fragments in facilitating S–S bond cleavage in 1–4/[5]ClO4–[8]ClO4. It also revealed the following three probable pathways toward S–S bond cleavage of DTDP as a function of metal precursors: (i) the metal-to-ligand charge-transfer (MLCT) (RuII → σ* of DTDP)-driven metal oxidation (RuII → RuIII) process in the case of relatively electron-rich metal fragments {RuII(acac)2} or RuIICl2 in 1 or 2, respectively; (ii) metal hydride-assisted formation of 3 or 4 with the concomitant generation of H2; and (iii) S–S bond reduction with the simultaneous oxidation of the solvent benzyl alcohol to benzaldehyde. |
---|---|
AbstractList | This article deals with the S–S bond scission of the model substrate 2,2′-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors: RuII(acac)2, [RuIICl2(PPh3)3], [RuIIHCl(CO)(PPh3)3], [RuII(H)2(CO)(PPh3)3], [RuII(bpy)2Cl2], [RuII(pap)2Cl2], [OsII(bpy)2Cl2], and [OsII(pap)2Cl2] (acac, acetylacetonate; bpy, 2,2′-bipyridine; pap, 2-phenylazopyridine). This led to the eventual formation of the corresponding mononuclear complexes containing the cleaved pyridine-2-thiolate unit in 1–4/[5]ClO4–[8]ClO4. The formation of the complexes was ascertained by their single-crystal X-ray structures, which also established sterically constrained four-membered chelate (average N1–M–S1 angle of 67.89°) originated from the in situ-generated pyridine-2-thiolate unit. Ruthenium(III)-derived one-electron paramagnetic complexes 1–2 (S = 1/2, magnetic moment/B.M. = 1.82 (1)/1.81(2)) exhibited metal-based anisotropic electron paramagnetic resonance (EPR) (Δg: 1/2 = 0.64/0.93, ⟨g⟩: 1/2 = 2.173/2.189) and a broad 1H nuclear magnetic resonance (NMR) signature due to the contact shift effect. The spectroelectrochemical and electronic structural aspects of the complexes were analyzed experimentally in combination with theoretical calculations of density functional theory (DFT and TD-DFT). The unperturbed feature of DTDP even in refluxing ethanol over a period of 10 h can be attributed to the active participation of the metal fragments in facilitating S–S bond cleavage in 1–4/[5]ClO4–[8]ClO4. It also revealed the following three probable pathways toward S–S bond cleavage of DTDP as a function of metal precursors: (i) the metal-to-ligand charge-transfer (MLCT) (RuII → σ* of DTDP)-driven metal oxidation (RuII → RuIII) process in the case of relatively electron-rich metal fragments {RuII(acac)2} or RuIICl2 in 1 or 2, respectively; (ii) metal hydride-assisted formation of 3 or 4 with the concomitant generation of H2; and (iii) S–S bond reduction with the simultaneous oxidation of the solvent benzyl alcohol to benzaldehyde. |
Author | Lahiri, Goutam Kumar Dey, Sanchaita Dhara, Suman Panda, Sanjib |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Suman orcidid: 0000-0003-1948-4490 surname: Dhara fullname: Dhara, Suman – sequence: 2 givenname: Sanchaita surname: Dey fullname: Dey, Sanchaita – sequence: 3 givenname: Sanjib orcidid: 0000-0001-6556-8009 surname: Panda fullname: Panda, Sanjib – sequence: 4 givenname: Goutam Kumar orcidid: 0000-0002-0199-6132 surname: Lahiri fullname: Lahiri, Goutam Kumar email: lahiri@chem.iitb.ac.in |
BookMark | eNqFkMFOAjEQhhujiaA-gkmPHlxsu2zLHhVRTDCoYOJt021noWRpsV1IuPECnnwTH8kncTcYr57mn5n_m2T-Njq0zgJC55R0KGH0SqrQMdb5mZrDssMUoT3OD1CLJoxECSVvh6hFSK0p5-kxaoewIISkcZe30MfY4moO-HkNoTLOYlfgyffuc4JvnNW4X4LcyBk0Y3bJvndf0a2p5sZps9p6o42tVxZPoARVmQ3glzWWNTcO-KmUVeH8MnTw46g_xc7j4VbXDDRy4soN2Ao_gjayAo0HTXuKjgpZBjj7rSfo9W4w7Q-j0fj-oX89iiRLelUkmNKJzpUivMiBxiovUpV3lRCa067o5okWqcyp5oyqmPUoieNEMc5Ej4DgIj5BF_u7K-_em8-zpQkKylJacOuQMUFSQgVncW1N9lblXQgeimzlzVL6bUZJ1sSf1fFnf_Fnv_HXHN1zzXrh1t7WD_3D_AB6hpDe |
CitedBy_id | crossref_primary_10_1039_D3DT03730D crossref_primary_10_1039_D3DT00929G crossref_primary_10_1039_D3DT02925E crossref_primary_10_1021_acs_inorgchem_4c01971 crossref_primary_10_1021_acs_inorgchem_3c00418 crossref_primary_10_1021_acs_inorgchem_4c01384 crossref_primary_10_1039_D3NJ04221A |
Cites_doi | 10.1002/anie.201301487 10.1021/acs.inorgchem.1c02883 10.1021/om971004o 10.1038/nrm954 10.1002/9780470132463.ch13 10.1002/chem.201901758 10.1039/D0SC04216A 10.1021/ic00164a036 10.1246/cl.1988.1137 10.1021/acs.inorgchem.5b02541 10.1107/S0108767311083280 10.1002/anie.201503873 10.1021/ja01092a015 10.1021/ic00273a010 10.1107/S0108767307043930 10.1002/chem.201801377 10.1021/acs.inorgchem.8b01996 10.1016/j.jconrel.2014.06.012 10.1021/ja9090676 10.1002/chem.201705601 10.1021/ja102316a 10.1016/j.jmb.2018.12.006 10.1039/a606871e 10.1021/ic000722r 10.1021/acs.inorgchem.1c01680 10.1021/la034330j 10.1039/B403332A 10.1002/9780470132555.ch78 10.1021/acsomega.8b01707 10.1002/chem.201502996 10.1039/D1DT03076K 10.1039/jr9590002003 10.1007/BF01114537 10.1063/1.477483 10.1039/b206476f 10.1002/chem.202004747 10.1039/D1DT01488A 10.1039/dt9850002101 10.1039/C6DT03764J 10.1021/ic034469h 10.1021/acs.inorgchem.8b03191 10.1021/ic503070j 10.1021/acs.inorgchem.1c00634 10.1021/ja027397m 10.1016/0009-2614(96)00440-X 10.1063/1.475855 10.1002/anie.202100979 10.1021/cr300358b 10.1002/pro.5560021002 10.1039/D2DT00184E 10.1021/om800776b 10.1021/ol048404+ 10.1021/ed069p62.1 10.1039/D1DT02211C 10.1039/C6CC10200J 10.1063/1.1394921 10.1021/ic201975h 10.1002/ejic.202000005 10.1016/j.addr.2011.02.002 10.1016/0009-2614(82)80012-2 10.1021/om0498854 10.1021/ic8014496 10.1002/jcc.10189 10.1021/acs.inorgchem.7b02172 10.1021/acs.inorgchem.2c00706 10.1021/jacs.9b09954 10.1107/S2053229614024218 10.1016/0022-1902(66)80191-4 10.1103/PhysRevB.37.785 10.1002/chem.201201785 10.1021/ic00146a007 10.1021/jp9716997 10.1021/acs.inorgchem.9b03065 10.1021/ic50190a006 10.1016/0022-328X(93)80389-S |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.inorgchem.2c01866 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 14312 |
ExternalDocumentID | 10_1021_acs_inorgchem_2c01866 c203426883 |
GroupedDBID | --- -DZ -~X .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH2 IH9 IHE JG~ LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YZZ ~02 53G AAYXX ABJNI ABQRX AGXLV CITATION CUPRZ 7X8 |
ID | FETCH-LOGICAL-a258t-72cd5dbcc06fbe13cbf9cb4c77d61474b5d79ab1d621c32810335c262780e7673 |
IEDL.DBID | ACS |
ISSN | 0020-1669 |
IngestDate | Fri Aug 16 01:04:41 EDT 2024 Fri Aug 23 01:00:51 EDT 2024 Wed Sep 14 07:32:54 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a258t-72cd5dbcc06fbe13cbf9cb4c77d61474b5d79ab1d621c32810335c262780e7673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6556-8009 0000-0002-0199-6132 0000-0003-1948-4490 |
PQID | 2709017623 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2709017623 crossref_primary_10_1021_acs_inorgchem_2c01866 acs_journals_10_1021_acs_inorgchem_2c01866 |
PublicationCentury | 2000 |
PublicationDate | 20220912 2022-09-12 |
PublicationDateYYYYMMDD | 2022-09-12 |
PublicationDate_xml | – month: 09 year: 2022 text: 20220912 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Ahmad N. (ref30/cit30c) 1974; 15 ref1/cit1e ref37/cit37c ref1/cit1d ref37/cit37b ref1/cit1g ref33/cit33a ref1/cit1f ref17/cit17a ref23/cit23a ref23/cit23b ref37/cit37a ref27/cit27a ref27/cit27b ref12/cit12c ref12/cit12b ref12/cit12a ref8/cit8 ref2/cit2b ref31/cit31 ref2/cit2a ref1/cit1a ref33/cit33c ref34/cit34 ref1/cit1c ref1/cit1b ref5/cit5b ref5/cit5a ref16/cit16b ref35/cit35 ref36/cit36a ref16/cit16a ref36/cit36b ref11/cit11f ref21/cit21 Saha A. (ref20/cit20) 2001; 40 ref3/cit3b ref11/cit11c ref22/cit22a ref11/cit11b ref11/cit11e ref3/cit3a ref11/cit11d ref11/cit11a ref13/cit13 ref22/cit22b ref19/cit19a ref24/cit24 ref6/cit6 ref18/cit18 ref19/cit19d ref19/cit19c ref19/cit19b ref10/cit10d ref29/cit29b ref25/cit25 ref29/cit29a ref10/cit10a ref10/cit10b ref10/cit10c ref32/cit32 ref39/cit39 ref14/cit14 Kar S. (ref17/cit17b) 2004 ref28/cit28 ref40/cit40 Lay P. A. (ref30/cit30f) 1986; 24 ref26/cit26 Sheldrick G. M. (ref33/cit33b) 1997 ref38/cit38b ref38/cit38c ref15/cit15 ref38/cit38a ref30/cit30a ref41/cit41 ref30/cit30b ref4/cit4 ref30/cit30e ref30/cit30d ref30/cit30g ref7/cit7 |
References_xml | – ident: ref1/cit1g doi: 10.1002/anie.201301487 – ident: ref15/cit15 doi: 10.1021/acs.inorgchem.1c02883 – ident: ref11/cit11d doi: 10.1021/om971004o – volume: 40 start-page: 198 year: 2001 ident: ref20/cit20 publication-title: Indian J. Chem. contributor: fullname: Saha A. – ident: ref3/cit3b doi: 10.1038/nrm954 – volume: 15 start-page: 45 year: 1974 ident: ref30/cit30c publication-title: Inorg. Synth. doi: 10.1002/9780470132463.ch13 contributor: fullname: Ahmad N. – ident: ref1/cit1d doi: 10.1002/chem.201901758 – ident: ref2/cit2b doi: 10.1039/D0SC04216A – ident: ref30/cit30g doi: 10.1021/ic00164a036 – ident: ref30/cit30a doi: 10.1246/cl.1988.1137 – ident: ref19/cit19a doi: 10.1021/acs.inorgchem.5b02541 – ident: ref32/cit32 doi: 10.1107/S0108767311083280 – ident: ref29/cit29a doi: 10.1002/anie.201503873 – ident: ref21/cit21 doi: 10.1021/ja01092a015 – ident: ref25/cit25 doi: 10.1021/ic00273a010 – ident: ref33/cit33a doi: 10.1107/S0108767307043930 – ident: ref10/cit10d doi: 10.1002/chem.201801377 – ident: ref23/cit23b doi: 10.1021/acs.inorgchem.8b01996 – ident: ref4/cit4 doi: 10.1016/j.jconrel.2014.06.012 – ident: ref5/cit5b doi: 10.1021/ja9090676 – ident: ref1/cit1f doi: 10.1002/chem.201705601 – ident: ref8/cit8 doi: 10.1021/ja102316a – ident: ref9/cit9 doi: 10.1016/j.jmb.2018.12.006 – ident: ref17/cit17a doi: 10.1039/a606871e – ident: ref11/cit11c doi: 10.1021/ic000722r – ident: ref1/cit1b doi: 10.1021/acs.inorgchem.1c01680 – ident: ref40/cit40 – ident: ref7/cit7 doi: 10.1021/la034330j – start-page: 1752 year: 2004 ident: ref17/cit17b publication-title: Dalton Trans. doi: 10.1039/B403332A contributor: fullname: Kar S. – volume: 24 start-page: 291 year: 1986 ident: ref30/cit30f publication-title: Inorg. Synth. doi: 10.1002/9780470132555.ch78 contributor: fullname: Lay P. A. – ident: ref31/cit31 doi: 10.1021/acsomega.8b01707 – ident: ref10/cit10c doi: 10.1002/chem.201502996 – ident: ref22/cit22a doi: 10.1039/D1DT03076K – ident: ref12/cit12a doi: 10.1039/jr9590002003 – ident: ref36/cit36a doi: 10.1007/BF01114537 – ident: ref37/cit37b doi: 10.1063/1.477483 – ident: ref11/cit11f doi: 10.1039/b206476f – ident: ref13/cit13 doi: 10.1002/chem.202004747 – ident: ref14/cit14 doi: 10.1039/D1DT01488A – ident: ref16/cit16a doi: 10.1039/dt9850002101 – ident: ref19/cit19d doi: 10.1039/C6DT03764J – ident: ref22/cit22b doi: 10.1021/ic034469h – ident: ref18/cit18 doi: 10.1021/acs.inorgchem.8b03191 – ident: ref27/cit27b doi: 10.1021/ic503070j – ident: ref19/cit19b doi: 10.1021/ic503070j – ident: ref12/cit12c doi: 10.1021/acs.inorgchem.1c00634 – ident: ref10/cit10b doi: 10.1021/ja027397m – ident: ref37/cit37a doi: 10.1016/0009-2614(96)00440-X – ident: ref37/cit37c doi: 10.1063/1.475855 – ident: ref1/cit1c doi: 10.1002/anie.202100979 – ident: ref2/cit2a doi: 10.1021/cr300358b – ident: ref3/cit3a doi: 10.1002/pro.5560021002 – ident: ref19/cit19c doi: 10.1039/D2DT00184E – ident: ref11/cit11a doi: 10.1021/om800776b – ident: ref5/cit5a doi: 10.1021/ol048404+ – ident: ref12/cit12b doi: 10.1021/ed069p62.1 – ident: ref10/cit10a doi: 10.1039/D1DT02211C – ident: ref24/cit24 doi: 10.1039/C6CC10200J – ident: ref38/cit38b doi: 10.1063/1.1394921 – ident: ref34/cit34 – ident: ref26/cit26 doi: 10.1021/ic201975h – ident: ref1/cit1e doi: 10.1002/ejic.202000005 – volume-title: Program for Crystal Structure Solution and Refinement year: 1997 ident: ref33/cit33b contributor: fullname: Sheldrick G. M. – ident: ref6/cit6 doi: 10.1016/j.addr.2011.02.002 – ident: ref36/cit36b doi: 10.1016/0009-2614(82)80012-2 – ident: ref39/cit39 – ident: ref11/cit11b doi: 10.1021/om0498854 – ident: ref27/cit27a doi: 10.1021/ic8014496 – ident: ref38/cit38c doi: 10.1002/jcc.10189 – ident: ref29/cit29b doi: 10.1021/acs.inorgchem.7b02172 – ident: ref1/cit1a doi: 10.1021/acs.inorgchem.2c00706 – ident: ref28/cit28 doi: 10.1021/jacs.9b09954 – ident: ref33/cit33c doi: 10.1107/S2053229614024218 – ident: ref30/cit30b doi: 10.1016/0022-1902(66)80191-4 – ident: ref35/cit35 doi: 10.1103/PhysRevB.37.785 – ident: ref23/cit23a doi: 10.1002/chem.201201785 – ident: ref30/cit30e doi: 10.1021/ic00146a007 – ident: ref38/cit38a doi: 10.1021/jp9716997 – ident: ref41/cit41 – ident: ref16/cit16b doi: 10.1021/acs.inorgchem.9b03065 – ident: ref30/cit30d doi: 10.1021/ic50190a006 – ident: ref11/cit11e doi: 10.1016/0022-328X(93)80389-S |
SSID | ssj0009346 |
Score | 2.4846632 |
Snippet | This article deals with the S–S bond scission of the model substrate 2,2′-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors:... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 14297 |
Title | On the Question of S–S Bond Cleavage of 2,2′-Dithiodipyridine on Selective Ru and Os Platforms. MLCT or Hydride or Solvent Mediated Event |
URI | http://dx.doi.org/10.1021/acs.inorgchem.2c01866 https://search.proquest.com/docview/2709017623 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOcCFN6K8NEicEEljJ7GTI0pbrRClFWml3iK_oq5YkmqTRSqn_gFO_Sf9Sf0lncluQBWqgFsykaPYY3u-eB4fY28jS8cKLgtUzWWQCJsHJkt8kGmuTC6tNG4IkP0sJ4fJx6P0aI1t3uDBF3xT2w4xKEqwE99CYSMq0XaL3RYKFwhhoaL8XWU3Xmbm0D8RlzIfU3Zueg2ZJNtdN0nXd-TBzOzcZ_tjss4yuuRruOhNaH_8WbvxX3vwgN1bQU74sJwjD9mabx6xO8XI9PaY_dxrAHEgDIefqCdoaygvz85LINJhKGZef8dth8Tivbg8uwi2pv3xtHXTk9P5FI0fPmqgHBh1cPOELwvQ2G6vg_2Z7gkVdyHsfioOoJ3D5JQI3T1dlu2Moi1hd6AL8Q626fYJO9zZPigmwYqmIdAizfpACetSZ6yNZG08j62pc2sSq5RD268SkzqVa8OdFNzGIuNRHKdWSKGyyCup4qdsvWkb_4yBj5TRHhFFTg5ZStpNbeoSlCSpjnm9wd7hYFarZdZVgwdd8IqEv0a4Wo3wBgtHtVYny9Idf2vwZlR-hRogz4lufLvoKpxriJvQbsTP_-cLXrC7grIlBsaJl2y9ny_8K8QwvXk9zNsrMQLvVw |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVKWZQN5amWp5FYIRJiJ7aTJUpbDTDTIjIV3UV-RUQMSTXJVCqr_gAr_oRP6pf02jNpVSSEuktuZMuv-B77Pg5CryPtrhVMGoiK8CChOgtUmtgglUSojGuujHeQ3eejw-TjETtaQ3yIhYFGdFBT5434V9kFyDsnqxuQQl9-hFRHLlPbLXSbCVCaDhLlxVWy3XgZoOOORoTzbIjc-Vc1TjPp7rpmur4xe22zt4m-XrbTO5l8Dxe9CvXPv1I43rwj99DdFQDF75cr5j5as80DtJEPvG8P0a-DBgMqxP4qFGYNtxUuzs9-F9hREON8ZuUJbEJOTN_S87M_wU7df6tbUx-fzmtQhfCpwYXn14GtFH9ZYAnlDjr8eSZ7h5G7EE_G-RS3czw6dfTu1j0W7cz5XuKJJw-xBu-610focG93mo-CFWlDIClL-0BQbZhRWke8UpbEWlWZVokWwgASEIliRmRSEcMp0TFNSRTHTFNORRpZwUX8GK03bWO3ELaRUNICvsicedaF8DLNTAKShMmYVNvoDQxmufrputLb0ykpnfByhMvVCG-jcJjd8niZyON_BV4Na6CEGXB2FNnYdtGVVESAokCLxE9u0oKXaGM0nYzL8Yf9T0_RHeriKDwXxTO03s8X9jmgm1698Ev5Ai8097w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB60gval3mm9juCTmJiZJDPJY0m7rNobpoWCDyFzCQ1dk2WTLdSn_gGf_Cf-pP4Sz5nNViqI6FtyhglzP1_mXD5CXgcarxVM4smKCS_iOvVUElkvKZlUqdBCGecguyfGR9GH4_h48KrEWBhoRAdf6pwRH3f11FRDhgH2DuV1AyXQny8-1wFma7tJbsWSORPtZpb_SrgbLoJ08PeICZEuo3f-9BnUTrq7rp2uH85O44zuks9XbXWOJqf-vFe-_vpbGsf_68w9sjYAUbq5WDn3yQ3bPCB3siX_20Pybb-hgA6puxKF2aNtRfPLi-85RSpimk1seQaHEYr5W3558cPbqvuTujX19HxWg0qEoobmjmcHjlT6aU5LqLff0YNJ2SNW7ny6u5Md0nZGx-dI827xMW8n6INJdx2JiDV0G18fkaPR9mE29gbyBq_kcdJ7kmsTG6V1ICplWahVlWoVaSkNIAIZqdjItFTMCM50yBMWhGGsueAyCawUMnxMVpq2seuE2kCq0gLOSNFMi6G8sY5NBJIoLkNWbZA3MJjFsPm6wtnVOStQeDXCxTDCG8RfznAxXST0-FuFV8t1UMAMoD2lbGw77wouA0BToE3CJ__Sgpfk9sHWqNh5v_fxKVnlGE7hKCmekZV-NrfPAeT06oVbzT8BC4b6Ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Question+of+S%E2%80%93S+Bond+Cleavage+of+2%2C2%E2%80%B2-Dithiodipyridine+on+Selective+Ru+and+Os+Platforms.+MLCT+or+Hydride+or+Solvent+Mediated+Event&rft.jtitle=Inorganic+chemistry&rft.au=Dhara%2C+Suman&rft.au=Dey%2C+Sanchaita&rft.au=Panda%2C+Sanjib&rft.au=Lahiri%2C+Goutam+Kumar&rft.date=2022-09-12&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=61&rft.issue=36&rft.spage=14297&rft.epage=14312&rft_id=info:doi/10.1021%2Facs.inorgchem.2c01866&rft.externalDocID=c203426883 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |