Learning spatial patterns with variational Gaussian processes: Regression

A variational Gaussian process (VGP) model specialized in spatial data is introduced, capitalizing on recent advances in the machine learning field. The model is modular and customizable, being capable of handling different assumptions about the data. This work focusses on multivariate robust regres...

Full description

Saved in:
Bibliographic Details
Published inComputers & geosciences Vol. 161; p. 105056
Main Authors Gonçalves, Ítalo Gomes, Guadagnin, Felipe, Cordova, Diogo Peixoto
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A variational Gaussian process (VGP) model specialized in spatial data is introduced, capitalizing on recent advances in the machine learning field. The model is modular and customizable, being capable of handling different assumptions about the data. This work focusses on multivariate robust regression, using an adaptation of the ε-insensitive loss function. The VGP possibilitates end-to-end modeling: normal score transform, detection of the spatial pattern, and prediction. A methodology to deal with large datasets is presented. An open-source implementation is available. •A variational Gaussian process model specialized in spatial data.•Stochastic variational inference is capable of handling large datasets.•Different models available as combinations of latent variables and likelihoods.•Robust multivariate regression with non-Gaussian marginals.
AbstractList A variational Gaussian process (VGP) model specialized in spatial data is introduced, capitalizing on recent advances in the machine learning field. The model is modular and customizable, being capable of handling different assumptions about the data. This work focusses on multivariate robust regression, using an adaptation of the ε-insensitive loss function. The VGP possibilitates end-to-end modeling: normal score transform, detection of the spatial pattern, and prediction. A methodology to deal with large datasets is presented. An open-source implementation is available. •A variational Gaussian process model specialized in spatial data.•Stochastic variational inference is capable of handling large datasets.•Different models available as combinations of latent variables and likelihoods.•Robust multivariate regression with non-Gaussian marginals.
ArticleNumber 105056
Author Gonçalves, Ítalo Gomes
Guadagnin, Felipe
Cordova, Diogo Peixoto
Author_xml – sequence: 1
  givenname: Ítalo Gomes
  orcidid: 0000-0002-5546-6102
  surname: Gonçalves
  fullname: Gonçalves, Ítalo Gomes
  email: italogoncalves@unipampa.edu.br
– sequence: 2
  givenname: Felipe
  orcidid: 0000-0003-0795-4205
  surname: Guadagnin
  fullname: Guadagnin, Felipe
– sequence: 3
  givenname: Diogo Peixoto
  orcidid: 0000-0002-0985-7962
  surname: Cordova
  fullname: Cordova, Diogo Peixoto
BookMark eNp9kEFLAzEQhYNUsK3-Ai_7B7ZOsptsKniQorVQEETPIcnO1pSaLZm14r83tZ49veHNe8PwTdgo9hEZu-Yw48DVzXbm7Qb7mQAhsiNBqjM25rqpykZDNWJjgLkuK4D6gk2ItgA5qeWYrdZoUwxxU9DeDsHuiiwDpkjFVxjei4NNIft9zJul_SQKNhb71HskQrotXnCT8pgDl-y8szvCqz-dsrfHh9fFU7l-Xq4W9-vSCqmGUgslHKhWaQWylY3zNUfrtJhb2blG8dblhFeu0XXV1FrV2rWuA5QwR-90NWXV6a5PPVHCzuxT-LDp23AwRxpma35pmCMNc6KRW3enFubXDgGTIR8wemxDQj-Ytg__9n8AIt9r4w
CitedBy_id crossref_primary_10_1016_j_cageo_2024_105602
crossref_primary_10_1016_j_cageo_2023_105323
crossref_primary_10_1007_s10064_024_03758_y
Cites_doi 10.1038/s41467-020-19160-7
10.1162/neco.2008.08-07-592
10.1080/01621459.2015.1044091
10.18637/jss.v063.i09
10.1007/s13253-020-00401-7
10.1016/j.asr.2019.11.011
10.1080/01621459.2017.1285773
10.1023/A:1012489924661
10.1007/s11004-012-9434-1
10.1016/j.neunet.2019.06.012
10.1007/s11222-017-9766-2
10.1016/j.cageo.2004.03.012
10.1016/j.cageo.2018.07.011
10.1080/01621459.2011.646928
10.1214/17-BA1056R
10.1214/19-STS755
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cageo.2022.105056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
ExternalDocumentID 10_1016_j_cageo_2022_105056
S009830042200022X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-a256t-8262b06d68605d57bc41eab829a5fb761db262c6b7843748648bdbf0e509ecb83
IEDL.DBID AIKHN
ISSN 0098-3004
IngestDate Thu Sep 26 16:50:57 EDT 2024
Fri Feb 23 02:39:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gaussian process
Variational inference
Kriging
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a256t-8262b06d68605d57bc41eab829a5fb761db262c6b7843748648bdbf0e509ecb83
ORCID 0000-0002-5546-6102
0000-0003-0795-4205
0000-0002-0985-7962
ParticipantIDs crossref_primary_10_1016_j_cageo_2022_105056
elsevier_sciencedirect_doi_10_1016_j_cageo_2022_105056
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Computers & geosciences
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Blei, Kucukelbir, McAuliffe (b4) 2017; 112
Vapnik (b39) 1995
Tresp (b38) 2001
Cohen, S., Mbuvha, R., Marwala, T., Deisenroth, M.P., 2020. Healing products of Gaussian process experts. In: Proceedings of the 37th International Conference on Machine Learning.
Salimbeni, H., Deisenroth, M., 2017. Doubly stochastic variational inference for deep Gaussian processes. In: 31st Conference on Neural Information Processing Systems, NIPS 2017. Long Beach, CA, USA.
Chilès, Delfiner (b7) 1999
Damianou, Lawrence (b11) 2013; vol. 31
Padoan, Bevilacqua (b28) 2015; 63
URL
Burt, D.R., Rasmussen, C.E., Van Der Wilk, M., 2019. Rates of convergence for sparse variational Gaussian process regression. In: 36th International Conference on Machine Learning. Long Beach, California, p. 10.
Gonçalves, Echer, Frigo (b16) 2020; 65
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b1) 2015
Kingma, Ba (b23) 2015
Rullière, Durrande, Bachoc, Chevalier (b32) 2018
Bevilacqua, Gaetan, Mateu, Porcu (b3) 2012; 107
Hegde, P., Heinonen, M., Kaski, S., 2018. Variational zero-inflated Gaussian processes with sparse kernels. In: Conference on Uncertainty in Artificial Intelligence. Monterey, California, USA.
Opper, Archambeau (b27) 2009; 21
Banerjee (b2) 2017; 12
Nguyen, Bonilla (b26) 2013; 31
Quiñonero Candela, Rasmussen, Herbrich (b6) 2005; 6
Hensman, Sheffield, Fusi, Lawrence (b20) 2013
Sollich (b35) 2002; 46
Dunlop, Girolami, Stuart, Teckentrup (b15) 2018; 19
Trapp, Peharz, Pernkopf, Rasmussen (b37) 2019
Cressie (b10) 1991
Desassis, Renard (b13) 2013; 45
Crameri, Shephard, Heron (b9) 2020; 11
Goovaerts (b17) 1997
Diggle, Ribeiro (b14) 2007
Rios, Tobar (b31) 2019; 118
Titsias (b36) 2009; vol. 5
Williams, Seeger (b40) 2000
,
Katzfuss, Guinness, Gong, Zilber (b22) 2020; 25
.
Pebesma (b29) 2004; 30
Datta, Banerjee, Finley, Gelfand (b12) 2016; 111
Moreno-Muñoz, P., Artés-Rodríguez, A., Álvarez, M.A., 2018. Heterogeneous multi-output Gaussian process prediction. In: Advances in Neural Information Processing Systems. Montreal, pp. 6711–6720.
Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P., 2016. Stochastic variational deep kernel learning. In: 29th Conference on Neural Information Processing Systems, NIPS 2016. Barcelona, Spain.
Snelson, Rasmussen, Ghahramani (b34) 2004; 16
Hensman, Matthews, Ghahramani (b19) 2015; 38
Rasmussen, Williams (b30) 2006
Katzfuss, Guinness (b21) 2021; 36
Li, Zhang, Clarke, Liu, Zhu (b24) 2018; 120
Abadi (10.1016/j.cageo.2022.105056_b1) 2015
10.1016/j.cageo.2022.105056_b8
10.1016/j.cageo.2022.105056_b5
Kingma (10.1016/j.cageo.2022.105056_b23) 2015
Nguyen (10.1016/j.cageo.2022.105056_b26) 2013; 31
Bevilacqua (10.1016/j.cageo.2022.105056_b3) 2012; 107
Opper (10.1016/j.cageo.2022.105056_b27) 2009; 21
Blei (10.1016/j.cageo.2022.105056_b4) 2017; 112
Williams (10.1016/j.cageo.2022.105056_b40) 2000
Quiñonero Candela (10.1016/j.cageo.2022.105056_b6) 2005; 6
Vapnik (10.1016/j.cageo.2022.105056_b39) 1995
Sollich (10.1016/j.cageo.2022.105056_b35) 2002; 46
Tresp (10.1016/j.cageo.2022.105056_b38) 2001
Hensman (10.1016/j.cageo.2022.105056_b20) 2013
10.1016/j.cageo.2022.105056_b18
Li (10.1016/j.cageo.2022.105056_b24) 2018; 120
Datta (10.1016/j.cageo.2022.105056_b12) 2016; 111
Gonçalves (10.1016/j.cageo.2022.105056_b16) 2020; 65
10.1016/j.cageo.2022.105056_b33
Padoan (10.1016/j.cageo.2022.105056_b28) 2015; 63
Desassis (10.1016/j.cageo.2022.105056_b13) 2013; 45
Cressie (10.1016/j.cageo.2022.105056_b10) 1991
Trapp (10.1016/j.cageo.2022.105056_b37) 2019
Banerjee (10.1016/j.cageo.2022.105056_b2) 2017; 12
Snelson (10.1016/j.cageo.2022.105056_b34) 2004; 16
Pebesma (10.1016/j.cageo.2022.105056_b29) 2004; 30
Dunlop (10.1016/j.cageo.2022.105056_b15) 2018; 19
Hensman (10.1016/j.cageo.2022.105056_b19) 2015; 38
Rasmussen (10.1016/j.cageo.2022.105056_b30) 2006
Rullière (10.1016/j.cageo.2022.105056_b32) 2018
Diggle (10.1016/j.cageo.2022.105056_b14) 2007
Titsias (10.1016/j.cageo.2022.105056_b36) 2009; vol. 5
Katzfuss (10.1016/j.cageo.2022.105056_b21) 2021; 36
Damianou (10.1016/j.cageo.2022.105056_b11) 2013; vol. 31
Rios (10.1016/j.cageo.2022.105056_b31) 2019; 118
10.1016/j.cageo.2022.105056_b41
Chilès (10.1016/j.cageo.2022.105056_b7) 1999
Crameri (10.1016/j.cageo.2022.105056_b9) 2020; 11
Goovaerts (10.1016/j.cageo.2022.105056_b17) 1997
Katzfuss (10.1016/j.cageo.2022.105056_b22) 2020; 25
10.1016/j.cageo.2022.105056_b25
References_xml – volume: 16
  start-page: 337
  year: 2004
  end-page: 344
  ident: b34
  article-title: Warped Gaussian processes
  publication-title: Adv. Neural Inf. Proc. Syst.
  contributor:
    fullname: Ghahramani
– start-page: 483
  year: 1997
  ident: b17
  article-title: Geoestatistics for Natural Resources Evaluation
  contributor:
    fullname: Goovaerts
– year: 2015
  ident: b23
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations, ICLR 2015
  contributor:
    fullname: Ba
– volume: 21
  start-page: 786
  year: 2009
  end-page: 792
  ident: b27
  article-title: The variational gaussian approximation revisited
  publication-title: Neural Comput.
  contributor:
    fullname: Archambeau
– start-page: 266
  year: 2006
  ident: b30
  article-title: Gaussian Processes for Machine Learning
  contributor:
    fullname: Williams
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  ident: b9
  article-title: The misuse of colour in science communication
  publication-title: Nature Commun.
  contributor:
    fullname: Heron
– volume: 46
  start-page: 21
  year: 2002
  end-page: 52
  ident: b35
  article-title: Bayesian methods for support vector machines: Evidence and predictive class probabilities
  publication-title: Mach. Learn.
  contributor:
    fullname: Sollich
– volume: 107
  start-page: 268
  year: 2012
  end-page: 280
  ident: b3
  article-title: Estimating space and space-time covariance functions for large data sets: A weighted composite likelihood approach
  publication-title: J. Amer. Statist. Assoc.
  contributor:
    fullname: Porcu
– volume: 65
  start-page: 677
  year: 2020
  end-page: 683
  ident: b16
  article-title: Sunspot cycle prediction using warped Gaussian process regression
  publication-title: Adv. Space Res.
  contributor:
    fullname: Frigo
– start-page: 189
  year: 1995
  ident: b39
  article-title: The Nature of Statistical Learning Theory
  contributor:
    fullname: Vapnik
– volume: 120
  start-page: 48
  year: 2018
  end-page: 59
  ident: b24
  article-title: An automatic variogram modeling method with high reliability fitness and estimates
  publication-title: Comput. Geosci.
  contributor:
    fullname: Zhu
– start-page: 232
  year: 2007
  ident: b14
  article-title: Model-Based Geostatistics
  contributor:
    fullname: Ribeiro
– volume: vol. 5
  start-page: 567
  year: 2009
  end-page: 574
  ident: b36
  article-title: Variational learning of inducing variables in sparse Gaussian processes
  publication-title: Aistats
  contributor:
    fullname: Titsias
– volume: 6
  start-page: 1935
  year: 2005
  end-page: 1959
  ident: b6
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Herbrich
– start-page: 695
  year: 1999
  ident: b7
  article-title: Geostatistics: Modeling Spatial Uncertainty
  contributor:
    fullname: Delfiner
– volume: 25
  start-page: 383
  year: 2020
  end-page: 414
  ident: b22
  article-title: Vecchia approximations of Gaussian-process predictions
  publication-title: J. Agric. Biol. Environ. Stat.
  contributor:
    fullname: Zilber
– start-page: 654
  year: 2001
  end-page: 660
  ident: b38
  article-title: Mixtures of Gaussian processes
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Tresp
– volume: 19
  start-page: 1
  year: 2018
  end-page: 46
  ident: b15
  article-title: How deep are deep Gaussian processes?
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Teckentrup
– start-page: 661
  year: 2000
  end-page: 667
  ident: b40
  article-title: Using the nystrom method to speed up kernel machines
  publication-title: NIPS’00: Proceedings of the 13th International Conference on Neural Information Processing
  contributor:
    fullname: Seeger
– volume: 118
  start-page: 235
  year: 2019
  end-page: 246
  ident: b31
  article-title: Compositionally-warped Gaussian processes
  publication-title: Neural Netw.
  contributor:
    fullname: Tobar
– volume: 30
  start-page: 683
  year: 2004
  end-page: 691
  ident: b29
  article-title: Multivariable geostatistics in S: The gstat package
  publication-title: Comput. Geosci.
  contributor:
    fullname: Pebesma
– start-page: 887
  year: 1991
  ident: b10
  article-title: Statistics for Spatial Data
  contributor:
    fullname: Cressie
– volume: 63
  start-page: 1
  year: 2015
  end-page: 27
  ident: b28
  article-title: Analysis of random fields using compRandFld
  publication-title: J. Stat. Softw.
  contributor:
    fullname: Bevilacqua
– year: 2015
  ident: b1
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
  contributor:
    fullname: Zheng
– volume: 45
  start-page: 453
  year: 2013
  end-page: 470
  ident: b13
  article-title: Automatic variogram modeling by iterative least squares: Univariate and multivariate cases
  publication-title: Math. Geosci.
  contributor:
    fullname: Renard
– volume: 112
  start-page: 859
  year: 2017
  end-page: 877
  ident: b4
  article-title: Variational inference: A review for statisticians
  publication-title: J. Amer. Statist. Assoc.
  contributor:
    fullname: McAuliffe
– volume: 111
  start-page: 800
  year: 2016
  end-page: 812
  ident: b12
  article-title: Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets
  publication-title: J. Amer. Statist. Assoc.
  contributor:
    fullname: Gelfand
– volume: 38
  start-page: 351
  year: 2015
  end-page: 360
  ident: b19
  article-title: Scalable variational Gaussian process classification
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Ghahramani
– year: 2018
  ident: b32
  article-title: Nested Kriging predictions for datasets with a large number of observations
  publication-title: Stat. Comput.
  contributor:
    fullname: Chevalier
– volume: 12
  start-page: 583
  year: 2017
  end-page: 614
  ident: b2
  article-title: High-dimensional Bayesian geostatistics
  publication-title: Bayesian Anal.
  contributor:
    fullname: Banerjee
– year: 2019
  ident: b37
  article-title: Deep structured mixtures of Gaussian processes
  contributor:
    fullname: Rasmussen
– volume: 36
  start-page: 124
  year: 2021
  end-page: 141
  ident: b21
  article-title: A general framework for vecchia approximations of Gaussian processes
  publication-title: Statist. Sci.
  contributor:
    fullname: Guinness
– volume: 31
  start-page: 472
  year: 2013
  end-page: 480
  ident: b26
  article-title: Efficient variational inference for Gaussian process regression networks
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Bonilla
– volume: vol. 31
  start-page: 207
  year: 2013
  end-page: 215
  ident: b11
  article-title: Deep Gaussian processes
  publication-title: International Conference on Artificial Intelligence and Statistics
  contributor:
    fullname: Lawrence
– start-page: 282
  year: 2013
  end-page: 290
  ident: b20
  article-title: Gaussian processes for big data
  publication-title: Uncertainty in Artificial Intelligence 29
  contributor:
    fullname: Lawrence
– start-page: 654
  year: 2001
  ident: 10.1016/j.cageo.2022.105056_b38
  article-title: Mixtures of Gaussian processes
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Tresp
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.cageo.2022.105056_b9
  article-title: The misuse of colour in science communication
  publication-title: Nature Commun.
  doi: 10.1038/s41467-020-19160-7
  contributor:
    fullname: Crameri
– volume: 6
  start-page: 1935
  year: 2005
  ident: 10.1016/j.cageo.2022.105056_b6
  article-title: A unifying view of sparse approximate Gaussian process regression
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Quiñonero Candela
– start-page: 483
  year: 1997
  ident: 10.1016/j.cageo.2022.105056_b17
  contributor:
    fullname: Goovaerts
– ident: 10.1016/j.cageo.2022.105056_b18
– volume: 31
  start-page: 472
  year: 2013
  ident: 10.1016/j.cageo.2022.105056_b26
  article-title: Efficient variational inference for Gaussian process regression networks
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Nguyen
– volume: 21
  start-page: 786
  year: 2009
  ident: 10.1016/j.cageo.2022.105056_b27
  article-title: The variational gaussian approximation revisited
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.08-07-592
  contributor:
    fullname: Opper
– ident: 10.1016/j.cageo.2022.105056_b8
– start-page: 695
  year: 1999
  ident: 10.1016/j.cageo.2022.105056_b7
  contributor:
    fullname: Chilès
– volume: 111
  start-page: 800
  year: 2016
  ident: 10.1016/j.cageo.2022.105056_b12
  article-title: Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2015.1044091
  contributor:
    fullname: Datta
– year: 2015
  ident: 10.1016/j.cageo.2022.105056_b23
  article-title: Adam: A method for stochastic optimization
  contributor:
    fullname: Kingma
– volume: vol. 5
  start-page: 567
  year: 2009
  ident: 10.1016/j.cageo.2022.105056_b36
  article-title: Variational learning of inducing variables in sparse Gaussian processes
  contributor:
    fullname: Titsias
– volume: 63
  start-page: 1
  year: 2015
  ident: 10.1016/j.cageo.2022.105056_b28
  article-title: Analysis of random fields using compRandFld
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v063.i09
  contributor:
    fullname: Padoan
– start-page: 266
  year: 2006
  ident: 10.1016/j.cageo.2022.105056_b30
  contributor:
    fullname: Rasmussen
– volume: 19
  start-page: 1
  year: 2018
  ident: 10.1016/j.cageo.2022.105056_b15
  article-title: How deep are deep Gaussian processes?
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Dunlop
– volume: 25
  start-page: 383
  year: 2020
  ident: 10.1016/j.cageo.2022.105056_b22
  article-title: Vecchia approximations of Gaussian-process predictions
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1007/s13253-020-00401-7
  contributor:
    fullname: Katzfuss
– volume: 65
  start-page: 677
  year: 2020
  ident: 10.1016/j.cageo.2022.105056_b16
  article-title: Sunspot cycle prediction using warped Gaussian process regression
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2019.11.011
  contributor:
    fullname: Gonçalves
– volume: 112
  start-page: 859
  year: 2017
  ident: 10.1016/j.cageo.2022.105056_b4
  article-title: Variational inference: A review for statisticians
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2017.1285773
  contributor:
    fullname: Blei
– volume: 46
  start-page: 21
  year: 2002
  ident: 10.1016/j.cageo.2022.105056_b35
  article-title: Bayesian methods for support vector machines: Evidence and predictive class probabilities
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012489924661
  contributor:
    fullname: Sollich
– start-page: 887
  year: 1991
  ident: 10.1016/j.cageo.2022.105056_b10
  contributor:
    fullname: Cressie
– year: 2015
  ident: 10.1016/j.cageo.2022.105056_b1
  contributor:
    fullname: Abadi
– volume: 45
  start-page: 453
  year: 2013
  ident: 10.1016/j.cageo.2022.105056_b13
  article-title: Automatic variogram modeling by iterative least squares: Univariate and multivariate cases
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-012-9434-1
  contributor:
    fullname: Desassis
– start-page: 282
  year: 2013
  ident: 10.1016/j.cageo.2022.105056_b20
  article-title: Gaussian processes for big data
  contributor:
    fullname: Hensman
– start-page: 189
  year: 1995
  ident: 10.1016/j.cageo.2022.105056_b39
  contributor:
    fullname: Vapnik
– volume: 118
  start-page: 235
  year: 2019
  ident: 10.1016/j.cageo.2022.105056_b31
  article-title: Compositionally-warped Gaussian processes
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.06.012
  contributor:
    fullname: Rios
– ident: 10.1016/j.cageo.2022.105056_b25
– year: 2018
  ident: 10.1016/j.cageo.2022.105056_b32
  article-title: Nested Kriging predictions for datasets with a large number of observations
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-017-9766-2
  contributor:
    fullname: Rullière
– volume: 30
  start-page: 683
  year: 2004
  ident: 10.1016/j.cageo.2022.105056_b29
  article-title: Multivariable geostatistics in S: The gstat package
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.03.012
  contributor:
    fullname: Pebesma
– ident: 10.1016/j.cageo.2022.105056_b5
– volume: 120
  start-page: 48
  year: 2018
  ident: 10.1016/j.cageo.2022.105056_b24
  article-title: An automatic variogram modeling method with high reliability fitness and estimates
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2018.07.011
  contributor:
    fullname: Li
– ident: 10.1016/j.cageo.2022.105056_b33
– start-page: 232
  year: 2007
  ident: 10.1016/j.cageo.2022.105056_b14
  contributor:
    fullname: Diggle
– volume: 38
  start-page: 351
  year: 2015
  ident: 10.1016/j.cageo.2022.105056_b19
  article-title: Scalable variational Gaussian process classification
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Hensman
– ident: 10.1016/j.cageo.2022.105056_b41
– volume: 16
  start-page: 337
  year: 2004
  ident: 10.1016/j.cageo.2022.105056_b34
  article-title: Warped Gaussian processes
  publication-title: Adv. Neural Inf. Proc. Syst.
  contributor:
    fullname: Snelson
– volume: 107
  start-page: 268
  year: 2012
  ident: 10.1016/j.cageo.2022.105056_b3
  article-title: Estimating space and space-time covariance functions for large data sets: A weighted composite likelihood approach
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2011.646928
  contributor:
    fullname: Bevilacqua
– year: 2019
  ident: 10.1016/j.cageo.2022.105056_b37
  contributor:
    fullname: Trapp
– volume: 12
  start-page: 583
  year: 2017
  ident: 10.1016/j.cageo.2022.105056_b2
  article-title: High-dimensional Bayesian geostatistics
  publication-title: Bayesian Anal.
  doi: 10.1214/17-BA1056R
  contributor:
    fullname: Banerjee
– volume: vol. 31
  start-page: 207
  year: 2013
  ident: 10.1016/j.cageo.2022.105056_b11
  article-title: Deep Gaussian processes
  contributor:
    fullname: Damianou
– volume: 36
  start-page: 124
  year: 2021
  ident: 10.1016/j.cageo.2022.105056_b21
  article-title: A general framework for vecchia approximations of Gaussian processes
  publication-title: Statist. Sci.
  doi: 10.1214/19-STS755
  contributor:
    fullname: Katzfuss
– start-page: 661
  year: 2000
  ident: 10.1016/j.cageo.2022.105056_b40
  article-title: Using the nystrom method to speed up kernel machines
  contributor:
    fullname: Williams
SSID ssj0002285
Score 2.4104307
Snippet A variational Gaussian process (VGP) model specialized in spatial data is introduced, capitalizing on recent advances in the machine learning field. The model...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 105056
SubjectTerms Gaussian process
Kriging
Machine learning
Variational inference
Title Learning spatial patterns with variational Gaussian processes: Regression
URI https://dx.doi.org/10.1016/j.cageo.2022.105056
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MDcGL-BPnj5GDR-vSLO0Sb2O4H4o7iIPdSpMmYx5qsZvgxb_dJE1FQTx4bMmD8jV9-ZJ-73sAl7yHccqJDFJOZUClUIFhISSgRGjrOKZj58T0MIsnc3q3iBYNGNa1MFZW6XN_ldNdtvZ3uh7NbrFa2RpfznrOw8q5uCy2oOV-EjWhNZjeT2ZfCZkQFtXWmTagNh9yMi9pPltbBEiIbXmLbSPr3xaob4vOaA92PVtEg-qB9qGh8gPYHrtuvO-HMPXuqEtUWmG0GVk4u8y8RPZ8Fb2ZjbA_7EPjdFPagklUVKUBqrxBj2pZyWDzI5iPbp-Gk8D3RghSQ1LWgdkVEIHjLGZmP5JFfSFpqFLBCE8jLfpxmAkzQsaiz6h1mIkpE5nQWBmCoKRgvWNo5i-5OgEUasFFiqm2LTeIYhxrpQyz4DIjONK0DVc1IElRWWAktTbsOXH4JRa_pMKvDXENWvLjTSYmSf8VePrfwDPYsVeVnuYcmuvXjbowVGEtOrB1_RF2_IT4BP9yvMY
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VIgQL4lOUTw-MBFzXcR02VNEPaDugVupmxY5dlSFEpEVi4bdjO4kACTGwJrYUvdjnd9a7dwCXUQvjOCIqiCOqAqqkDiwLIQEl0jjHMcO8E9NozPpT-jALZzXoVLUwTlZZxv4ipvtoXT65KdG8yRYLV-Mb8Zb3sPIuLrM1WKfOP8su6uuPL50HITysjDPd8Mp6yIu8lN20rgSQENfwFrs21r8dT9-OnO4ObJdcEd0Vn7MLNZ3uwUbP9-J934dB6Y06R7mTRduRmTfLTHPkblfRm02Dy6s-1ItXuSuXRFlRGKDzW_Sk54UINj2Aafd-0ukHZWeEILYUZRnYnIBIzBLGbTaShG2paFPHkpMoDo1ss2Yi7QjFZJtT5y_DKJeJNFhbeqCV5K1DqKcvqT4C1DQykjGmxjXcIJpH2GhteUWkEoJDQxtwVQEissIAQ1TKsGfh8RMOP1Hg1wBWgSZ-_EdhQ_RfE4__O_ECNvuT0VAMB-PHE9hybwplzSnUl68rfWZJw1Ke-0XxCcDEvag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+spatial+patterns+with+variational+Gaussian+processes%3A+Regression&rft.jtitle=Computers+%26+geosciences&rft.au=Gon%C3%A7alves%2C+%C3%8Dtalo+Gomes&rft.au=Guadagnin%2C+Felipe&rft.au=Cordova%2C+Diogo+Peixoto&rft.date=2022-04-01&rft.issn=0098-3004&rft.volume=161&rft.spage=105056&rft_id=info:doi/10.1016%2Fj.cageo.2022.105056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2022_105056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon