On the Question of S–S Bond Cleavage of 2,2′-Dithiodipyridine on Selective Ru and Os Platforms. MLCT or Hydride or Solvent Mediated Event

This article deals with the S–S bond scission of the model substrate 2,2′-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors: RuII(acac)2, [RuIICl2(PPh3)3], [RuIIHCl­(CO)­(PPh3)3], [RuII(H)2(CO)­(PPh3)3], [RuII(bpy)2Cl2], [RuII(pap)2Cl2], [OsII(bpy)2Cl2], and [OsII(pap)2C...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 61; no. 36; pp. 14297 - 14312
Main Authors Dhara, Suman, Dey, Sanchaita, Panda, Sanjib, Lahiri, Goutam Kumar
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.09.2022
Online AccessGet full text

Cover

Loading…
Abstract This article deals with the S–S bond scission of the model substrate 2,2′-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors: RuII(acac)2, [RuIICl2(PPh3)3], [RuIIHCl­(CO)­(PPh3)3], [RuII(H)2(CO)­(PPh3)3], [RuII(bpy)2Cl2], [RuII(pap)2Cl2], [OsII(bpy)2Cl2], and [OsII(pap)2Cl2] (acac, acetylacetonate; bpy, 2,2′-bipyridine; pap, 2-phenylazopyridine). This led to the eventual formation of the corresponding mononuclear complexes containing the cleaved pyridine-2-thiolate unit in 1–4/[5]­ClO4–[8]­ClO4. The formation of the complexes was ascertained by their single-crystal X-ray structures, which also established sterically constrained four-membered chelate (average N1–M–S1 angle of 67.89°) originated from the in situ-generated pyridine-2-thiolate unit. Ruthenium­(III)-derived one-electron paramagnetic complexes 1–2 (S = 1/2, magnetic moment/B.M. = 1.82 (1)/1.81­(2)) exhibited metal-based anisotropic electron paramagnetic resonance (EPR) (Δg: 1/2 = 0.64/0.93, ⟨g⟩: 1/2 = 2.173/2.189) and a broad 1H nuclear magnetic resonance (NMR) signature due to the contact shift effect. The spectroelectrochemical and electronic structural aspects of the complexes were analyzed experimentally in combination with theoretical calculations of density functional theory (DFT and TD-DFT). The unperturbed feature of DTDP even in refluxing ethanol over a period of 10 h can be attributed to the active participation of the metal fragments in facilitating S–S bond cleavage in 1–4/[5]­ClO4–[8]­ClO4. It also revealed the following three probable pathways toward S–S bond cleavage of DTDP as a function of metal precursors: (i) the metal-to-ligand charge-transfer (MLCT) (RuII → σ* of DTDP)-driven metal oxidation (RuII → RuIII) process in the case of relatively electron-rich metal fragments {RuII(acac)2} or RuIICl2 in 1 or 2, respectively; (ii) metal hydride-assisted formation of 3 or 4 with the concomitant generation of H2; and (iii) S–S bond reduction with the simultaneous oxidation of the solvent benzyl alcohol to benzaldehyde.
AbstractList This article deals with the S–S bond scission of the model substrate 2,2′-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors: RuII(acac)2, [RuIICl2(PPh3)3], [RuIIHCl­(CO)­(PPh3)3], [RuII(H)2(CO)­(PPh3)3], [RuII(bpy)2Cl2], [RuII(pap)2Cl2], [OsII(bpy)2Cl2], and [OsII(pap)2Cl2] (acac, acetylacetonate; bpy, 2,2′-bipyridine; pap, 2-phenylazopyridine). This led to the eventual formation of the corresponding mononuclear complexes containing the cleaved pyridine-2-thiolate unit in 1–4/[5]­ClO4–[8]­ClO4. The formation of the complexes was ascertained by their single-crystal X-ray structures, which also established sterically constrained four-membered chelate (average N1–M–S1 angle of 67.89°) originated from the in situ-generated pyridine-2-thiolate unit. Ruthenium­(III)-derived one-electron paramagnetic complexes 1–2 (S = 1/2, magnetic moment/B.M. = 1.82 (1)/1.81­(2)) exhibited metal-based anisotropic electron paramagnetic resonance (EPR) (Δg: 1/2 = 0.64/0.93, ⟨g⟩: 1/2 = 2.173/2.189) and a broad 1H nuclear magnetic resonance (NMR) signature due to the contact shift effect. The spectroelectrochemical and electronic structural aspects of the complexes were analyzed experimentally in combination with theoretical calculations of density functional theory (DFT and TD-DFT). The unperturbed feature of DTDP even in refluxing ethanol over a period of 10 h can be attributed to the active participation of the metal fragments in facilitating S–S bond cleavage in 1–4/[5]­ClO4–[8]­ClO4. It also revealed the following three probable pathways toward S–S bond cleavage of DTDP as a function of metal precursors: (i) the metal-to-ligand charge-transfer (MLCT) (RuII → σ* of DTDP)-driven metal oxidation (RuII → RuIII) process in the case of relatively electron-rich metal fragments {RuII(acac)2} or RuIICl2 in 1 or 2, respectively; (ii) metal hydride-assisted formation of 3 or 4 with the concomitant generation of H2; and (iii) S–S bond reduction with the simultaneous oxidation of the solvent benzyl alcohol to benzaldehyde.
Author Lahiri, Goutam Kumar
Dey, Sanchaita
Dhara, Suman
Panda, Sanjib
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Suman
  orcidid: 0000-0003-1948-4490
  surname: Dhara
  fullname: Dhara, Suman
– sequence: 2
  givenname: Sanchaita
  surname: Dey
  fullname: Dey, Sanchaita
– sequence: 3
  givenname: Sanjib
  orcidid: 0000-0001-6556-8009
  surname: Panda
  fullname: Panda, Sanjib
– sequence: 4
  givenname: Goutam Kumar
  orcidid: 0000-0002-0199-6132
  surname: Lahiri
  fullname: Lahiri, Goutam Kumar
  email: lahiri@chem.iitb.ac.in
BookMark eNqFkMFOAjEQhhujiaA-gkmPHlxsu2zLHhVRTDCoYOJt021noWRpsV1IuPECnnwTH8kncTcYr57mn5n_m2T-Njq0zgJC55R0KGH0SqrQMdb5mZrDssMUoT3OD1CLJoxECSVvh6hFSK0p5-kxaoewIISkcZe30MfY4moO-HkNoTLOYlfgyffuc4JvnNW4X4LcyBk0Y3bJvndf0a2p5sZps9p6o42tVxZPoARVmQ3glzWWNTcO-KmUVeH8MnTw46g_xc7j4VbXDDRy4soN2Ao_gjayAo0HTXuKjgpZBjj7rSfo9W4w7Q-j0fj-oX89iiRLelUkmNKJzpUivMiBxiovUpV3lRCa067o5okWqcyp5oyqmPUoieNEMc5Ej4DgIj5BF_u7K-_em8-zpQkKylJacOuQMUFSQgVncW1N9lblXQgeimzlzVL6bUZJ1sSf1fFnf_Fnv_HXHN1zzXrh1t7WD_3D_AB6hpDe
CitedBy_id crossref_primary_10_1039_D3DT03730D
crossref_primary_10_1039_D3DT00929G
crossref_primary_10_1039_D3DT02925E
crossref_primary_10_1021_acs_inorgchem_4c01971
crossref_primary_10_1021_acs_inorgchem_3c00418
crossref_primary_10_1021_acs_inorgchem_4c01384
crossref_primary_10_1039_D3NJ04221A
Cites_doi 10.1002/anie.201301487
10.1021/acs.inorgchem.1c02883
10.1021/om971004o
10.1038/nrm954
10.1002/9780470132463.ch13
10.1002/chem.201901758
10.1039/D0SC04216A
10.1021/ic00164a036
10.1246/cl.1988.1137
10.1021/acs.inorgchem.5b02541
10.1107/S0108767311083280
10.1002/anie.201503873
10.1021/ja01092a015
10.1021/ic00273a010
10.1107/S0108767307043930
10.1002/chem.201801377
10.1021/acs.inorgchem.8b01996
10.1016/j.jconrel.2014.06.012
10.1021/ja9090676
10.1002/chem.201705601
10.1021/ja102316a
10.1016/j.jmb.2018.12.006
10.1039/a606871e
10.1021/ic000722r
10.1021/acs.inorgchem.1c01680
10.1021/la034330j
10.1039/B403332A
10.1002/9780470132555.ch78
10.1021/acsomega.8b01707
10.1002/chem.201502996
10.1039/D1DT03076K
10.1039/jr9590002003
10.1007/BF01114537
10.1063/1.477483
10.1039/b206476f
10.1002/chem.202004747
10.1039/D1DT01488A
10.1039/dt9850002101
10.1039/C6DT03764J
10.1021/ic034469h
10.1021/acs.inorgchem.8b03191
10.1021/ic503070j
10.1021/acs.inorgchem.1c00634
10.1021/ja027397m
10.1016/0009-2614(96)00440-X
10.1063/1.475855
10.1002/anie.202100979
10.1021/cr300358b
10.1002/pro.5560021002
10.1039/D2DT00184E
10.1021/om800776b
10.1021/ol048404+
10.1021/ed069p62.1
10.1039/D1DT02211C
10.1039/C6CC10200J
10.1063/1.1394921
10.1021/ic201975h
10.1002/ejic.202000005
10.1016/j.addr.2011.02.002
10.1016/0009-2614(82)80012-2
10.1021/om0498854
10.1021/ic8014496
10.1002/jcc.10189
10.1021/acs.inorgchem.7b02172
10.1021/acs.inorgchem.2c00706
10.1021/jacs.9b09954
10.1107/S2053229614024218
10.1016/0022-1902(66)80191-4
10.1103/PhysRevB.37.785
10.1002/chem.201201785
10.1021/ic00146a007
10.1021/jp9716997
10.1021/acs.inorgchem.9b03065
10.1021/ic50190a006
10.1016/0022-328X(93)80389-S
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.inorgchem.2c01866
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 14312
ExternalDocumentID 10_1021_acs_inorgchem_2c01866
c203426883
GroupedDBID ---
-DZ
-~X
.K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
IHE
JG~
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YZZ
~02
53G
AAYXX
ABJNI
ABQRX
AGXLV
CITATION
CUPRZ
7X8
ID FETCH-LOGICAL-a258t-72cd5dbcc06fbe13cbf9cb4c77d61474b5d79ab1d621c32810335c262780e7673
IEDL.DBID ACS
ISSN 0020-1669
IngestDate Fri Aug 16 01:04:41 EDT 2024
Fri Aug 23 01:00:51 EDT 2024
Wed Sep 14 07:32:54 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a258t-72cd5dbcc06fbe13cbf9cb4c77d61474b5d79ab1d621c32810335c262780e7673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6556-8009
0000-0002-0199-6132
0000-0003-1948-4490
PQID 2709017623
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2709017623
crossref_primary_10_1021_acs_inorgchem_2c01866
acs_journals_10_1021_acs_inorgchem_2c01866
PublicationCentury 2000
PublicationDate 20220912
2022-09-12
PublicationDateYYYYMMDD 2022-09-12
PublicationDate_xml – month: 09
  year: 2022
  text: 20220912
  day: 12
PublicationDecade 2020
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Ahmad N. (ref30/cit30c) 1974; 15
ref1/cit1e
ref37/cit37c
ref1/cit1d
ref37/cit37b
ref1/cit1g
ref33/cit33a
ref1/cit1f
ref17/cit17a
ref23/cit23a
ref23/cit23b
ref37/cit37a
ref27/cit27a
ref27/cit27b
ref12/cit12c
ref12/cit12b
ref12/cit12a
ref8/cit8
ref2/cit2b
ref31/cit31
ref2/cit2a
ref1/cit1a
ref33/cit33c
ref34/cit34
ref1/cit1c
ref1/cit1b
ref5/cit5b
ref5/cit5a
ref16/cit16b
ref35/cit35
ref36/cit36a
ref16/cit16a
ref36/cit36b
ref11/cit11f
ref21/cit21
Saha A. (ref20/cit20) 2001; 40
ref3/cit3b
ref11/cit11c
ref22/cit22a
ref11/cit11b
ref11/cit11e
ref3/cit3a
ref11/cit11d
ref11/cit11a
ref13/cit13
ref22/cit22b
ref19/cit19a
ref24/cit24
ref6/cit6
ref18/cit18
ref19/cit19d
ref19/cit19c
ref19/cit19b
ref10/cit10d
ref29/cit29b
ref25/cit25
ref29/cit29a
ref10/cit10a
ref10/cit10b
ref10/cit10c
ref32/cit32
ref39/cit39
ref14/cit14
Kar S. (ref17/cit17b) 2004
ref28/cit28
ref40/cit40
Lay P. A. (ref30/cit30f) 1986; 24
ref26/cit26
Sheldrick G. M. (ref33/cit33b) 1997
ref38/cit38b
ref38/cit38c
ref15/cit15
ref38/cit38a
ref30/cit30a
ref41/cit41
ref30/cit30b
ref4/cit4
ref30/cit30e
ref30/cit30d
ref30/cit30g
ref7/cit7
References_xml – ident: ref1/cit1g
  doi: 10.1002/anie.201301487
– ident: ref15/cit15
  doi: 10.1021/acs.inorgchem.1c02883
– ident: ref11/cit11d
  doi: 10.1021/om971004o
– volume: 40
  start-page: 198
  year: 2001
  ident: ref20/cit20
  publication-title: Indian J. Chem.
  contributor:
    fullname: Saha A.
– ident: ref3/cit3b
  doi: 10.1038/nrm954
– volume: 15
  start-page: 45
  year: 1974
  ident: ref30/cit30c
  publication-title: Inorg. Synth.
  doi: 10.1002/9780470132463.ch13
  contributor:
    fullname: Ahmad N.
– ident: ref1/cit1d
  doi: 10.1002/chem.201901758
– ident: ref2/cit2b
  doi: 10.1039/D0SC04216A
– ident: ref30/cit30g
  doi: 10.1021/ic00164a036
– ident: ref30/cit30a
  doi: 10.1246/cl.1988.1137
– ident: ref19/cit19a
  doi: 10.1021/acs.inorgchem.5b02541
– ident: ref32/cit32
  doi: 10.1107/S0108767311083280
– ident: ref29/cit29a
  doi: 10.1002/anie.201503873
– ident: ref21/cit21
  doi: 10.1021/ja01092a015
– ident: ref25/cit25
  doi: 10.1021/ic00273a010
– ident: ref33/cit33a
  doi: 10.1107/S0108767307043930
– ident: ref10/cit10d
  doi: 10.1002/chem.201801377
– ident: ref23/cit23b
  doi: 10.1021/acs.inorgchem.8b01996
– ident: ref4/cit4
  doi: 10.1016/j.jconrel.2014.06.012
– ident: ref5/cit5b
  doi: 10.1021/ja9090676
– ident: ref1/cit1f
  doi: 10.1002/chem.201705601
– ident: ref8/cit8
  doi: 10.1021/ja102316a
– ident: ref9/cit9
  doi: 10.1016/j.jmb.2018.12.006
– ident: ref17/cit17a
  doi: 10.1039/a606871e
– ident: ref11/cit11c
  doi: 10.1021/ic000722r
– ident: ref1/cit1b
  doi: 10.1021/acs.inorgchem.1c01680
– ident: ref40/cit40
– ident: ref7/cit7
  doi: 10.1021/la034330j
– start-page: 1752
  year: 2004
  ident: ref17/cit17b
  publication-title: Dalton Trans.
  doi: 10.1039/B403332A
  contributor:
    fullname: Kar S.
– volume: 24
  start-page: 291
  year: 1986
  ident: ref30/cit30f
  publication-title: Inorg. Synth.
  doi: 10.1002/9780470132555.ch78
  contributor:
    fullname: Lay P. A.
– ident: ref31/cit31
  doi: 10.1021/acsomega.8b01707
– ident: ref10/cit10c
  doi: 10.1002/chem.201502996
– ident: ref22/cit22a
  doi: 10.1039/D1DT03076K
– ident: ref12/cit12a
  doi: 10.1039/jr9590002003
– ident: ref36/cit36a
  doi: 10.1007/BF01114537
– ident: ref37/cit37b
  doi: 10.1063/1.477483
– ident: ref11/cit11f
  doi: 10.1039/b206476f
– ident: ref13/cit13
  doi: 10.1002/chem.202004747
– ident: ref14/cit14
  doi: 10.1039/D1DT01488A
– ident: ref16/cit16a
  doi: 10.1039/dt9850002101
– ident: ref19/cit19d
  doi: 10.1039/C6DT03764J
– ident: ref22/cit22b
  doi: 10.1021/ic034469h
– ident: ref18/cit18
  doi: 10.1021/acs.inorgchem.8b03191
– ident: ref27/cit27b
  doi: 10.1021/ic503070j
– ident: ref19/cit19b
  doi: 10.1021/ic503070j
– ident: ref12/cit12c
  doi: 10.1021/acs.inorgchem.1c00634
– ident: ref10/cit10b
  doi: 10.1021/ja027397m
– ident: ref37/cit37a
  doi: 10.1016/0009-2614(96)00440-X
– ident: ref37/cit37c
  doi: 10.1063/1.475855
– ident: ref1/cit1c
  doi: 10.1002/anie.202100979
– ident: ref2/cit2a
  doi: 10.1021/cr300358b
– ident: ref3/cit3a
  doi: 10.1002/pro.5560021002
– ident: ref19/cit19c
  doi: 10.1039/D2DT00184E
– ident: ref11/cit11a
  doi: 10.1021/om800776b
– ident: ref5/cit5a
  doi: 10.1021/ol048404+
– ident: ref12/cit12b
  doi: 10.1021/ed069p62.1
– ident: ref10/cit10a
  doi: 10.1039/D1DT02211C
– ident: ref24/cit24
  doi: 10.1039/C6CC10200J
– ident: ref38/cit38b
  doi: 10.1063/1.1394921
– ident: ref34/cit34
– ident: ref26/cit26
  doi: 10.1021/ic201975h
– ident: ref1/cit1e
  doi: 10.1002/ejic.202000005
– volume-title: Program for Crystal Structure Solution and Refinement
  year: 1997
  ident: ref33/cit33b
  contributor:
    fullname: Sheldrick G. M.
– ident: ref6/cit6
  doi: 10.1016/j.addr.2011.02.002
– ident: ref36/cit36b
  doi: 10.1016/0009-2614(82)80012-2
– ident: ref39/cit39
– ident: ref11/cit11b
  doi: 10.1021/om0498854
– ident: ref27/cit27a
  doi: 10.1021/ic8014496
– ident: ref38/cit38c
  doi: 10.1002/jcc.10189
– ident: ref29/cit29b
  doi: 10.1021/acs.inorgchem.7b02172
– ident: ref1/cit1a
  doi: 10.1021/acs.inorgchem.2c00706
– ident: ref28/cit28
  doi: 10.1021/jacs.9b09954
– ident: ref33/cit33c
  doi: 10.1107/S2053229614024218
– ident: ref30/cit30b
  doi: 10.1016/0022-1902(66)80191-4
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.37.785
– ident: ref23/cit23a
  doi: 10.1002/chem.201201785
– ident: ref30/cit30e
  doi: 10.1021/ic00146a007
– ident: ref38/cit38a
  doi: 10.1021/jp9716997
– ident: ref41/cit41
– ident: ref16/cit16b
  doi: 10.1021/acs.inorgchem.9b03065
– ident: ref30/cit30d
  doi: 10.1021/ic50190a006
– ident: ref11/cit11e
  doi: 10.1016/0022-328X(93)80389-S
SSID ssj0009346
Score 2.4846632
Snippet This article deals with the S–S bond scission of the model substrate 2,2′-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors:...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Publisher
StartPage 14297
Title On the Question of S–S Bond Cleavage of 2,2′-Dithiodipyridine on Selective Ru and Os Platforms. MLCT or Hydride or Solvent Mediated Event
URI http://dx.doi.org/10.1021/acs.inorgchem.2c01866
https://search.proquest.com/docview/2709017623
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOcCFN6K8NEicEEljJ7GTI0pbrRClFWml3iK_oq5YkmqTRSqn_gFO_Sf9Sf0lncluQBWqgFsykaPYY3u-eB4fY28jS8cKLgtUzWWQCJsHJkt8kGmuTC6tNG4IkP0sJ4fJx6P0aI1t3uDBF3xT2w4xKEqwE99CYSMq0XaL3RYKFwhhoaL8XWU3Xmbm0D8RlzIfU3Zueg2ZJNtdN0nXd-TBzOzcZ_tjss4yuuRruOhNaH_8WbvxX3vwgN1bQU74sJwjD9mabx6xO8XI9PaY_dxrAHEgDIefqCdoaygvz85LINJhKGZef8dth8Tivbg8uwi2pv3xtHXTk9P5FI0fPmqgHBh1cPOELwvQ2G6vg_2Z7gkVdyHsfioOoJ3D5JQI3T1dlu2Moi1hd6AL8Q626fYJO9zZPigmwYqmIdAizfpACetSZ6yNZG08j62pc2sSq5RD268SkzqVa8OdFNzGIuNRHKdWSKGyyCup4qdsvWkb_4yBj5TRHhFFTg5ZStpNbeoSlCSpjnm9wd7hYFarZdZVgwdd8IqEv0a4Wo3wBgtHtVYny9Idf2vwZlR-hRogz4lufLvoKpxriJvQbsTP_-cLXrC7grIlBsaJl2y9ny_8K8QwvXk9zNsrMQLvVw
link.rule.ids 315,783,787,2772,27088,27936,27937,57066,57116
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVKWZQN5amWp5FYIRJiJ7aTJUpbDTDTIjIV3UV-RUQMSTXJVCqr_gAr_oRP6pf02jNpVSSEuktuZMuv-B77Pg5CryPtrhVMGoiK8CChOgtUmtgglUSojGuujHeQ3eejw-TjETtaQ3yIhYFGdFBT5434V9kFyDsnqxuQQl9-hFRHLlPbLXSbCVCaDhLlxVWy3XgZoOOORoTzbIjc-Vc1TjPp7rpmur4xe22zt4m-XrbTO5l8Dxe9CvXPv1I43rwj99DdFQDF75cr5j5as80DtJEPvG8P0a-DBgMqxP4qFGYNtxUuzs9-F9hREON8ZuUJbEJOTN_S87M_wU7df6tbUx-fzmtQhfCpwYXn14GtFH9ZYAnlDjr8eSZ7h5G7EE_G-RS3czw6dfTu1j0W7cz5XuKJJw-xBu-610focG93mo-CFWlDIClL-0BQbZhRWke8UpbEWlWZVokWwgASEIliRmRSEcMp0TFNSRTHTFNORRpZwUX8GK03bWO3ELaRUNICvsicedaF8DLNTAKShMmYVNvoDQxmufrputLb0ykpnfByhMvVCG-jcJjd8niZyON_BV4Na6CEGXB2FNnYdtGVVESAokCLxE9u0oKXaGM0nYzL8Yf9T0_RHeriKDwXxTO03s8X9jmgm1698Ev5Ai8097w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB60gval3mm9juCTmJiZJDPJY0m7rNobpoWCDyFzCQ1dk2WTLdSn_gGf_Cf-pP4Sz5nNViqI6FtyhglzP1_mXD5CXgcarxVM4smKCS_iOvVUElkvKZlUqdBCGecguyfGR9GH4_h48KrEWBhoRAdf6pwRH3f11FRDhgH2DuV1AyXQny8-1wFma7tJbsWSORPtZpb_SrgbLoJ08PeICZEuo3f-9BnUTrq7rp2uH85O44zuks9XbXWOJqf-vFe-_vpbGsf_68w9sjYAUbq5WDn3yQ3bPCB3siX_20Pybb-hgA6puxKF2aNtRfPLi-85RSpimk1seQaHEYr5W3558cPbqvuTujX19HxWg0qEoobmjmcHjlT6aU5LqLff0YNJ2SNW7ny6u5Md0nZGx-dI827xMW8n6INJdx2JiDV0G18fkaPR9mE29gbyBq_kcdJ7kmsTG6V1ICplWahVlWoVaSkNIAIZqdjItFTMCM50yBMWhGGsueAyCawUMnxMVpq2seuE2kCq0gLOSNFMi6G8sY5NBJIoLkNWbZA3MJjFsPm6wtnVOStQeDXCxTDCG8RfznAxXST0-FuFV8t1UMAMoD2lbGw77wouA0BToE3CJ__Sgpfk9sHWqNh5v_fxKVnlGE7hKCmekZV-NrfPAeT06oVbzT8BC4b6Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Question+of+S%E2%80%93S+Bond+Cleavage+of+2%2C2%E2%80%B2-Dithiodipyridine+on+Selective+Ru+and+Os+Platforms.+MLCT+or+Hydride+or+Solvent+Mediated+Event&rft.jtitle=Inorganic+chemistry&rft.au=Dhara%2C+Suman&rft.au=Dey%2C+Sanchaita&rft.au=Panda%2C+Sanjib&rft.au=Lahiri%2C+Goutam+Kumar&rft.date=2022-09-12&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=61&rft.issue=36&rft.spage=14297&rft.epage=14312&rft_id=info:doi/10.1021%2Facs.inorgchem.2c01866&rft.externalDocID=c203426883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon