Reconstructing Super-Resolution Raman Spectral Image Using a Generative Adversarial Network-Based Algorithm

Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a gen...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 97; no. 31; pp. 17121 - 17131
Main Authors Xu, Jie, An, Haorui, Kong, Xiangtao, Zhang, Zixuan, Liu, Qidong, Li, Jie, Qin, Jie, Bratchenko, Ivan A., Wang, Shuang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.08.2025
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/acs.analchem.5c02934

Cover

Loading…
Abstract Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a generative adversarial network (GANs) based algorithm to significantly enhance both the Raman spectral imaging speed and spatial resolution. The proposed method was trained and evaluated on 186 hyperspectral Raman datasets acquired from unlabeled cells, and its reconstruction performance was quantitatively evaluated by the parameters of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root-mean-square error (RMSE). Univariate imaging and K-means clustering analysis (KCA) were both adopted to evaluate the preservation of biochemical information after image reconstructing. The results demonstrated that the proposed method effectively enhances spatial resolution by a factor of 2–4 while accelerating imaging speed by a factor of 4–16. Furthermore, transfer learning was utilized to adapt the pretrained model to different objects, validating its generalization capabilities and extending its universalities. This study highlighted the potential of deep learning for super-resolution Raman imaging, providing a promising pathway for high-throughput and real-time biochemical analysis.
AbstractList Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a generative adversarial network (GANs) based algorithm to significantly enhance both the Raman spectral imaging speed and spatial resolution. The proposed method was trained and evaluated on 186 hyperspectral Raman datasets acquired from unlabeled cells, and its reconstruction performance was quantitatively evaluated by the parameters of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root-mean-square error (RMSE). Univariate imaging and K-means clustering analysis (KCA) were both adopted to evaluate the preservation of biochemical information after image reconstructing. The results demonstrated that the proposed method effectively enhances spatial resolution by a factor of 2-4 while accelerating imaging speed by a factor of 4-16. Furthermore, transfer learning was utilized to adapt the pretrained model to different objects, validating its generalization capabilities and extending its universalities. This study highlighted the potential of deep learning for super-resolution Raman imaging, providing a promising pathway for high-throughput and real-time biochemical analysis.
Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a generative adversarial network (GANs) based algorithm to significantly enhance both the Raman spectral imaging speed and spatial resolution. The proposed method was trained and evaluated on 186 hyperspectral Raman datasets acquired from unlabeled cells, and its reconstruction performance was quantitatively evaluated by the parameters of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root-mean-square error (RMSE). Univariate imaging and K-means clustering analysis (KCA) were both adopted to evaluate the preservation of biochemical information after image reconstructing. The results demonstrated that the proposed method effectively enhances spatial resolution by a factor of 2-4 while accelerating imaging speed by a factor of 4-16. Furthermore, transfer learning was utilized to adapt the pretrained model to different objects, validating its generalization capabilities and extending its universalities. This study highlighted the potential of deep learning for super-resolution Raman imaging, providing a promising pathway for high-throughput and real-time biochemical analysis.Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a generative adversarial network (GANs) based algorithm to significantly enhance both the Raman spectral imaging speed and spatial resolution. The proposed method was trained and evaluated on 186 hyperspectral Raman datasets acquired from unlabeled cells, and its reconstruction performance was quantitatively evaluated by the parameters of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root-mean-square error (RMSE). Univariate imaging and K-means clustering analysis (KCA) were both adopted to evaluate the preservation of biochemical information after image reconstructing. The results demonstrated that the proposed method effectively enhances spatial resolution by a factor of 2-4 while accelerating imaging speed by a factor of 4-16. Furthermore, transfer learning was utilized to adapt the pretrained model to different objects, validating its generalization capabilities and extending its universalities. This study highlighted the potential of deep learning for super-resolution Raman imaging, providing a promising pathway for high-throughput and real-time biochemical analysis.
Author Kong, Xiangtao
Zhang, Zixuan
An, Haorui
Xu, Jie
Qin, Jie
Li, Jie
Wang, Shuang
Liu, Qidong
Bratchenko, Ivan A.
AuthorAffiliation Xianyang Normal University
The Second Affiliated Hospital of Xi’an Jiaotong University
Samara National Research University
Institute of Photonics and Photon-Technology
College of Physics and Electronic Engineering
Department of Orthopedics
Laser and Biotechnical Systems Department
AuthorAffiliation_xml – name: The Second Affiliated Hospital of Xi’an Jiaotong University
– name: Laser and Biotechnical Systems Department
– name: Institute of Photonics and Photon-Technology
– name: Department of Orthopedics
– name: Xianyang Normal University
– name: Samara National Research University
– name: College of Physics and Electronic Engineering
Author_xml – sequence: 1
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
  organization: Institute of Photonics and Photon-Technology
– sequence: 2
  givenname: Haorui
  surname: An
  fullname: An, Haorui
  organization: Institute of Photonics and Photon-Technology
– sequence: 3
  givenname: Xiangtao
  surname: Kong
  fullname: Kong, Xiangtao
  organization: Institute of Photonics and Photon-Technology
– sequence: 4
  givenname: Zixuan
  surname: Zhang
  fullname: Zhang, Zixuan
  organization: Institute of Photonics and Photon-Technology
– sequence: 5
  givenname: Qidong
  surname: Liu
  fullname: Liu, Qidong
  organization: Institute of Photonics and Photon-Technology
– sequence: 6
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: Xianyang Normal University
– sequence: 7
  givenname: Jie
  surname: Qin
  fullname: Qin, Jie
  organization: The Second Affiliated Hospital of Xi’an Jiaotong University
– sequence: 8
  givenname: Ivan A.
  orcidid: 0000-0003-3629-7064
  surname: Bratchenko
  fullname: Bratchenko, Ivan A.
  organization: Samara National Research University
– sequence: 9
  givenname: Shuang
  orcidid: 0000-0002-5558-4029
  surname: Wang
  fullname: Wang, Shuang
  email: swang@nwu.edu.cn
  organization: Institute of Photonics and Photon-Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40735851$$D View this record in MEDLINE/PubMed
BookMark eNp90U1P3DAQBmCroioL7T-oqkhcuGQ7_sLJcVkBRUKttJRzNHEmSyCxF9uh6r8n2104cOhpDn5ejzTvETtw3hFjXznMOQj-HW2co8Pe3tMw1xZEKdUHNuNaQH5WFOKAzQBA5sIAHLKjGB8AOAd-9okdKjBSF5rP2OOKrHcxhdGmzq2z23FDIV9R9P2YOu-yFQ7ostsN2RSwz64HXFN2F7cWsytyFDB1z5QtmmcKEUM3oZ-U_vjwmJ9jpCZb9GsfunQ_fGYfW-wjfdnPY3Z3efF7-SO_-XV1vVzc5Ci0TrkGK6WBujFoStsAEXFNNRSNMEYRYGsKqI0WotVoFZEsoRa8IVBNUepWHrPT3b-b4J9Giqkaumip79GRH2MlhVQGClnwiZ68ow9-DNNV_6lSSQUcJvVtr8Z6oKbahG7A8Ld6PeME1A7Y4GMM1L4RDtW2rWpqq3ptq9q3NcVgF9u-vi3-b-QF4NibfQ
Cites_doi 10.1002/jbio.202200189
10.1021/acs.analchem.4c01550
10.48550/arXiv.1807.02758
10.1364/BOE.432933
10.48550/arXiv.1502.03167
10.1016/j.talanta.2019.120343
10.48550/arXiv.1710.09412
10.1109/CVPR.2018.00745
10.1016/j.saa.2022.121937
10.1038/s41467-024-44864-5
10.1109/TPAMI.2015.2439281
10.48550/arXiv.1609.04802
10.1007/978-3-319-46493-0_38
10.1146/annurev.anchem.1.031207.112754
10.48550/arXiv.1809.00219
10.1002/jbio.202000238
10.1109/TIP.2003.819861
10.1038/s42254-020-0171-y
10.1002/lpor.201500023
10.1016/j.saa.2020.118372
10.1021/ar400331q
10.1002/jbio.202000456
10.1038/s41565-024-01825-9
10.1016/j.jphotobiol.2021.112280
10.1021/ac400570w
10.1016/j.jphotobiol.2021.112366
10.1007/s00253-019-09952-3
10.1109/TCI.2016.2644865
10.1063/5.0228645
10.1109/CANDARW53999.2021.00089
10.48550/arXiv.1412.6980
10.1002/smtd.202301243
10.1021/acs.analchem.1c02178
10.1002/anie.201803394
10.1016/j.patrec.2009.09.011
10.1109/SBCCI.2003.1232813
10.1002/jrs.6177
10.48550/arXiv.1807.06521
10.48550/arXiv.1707.02921
10.1021/cr300147r
10.1038/s41551-016-0027
10.1021/acs.analchem.8b05962
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright American Chemical Society 2025
Copyright_xml – notice: 2025 American Chemical Society
– notice: Copyright American Chemical Society 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1021/acs.analchem.5c02934
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 17131
ExternalDocumentID 40735851
10_1021_acs_analchem_5c02934
c921259437
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABMVS
ABOCM
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
D0L
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
P2P
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-a255t-50c3370bd7a79cd0eee15eb08d2774e0af780b7522f5ac4ee390b21de04d895f3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Wed Jul 30 23:55:42 EDT 2025
Thu Aug 14 19:49:22 EDT 2025
Thu Aug 14 01:43:32 EDT 2025
Thu Aug 14 00:02:17 EDT 2025
Wed Aug 13 03:11:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a255t-50c3370bd7a79cd0eee15eb08d2774e0af780b7522f5ac4ee390b21de04d895f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3629-7064
0000-0002-5558-4029
PMID 40735851
PQID 3239434010
PQPubID 45400
PageCount 11
ParticipantIDs proquest_miscellaneous_3234708381
proquest_journals_3239434010
pubmed_primary_40735851
crossref_primary_10_1021_acs_analchem_5c02934
acs_journals_10_1021_acs_analchem_5c02934
PublicationCentury 2000
PublicationDate 2025-Aug-12
PublicationDateYYYYMMDD 2025-08-12
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref22/cit22
ref13/cit13
ref33/cit33
S Filho A. G. (ref41/cit41) 2003
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref5/cit5
  doi: 10.1002/jbio.202200189
– ident: ref15/cit15
  doi: 10.1021/acs.analchem.4c01550
– ident: ref18/cit18
  doi: 10.48550/arXiv.1807.02758
– ident: ref25/cit25
  doi: 10.1364/BOE.432933
– ident: ref31/cit31
  doi: 10.48550/arXiv.1502.03167
– ident: ref4/cit4
  doi: 10.1016/j.talanta.2019.120343
– ident: ref38/cit38
  doi: 10.48550/arXiv.1710.09412
– ident: ref42/cit42
  doi: 10.1109/CVPR.2018.00745
– ident: ref28/cit28
  doi: 10.1016/j.saa.2022.121937
– ident: ref16/cit16
  doi: 10.1038/s41467-024-44864-5
– ident: ref17/cit17
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref22/cit22
  doi: 10.48550/arXiv.1609.04802
– ident: ref34/cit34
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref8/cit8
  doi: 10.1146/annurev.anchem.1.031207.112754
– ident: ref23/cit23
  doi: 10.48550/arXiv.1809.00219
– ident: ref24/cit24
  doi: 10.1002/jbio.202000238
– ident: ref37/cit37
  doi: 10.1109/TIP.2003.819861
– ident: ref7/cit7
  doi: 10.1038/s42254-020-0171-y
– ident: ref12/cit12
  doi: 10.1002/lpor.201500023
– ident: ref26/cit26
  doi: 10.1016/j.saa.2020.118372
– ident: ref10/cit10
  doi: 10.1021/ar400331q
– ident: ref29/cit29
  doi: 10.1002/jbio.202000456
– ident: ref13/cit13
  doi: 10.1038/s41565-024-01825-9
– ident: ref3/cit3
  doi: 10.1016/j.jphotobiol.2021.112280
– ident: ref9/cit9
  doi: 10.1021/ac400570w
– ident: ref27/cit27
  doi: 10.1016/j.jphotobiol.2021.112366
– ident: ref1/cit1
  doi: 10.1007/s00253-019-09952-3
– ident: ref36/cit36
  doi: 10.1109/TCI.2016.2644865
– ident: ref21/cit21
  doi: 10.1063/5.0228645
– ident: ref35/cit35
  doi: 10.1109/CANDARW53999.2021.00089
– ident: ref39/cit39
  doi: 10.48550/arXiv.1412.6980
– ident: ref14/cit14
  doi: 10.1002/smtd.202301243
– ident: ref20/cit20
  doi: 10.1021/acs.analchem.1c02178
– ident: ref2/cit2
  doi: 10.1002/anie.201803394
– ident: ref40/cit40
  doi: 10.1016/j.patrec.2009.09.011
– start-page: 99
  volume-title: Proceedings of the 16th Symposium on Integrated Circuits and Systems Design, 2003 (SBCCI 2003)
  year: 2003
  ident: ref41/cit41
  doi: 10.1109/SBCCI.2003.1232813
– ident: ref30/cit30
  doi: 10.1002/jrs.6177
– ident: ref33/cit33
  doi: 10.48550/arXiv.1807.06521
– ident: ref32/cit32
  doi: 10.48550/arXiv.1707.02921
– ident: ref6/cit6
  doi: 10.1021/cr300147r
– ident: ref11/cit11
  doi: 10.1038/s41551-016-0027
– ident: ref19/cit19
  doi: 10.1021/acs.analchem.8b05962
SSID ssj0011016
Score 2.4842322
Snippet Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 17121
SubjectTerms Algorithms
Biochemical analysis
Chemical fingerprinting
Cluster analysis
Clustering
Data acquisition
Deep learning
Generative Adversarial Networks
Image acquisition
Image Processing, Computer-Assisted - methods
Image reconstruction
Image resolution
Information processing
Machine learning
Neural Networks, Computer
Performance evaluation
Real time
Root-mean-square errors
Signal to noise ratio
Spatial discrimination
Spatial distribution
Spatial resolution
Spectrum Analysis, Raman - methods
Transfer learning
Vector quantization
Title Reconstructing Super-Resolution Raman Spectral Image Using a Generative Adversarial Network-Based Algorithm
URI http://dx.doi.org/10.1021/acs.analchem.5c02934
https://www.ncbi.nlm.nih.gov/pubmed/40735851
https://www.proquest.com/docview/3239434010
https://www.proquest.com/docview/3234708381
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcigcgFIKy0uu1EsP2Tp-JNkjrECABJVKkbhFfmWpYLNoHxd-PTPJZilFqPQaW3Y8D883HnsG4Kt2CcLiwqGKZypSibZR5kjxFGXj0lLYjN4OX1wmp9fq_EbfPDuKf0fwRfzduHHHIFFxDYOOxnG6Ui3CkkhQjwkK9a7mUQPyRJsKeRRQbZ7KvTEKGSQ3fmmQ3kCZlbU5WYMfzZud-pLJXWc6sR33-DqF4zsXsg6rM-DJDmtJ-QgLodyAD72m3tsGrPyRmvAT3JFf2mSXLfvsavoQRhEd9teiyn6agSkZla-nsxJ2NsCNiVUXEJhhdTJr2klZVfF5bEjO2WV95zw6QtPp2eF9fzj6PbkdbML1yfGv3mk0K8wQGfRAJpHmTsqUW5-atOs8DyHEOlieeYFoMnBTpBm3KUK7QhunQpBdbkXsA1c-6-pCfoZWOSzDNrCgbJb4AiXG4p5trfVeFCn6kIjFPLdFG74h3fKZYo3zKmYu4pw-NsTMZ8RsQ9RwMn-oc3X8o_9ew-7nCSTVipfodfI2fJk3IysokGLKMJxWfVSK2DWL27BVi8l8QhRxSaHWnf_48V1YFlRWmDLtij1oIW_DPmKdiT2oBPwJI5P6tg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6V5VD2wGN3gUABI3HhkK4T2016LBWrFnZ7oFvUW2THTkG7TaumvfDrmcmjC0gr1KsT-TEztr_x2N8AfFBpD2FxluIUj6Uve8r4cUoTTxIblxKhient8NWkN5rJL3M1b4Fq3sJgJwqsqSiD-HfsAsE5lWmULQ5l2VVYXV_IB_AQ8UhIhj0YTvfBA3JIm0R5FFdtXszdUwvtS2nx9750D9gsN52LJ_B9393yrslNd7c13fTXP0yOB4_nKTyuYSgbVHbzDFouP4H2sMn-dgLHfxAVnsINeakN12y-YNPd2m18OvqvDJd900udM0pmTycnbLzEZYqV1xGYZhW1Na2rrMz_XGiyejapbqD7n3AjtWxwu1htfm5_LM9gdvH5ejjy6zQNvkZ_ZOsrngoRcWMjHfVTy51zgXKGxzZEbOm4zqKYmwiBXqZ0Kp0TfW7CwDoubdxXmXgOR_kqdy-BOWnins3Qfgyu4MYYa8MsQo8SkZnlJvPgI8otqadZkZQR9DBIqLARZlIL0wO_UWiyrpg7_vN_p9H6XQOCMscL9EG5B-_3n1EVFFbRuVvtyn9khEg2Djx4UVnLvkE0eEGB11cHdPwdtEfXV5fJ5Xjy9TU8CinhMHHwhh04Qj27N4iCtuZtafO_AWSxAyY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB61VKJwoEB5BCi4EhcOG7xrO7s5htCIRxtVBSTUy8peewFBNhGbXPj1zOwjQCWEytVr-TEPz8yO_Q3Arkpa6BanCap4JD3ZUsaLElI8SWhcSgQmorfDv_qtowt5cqkun5X6wkXkOFJeJPFJq0c2rRAG_H1q10hf3M6gqXDItpAf4RNl7ki4O92zaQKBgtK6WB7lVutXc6-MQrYpyV_aplcczsLw9L7A3-mSi_smt83J2DSTh3_QHN-1p0VYqNxR1inlZwk-uGwZPnfrKnDLMP8MsPAr3FK0WmPOZlfsbDJy9x6lAEoBZn_0QGeMitrTHxR2PMDjihXXEphmJcQ1na-sqAOda5J-1i9vonsHaFAt69xdDe9vxteDFbjo_TjvHnlVuQZPY1wy9hRPhAi5saEO24nlzjlfOcMjG6CP6bhOw4ibEB2-VOlEOifa3AS-dVzaqK1SsQoz2TBz68CcNFHLpihHBk9yY4y1QRpiZIkemuUmbcAe0i2u1C2Pi0x64MfUWBMzrojZAK9majwqETze6L9Vc_5pAkEV5AXGorwB36efkRWUXtGZG06KPjJEjzbyG7BWSsx0QhR8QQnYjf9Y-A7M_j7sxT-P-6ebMBdQ3WGC4g22YAbZ7L6hMzQ224XYPwK3HQWp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstructing+Super-Resolution+Raman+Spectral+Image+Using+a+Generative+Adversarial+Network-Based+Algorithm&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Xu%2C+Jie&rft.au=An%2C+Haorui&rft.au=Kong%2C+Xiangtao&rft.au=Zhang%2C+Zixuan&rft.date=2025-08-12&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=97&rft.issue=31&rft.spage=17121&rft.epage=17131&rft_id=info:doi/10.1021%2Facs.analchem.5c02934&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_analchem_5c02934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon