Robust Argumentation Machines First International Conference, RATIO 2024, Bielefeld, Germany, June 5–7, 2024, Proceedings

This open access book constitutes the proceedings of the First International Conference on Robust Argumentation Machines, RATIO 2024, which took place in Bielefeld, Germany, during June 5-7, 2024. The 20 full papers and 1 short paper included in the proceedings were carefully reviewed and selected f...

Full description

Saved in:
Bibliographic Details
Main Authors Cimiano, Philipp, Frank, Anette, Kohlhase, Michael, Stein, Benno
Format eBook
LanguageEnglish
Published Cham Springer Nature 2024
Springer
Edition1
SeriesLecture Notes in Computer Science; Lecture Notes in Artificial Intelligence
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This open access book constitutes the proceedings of the First International Conference on Robust Argumentation Machines, RATIO 2024, which took place in Bielefeld, Germany, during June 5-7, 2024. The 20 full papers and 1 short paper included in the proceedings were carefully reviewed and selected from 24 submissions. They were organized in topical sections as follows: Argument Mining; Debate Analysis and Deliberation; Argument Acquisition, Annotation and Quality Assessment; Computational Models of Argumentation; Interactive Argumentation, Recommendation and Personalization; and Argument Search and Retrieval.
AbstractList This open access book constitutes the proceedings of the First International Conference on Robust Argumentation Machines, RATIO 2024, which took place in Bielefeld, Germany, during June 5-7, 2024. The 20 full papers and 1 short paper included in the proceedings were carefully reviewed and selected from 24 submissions. They were organized in topical sections as follows: Argument Mining; Debate Analysis and Deliberation; Argument Acquisition, Annotation and Quality Assessment; Computational Models of Argumentation; Interactive Argumentation, Recommendation and Personalization; and Argument Search and Retrieval.
Author Kohlhase, Michael
Cimiano, Philipp
Stein, Benno
Frank, Anette
Author_xml – sequence: 1
  fullname: Cimiano, Philipp
– sequence: 2
  fullname: Frank, Anette
– sequence: 3
  fullname: Kohlhase, Michael
– sequence: 4
  fullname: Stein, Benno
BookMark eNpNjk1PwzAMhoP4EGzsByCBtCOXgB03aXvgsE3jQxpCQohrlLTpKGxNSboD_56OcZgPth_5fW0P2FHjG8fYBcINAqS3eZpx4kDIFUlSXB2wAfX4R3i4DydsgEmicqAsy0_ZKMZPACBBBJLO2NWrt5vYjSdhuVm7pjNd7Zvxsyk-6sbFc3ZcmVV0o_86ZO_387fZI1-8PDzNJgtuhMxAcaSMrCqksGhAWXJ9KsgU5Mo0sdIKSVQ6UWDlKDcCKps5BFmVDlWpyoqG7Hq3uA3-e-Nip531_qvoPwpmpefTGaGUSR-99G4n9aZ1jW5DvTbhR3tT61Vtw67fTnxYagFaAmgUSqY6FyqXvf9y3196s70UNSYkVEq_BCNkKg
ContentType eBook
DBID V1H
A7I
DOI 10.1007/978-3-031-63536-6
DatabaseName DOAB: Directory of Open Access Books
OAPEN
DatabaseTitleList

Database_xml – sequence: 1
  dbid: V1H
  name: DOAB: Directory of Open Access Books
  url: https://directory.doabooks.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 3031635361
9783031635366
Edition 1
Editor Kohlhase, Michael
Cimiano, Philipp
Stein, Benno
Frank, Anette
Editor_xml – sequence: 1
  fullname: Cimiano, Philipp
– sequence: 2
  fullname: Frank, Anette
– sequence: 3
  fullname: Kohlhase, Michael
– sequence: 4
  fullname: Stein, Benno
ExternalDocumentID EBC31554444
oai_library_oapen_org_20_500_12657_92695
143267
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
GroupedDBID AABBV
AACKP
AAHEH
AAKKN
AALJR
AAQKC
ABEEZ
ABHYI
ABLGM
ADZDO
AEDXK
AEIVC
AEKFX
AFIJG
AGWHU
AIQUZ
ALMA_UNASSIGNED_HOLDINGS
ALNDD
BBABE
CZZ
EIXGO
IEZ
SBO
TPJZQ
TSXQS
V1H
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
A7I
ID FETCH-LOGICAL-a25806-1383b6c52b1a06b3e06bc3ac3ed74b5b2533de2c1fe39a20fb8e105fde16d6df3
IEDL.DBID V1H
ISBN 3031635361
9783031635359
3031635353
9783031635366
IngestDate Wed Jun 18 00:44:14 EDT 2025
Wed Sep 03 02:01:10 EDT 2025
Tue Jul 08 20:02:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q334-342
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a25806-1383b6c52b1a06b3e06bc3ac3ed74b5b2533de2c1fe39a20fb8e105fde16d6df3
OCLC 1446903889
OpenAccessLink https://directory.doabooks.org/handle/20.500.12854/143267
PQID EBC31554444
PageCount 372
ParticipantIDs proquest_ebookcentral_EBC31554444
oapen_primary_oai_library_oapen_org_20_500_12657_92695
oapen_doabooks_143267
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science; Lecture Notes in Artificial Intelligence
PublicationYear 2024
Publisher Springer Nature
Springer
Publisher_xml – name: Springer Nature
– name: Springer
SSID ssj0003233053
Score 2.3898637
Snippet This open access book constitutes the proceedings of the First International Conference on Robust Argumentation Machines, RATIO 2024, which took place in...
SourceID proquest
oapen
SourceType Publisher
SubjectTerms argument mining
argument search and retrieval
Artificial intelligence
computational agrumentation
Computer programming / software engineering
Computer science
Computing and Information Technology
deliberation support
human computer interaction
knowledge representation
Mathematical foundations
Mathematical logic
Mathematical theory of computation
Mathematics
Mathematics and Science
natural language processing
Software Engineering
Subtitle First International Conference, RATIO 2024, Bielefeld, Germany, June 5–7, 2024, Proceedings
TableOfContents Intro -- Preface -- Organization -- Contents -- Argument Mining -- Natural Language Hypotheses in Scientific Papers and How to Tame Them -- 1 Introduction: Scientific Hypotheses as Complex Claims -- 2 Related Work -- 2.1 Argumentation Modeling for Complex Scientific Claims -- 2.2 Knowledge Representation: Modeling Scientific Language with Knowledge Graphs -- 2.3 Hypothesis Representation in Invasion Biology -- 3 Example: The Biotic Resistance Hypothesis -- 4 Towards Formalizing Scientific Hypotheses -- 4.1 A Generic Structure for Scientific Hypotheses -- 4.2 Linking Hypothesis Formulations to Semantic Models -- 4.3 Classifying Relationships Between General and Specific Claims -- 5 Applications of the Framework -- 6 Limitations -- 7 Conclusions and Outlook -- Appendix -- References -- Weakly Supervised Claim Localization in Scientific Abstracts -- 1 Introduction -- 2 Background -- 2.1 Scientific Claim Detection -- 2.2 Input Optimization for Model Interpretability -- 3 Datasets -- 3.1 The INAS Dataset -- 3.2 The SciFact Dataset -- 4 Method -- 4.1 Span-Level Claim Evidence Localization -- 4.2 Sentence-Level Claim Evidence Localization -- 4.3 Evidence Injection -- 5 Experiments -- 5.1 Span-Level Claim Localization -- 5.2 Sentence-Level Claim Localization -- 6 Results -- 6.1 Span-Level Evidence Localization -- 6.2 Sentence-Level Evidence Localization -- 7 Conclusion -- A Experimental Details -- References -- Argument Mining of Attack and Support Patterns in Dialogical Conversations with Sequential Pattern Mining -- 1 Mining Interactions in Debates -- 2 Related Work -- 3 Predicting a Conversational Dataset -- 3.1 Corpus Creation -- 3.2 Mining Conversation Chains from Incomplete Graphs -- 3.3 Argument Abstraction by Stance and Aspect Prediction -- 3.4 Sequential Pattern Mining on Predicted Data -- 4 Results -- 4.1 Attack and Support Patterns
3.1 Overview of the BARD Project and ``the Spider'' Problem -- 3.2 Results with the Original Algorithm -- 3.3 Diagnosis and Solution Proposal -- 3.4 Results of the Improved Version -- 4 Limitation and Future Work -- 5 Conclusion -- A Appendix -- References -- ``Do Not Disturb My Circles!'' Identifying the Type of Counterfactual at Hand (Short Paper) -- 1 Introduction -- 1.1 Introductory Example -- 2 Preliminaries and Related work -- 3 Backtracking in Causal Models -- 3.1 When Backtracking is not Enough -- 3.2 Iterative Backup -- 3.3 Default Logic -- 3.4 Integration of Hyperreals -- 4 Discussion -- References -- Interactive Argumentation, Recommendation and Personalization -- BEA: Building Engaging Argumentation -- 1 Introduction -- 2 Related Work -- 2.1 Argumentative Dialog Systems -- 2.2 Reflective Engagement -- 2.3 Conversational User Engagement and Virtual Avatars -- 3 Prototype and Architecture of BEA -- 3.1 System Architecture -- 3.2 User Interface -- 4 Modeling Reflective Engagement -- 5 Evaluation -- 5.1 Study 1 ch17weber2023fostering: Analyzing Focus on Challenger Arguments -- 5.2 Study 2 ch17aicherspsiva: Influence of Avatar Interface -- 6 Limitations -- 7 Conclusion and Future Work -- References -- Deciphering Personal Argument Styles - A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences -- 1 Introduction -- 2 Background -- 2.1 Argument Data -- 2.2 Argument Preferences -- 2.3 Visual Analytics for Linguistics -- 3 The CUEPAQ Argument Exploration Pipeline -- 3.1 The CUEPipe Workflow -- 3.2 Generating a Data Set for Exploring Argument Preferences -- 3.3 Learning Preferences via Visual Interactive Labeling -- 3.4 Exploring Personal Preferences -- 4 Study: Propositional Attitudes -- 5 Limitations -- 5.1 The CUEPipe -- 5.2 The Proof-of-concept Study -- 6 Conclusion -- References -- Argument Search and Retrieval
4.4 Batched Prompting -- 5 Experimental Evaluation -- 5.1 Experimental Setup -- 5.2 Datasets -- 5.3 Results and Discussion -- 5.4 Qualitative Error Analysis -- 6 Limitations -- 7 Conclusion and Future Work -- A Prompting Templates -- A.1 Isolated Prompting -- A.2 Sequential Prompting -- A.3 Contextualized Prompting -- A.4 Batched Prompting -- References -- Argument Acquisition, Annotation and Quality Assessment -- Are Large Language Models Reliable Argument Quality Annotators? -- 1 Introduction -- 2 Related Work -- 2.1 Evaluating Argument Quality -- 2.2 LLMs as Annotators -- 3 Experimental Design -- 3.1 Expert Annotation -- 3.2 Novice Annotation -- 3.3 Models -- 3.4 Prompting -- 4 Results -- 4.1 Consistency of Argument Quality Annotations -- 4.2 Agreement Between Humans and LLMs -- 4.3 LLMs as Additional Annotators -- 5 Conclusion -- 6 Limitations -- References -- The Impact of Argument Arrangement on Essay Scoring -- 1 Introduction -- 2 Related Work -- 3 Data -- 3.1 Argument-Annotated Essays Corpus -- 3.2 Feedback Corpus -- 3.3 International Corpus of Learner English -- 4 Experiments -- 4.1 ADU and Sematic Type Classification -- 4.2 Predicting Essay Quality with Flows of Semantic Types -- 4.3 Analysis of Feature Impact -- 5 Discussion -- 6 Conclusion -- References -- Finding Argument Fragments on Social Media with Corpus Queries and LLMs -- 1 Introduction -- 2 Argumentative Fragments -- 2.1 An Inventory of Logical Patterns -- 2.2 Nested Patterns -- 3 Data -- 3.1 Corpus and Linguistic Annotation -- 3.2 Manual Annotation of Argument Fragments -- 4 Corpus Queries -- 4.1 Methods -- 4.2 Evaluation and Discussion -- 5 Hierarchical Queries -- 5.1 Methods -- 5.2 Evaluation -- 5.3 Discussion -- 6 Fine-Tuning LLMs -- 6.1 Methods and Evaluation -- 6.2 Discussion: Qualitative Comparison of Approaches -- 7 Limitations -- 8 Conclusion -- References
4.2 Pattern Mining Vs. Analyzing Distributions -- 5 Conclusion -- 5.1 Limitations -- 5.2 Future Work -- References -- Cluster-Specific Rule Mining for Argumentation-Based Classification -- 1 Introduction -- 2 Background -- 3 Cluster-Specific Rule Mining -- 4 Experimental Analysis -- 5 Limitations -- 6 Conclusion -- References -- Debate Analysis and Deliberation -- Automatic Analysis of Political Debates and Manifestos: Successes and Challenges -- 1 Introduction -- 2 Fine-Grained Analysis of Political Discourse -- 2.1 Less Annotation Is More: Few-Shot Claim Classification -- 2.2 Improving Claim Classification with Hierarchical Information -- 2.3 Multilingual Claim Processing -- 2.4 Robust Actor Detection and Mapping -- 3 Coarse-Grained Analysis of Political Discourse -- 3.1 Ideological Characterization -- 3.2 Policy-Domain Characterization -- 4 Conclusions -- References -- PAKT: Perspectivized Argumentation Knowledge Graph and Tool for Deliberation Analysis 5540801En6FigaPrint.eps -- 1 Introduction -- 2 A Data Model for Perspectivized Argumentation -- 3 Constructing PAKTDDO from debate.org -- 3.1 Arguments from debate.org -- 3.2 Characterizing Arguments for Perspectivized Argumentation -- 3.3 Authors and Camps -- 3.4 Implementation and Tools for Building and Using PAKT -- 3.5 Preliminary Evaluation -- 4 Analytics Applied to PAKTDDO -- 5 Case Studies -- 5.1 Should Animal Hunting Be Banned? -- 5.2 Comparison to Other Issues -- 5.3 Argument Level -- 6 Related Work -- 7 Conclusion -- References -- PolArg: Unsupervised Polarity Prediction of Arguments in Real-Time Online Conversations -- 1 Introduction -- 2 Foundations -- 2.1 Computational Argumentation -- 2.2 Natural Language Processing -- 2.3 Online Conversation Platforms -- 3 Related Work -- 4 Prompting Strategies -- 4.1 Isolated Prompting -- 4.2 Sequential Prompting -- 4.3 Contextualized Prompting
Extending the Comparative Argumentative Machine: Multilingualism and Stance Detection
Computational Models of Argumentation -- Enhancing Abstract Argumentation Solvers with Machine Learning-Guided Heuristics: A Feasibility Study -- 1 Introduction -- 2 Preliminaries -- 3 Solution Approaches in Abstract Argumentation -- 4 Machine Learning-Guided Heuristics -- 5 Experimental Analysis -- 5.1 Datasets and Setup -- 5.2 Initial Experimental Analysis -- 5.3 Evaluation and Results -- 6 Limitations -- 7 Conclusion -- References -- Ranking Transition-Based Medical Recommendations Using Assumption-Based Argumentation -- 1 Introduction -- 2 Preliminaries -- 2.1 Abstract Argumentation Frameworks -- 2.2 Ranking-Based Semantics -- 2.3 Assumption-Based Argumentation Frameworks -- 3 Ranking Assumptions -- 4 Case Study -- 5 Related Work -- 6 Limitations -- 7 Conclusion -- References -- Argumentation-Based Probabilistic Causal Reasoning -- 1 Introduction -- 2 Preliminaries -- 3 Causal Reasoning -- 3.1 Defeasible Causal Reasoning -- 3.2 Probabilistic Causal Reasoning -- 4 Counterfactual Reasoning -- 5 Discussion -- 6 Limitations -- 7 Conclusion -- References -- From Networks to Narratives: Bayes Nets and the Problems of Argumentation -- 1 Introduction -- 2 The Bayesian Approach to Argumentation -- 2.1 The Bayesian Framework -- 2.2 Bayesian Belief Networks (BBNs) -- 2.3 Explaining BBNs: Important Challenges -- 3 Algorithmic Approaches to Bayesian Argumentation -- 3.1 The Relation Between Argument Diagrams and Bayesian Networks -- 3.2 Introducing Three Extant Algorithms -- 3.3 Evaluating the Algorithms: Example Networks -- 4 Limitation -- 5 Conclusion -- References -- Enhancing Argument Generation Using Bayesian Networks -- 1 Introduction -- 2 The Question of Independent Arguments -- 2.1 Factor Graphs -- 2.2 Overview of the Factor-Graph-Approach Proposed by J. Sevilla -- 3 Testing and Improving the Factor Graph Algorithm
Title Robust Argumentation Machines
URI https://directory.doabooks.org/handle/20.500.12854/143267
https://library.oapen.org/handle/20.500.12657/92695
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=31554444
Volume 14638
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PT8IwFG4ULnpRESMqZCZep2u7duyoBoImeDBKuDXt-urJQRj8_752g0iMOyzp3qFZ3_b69f34HiF32hpwiHxjQ_Gkk6LFi4fasVj65nEFUKDWFydP3-TkM32di_mvVl-1IV_4rOaF9jizCuH8mnIAT-r3IvGMCEORPuBOz2R2SNo4Ve6zuWZ0snOvcIYHdeG7OKCNRswh-N5A0pp8ZyfM98dSbiOgDQktj1ESB1EcmiPpJZR_7HfYlManpA2-UuGMHEDZISfb_gxR87t2yPF0x8lanZP--8JsqnX0uPrafDcVR2U0DcmUUHXJbDz6eJ7ETXOEWDMxTAJ5IDeyEMxQnUjDAW8F1wUHm6VGGIZAzgIrqAOea5Y4MwQEU84ClVZaxy9Iq1yUcEkiK43OeZ64DHQqnNQaUsNZoZkrtM1lj3TD-6qtTlS99j0i6-fLmhlDea7qxvukagkqT7FEodYUZVJkKmcyFz1yu104FYLCTSaqGj09c49w8Lr6Z9JrcsQQWNRukBvSWq820EdgsDYDBMbZyyB8CD9gSqwD
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Robust+Argumentation+Machines&rft.series=Lecture+Notes+in+Computer+Science%3B+Lecture+Notes+in+Artificial+Intelligence&rft.date=2024-01-01&rft.pub=Springer+Nature&rft.isbn=9783031635359&rft_id=info:doi/10.1007%2F978-3-031-63536-6&rft.externalDBID=V1H&rft.externalDocID=143267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783031635366/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783031635366/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783031635366/sc.gif&client=summon&freeimage=true