Reconstructing Super-Resolution Raman Spectral Image Using a Generative Adversarial Network-Based Algorithm
Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a gen...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 97; no. 31; pp. 17121 - 17131 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 1520-6882 |
DOI | 10.1021/acs.analchem.5c02934 |
Cover
Loading…
Abstract | Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a generative adversarial network (GANs) based algorithm to significantly enhance both the Raman spectral imaging speed and spatial resolution. The proposed method was trained and evaluated on 186 hyperspectral Raman datasets acquired from unlabeled cells, and its reconstruction performance was quantitatively evaluated by the parameters of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root-mean-square error (RMSE). Univariate imaging and K-means clustering analysis (KCA) were both adopted to evaluate the preservation of biochemical information after image reconstructing. The results demonstrated that the proposed method effectively enhances spatial resolution by a factor of 2–4 while accelerating imaging speed by a factor of 4–16. Furthermore, transfer learning was utilized to adapt the pretrained model to different objects, validating its generalization capabilities and extending its universalities. This study highlighted the potential of deep learning for super-resolution Raman imaging, providing a promising pathway for high-throughput and real-time biochemical analysis. |
---|---|
AbstractList | Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a generative adversarial network (GANs) based algorithm to significantly enhance both the Raman spectral imaging speed and spatial resolution. The proposed method was trained and evaluated on 186 hyperspectral Raman datasets acquired from unlabeled cells, and its reconstruction performance was quantitatively evaluated by the parameters of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root-mean-square error (RMSE). Univariate imaging and K-means clustering analysis (KCA) were both adopted to evaluate the preservation of biochemical information after image reconstructing. The results demonstrated that the proposed method effectively enhances spatial resolution by a factor of 2-4 while accelerating imaging speed by a factor of 4-16. Furthermore, transfer learning was utilized to adapt the pretrained model to different objects, validating its generalization capabilities and extending its universalities. This study highlighted the potential of deep learning for super-resolution Raman imaging, providing a promising pathway for high-throughput and real-time biochemical analysis. Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a generative adversarial network (GANs) based algorithm to significantly enhance both the Raman spectral imaging speed and spatial resolution. The proposed method was trained and evaluated on 186 hyperspectral Raman datasets acquired from unlabeled cells, and its reconstruction performance was quantitatively evaluated by the parameters of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root-mean-square error (RMSE). Univariate imaging and K-means clustering analysis (KCA) were both adopted to evaluate the preservation of biochemical information after image reconstructing. The results demonstrated that the proposed method effectively enhances spatial resolution by a factor of 2-4 while accelerating imaging speed by a factor of 4-16. Furthermore, transfer learning was utilized to adapt the pretrained model to different objects, validating its generalization capabilities and extending its universalities. This study highlighted the potential of deep learning for super-resolution Raman imaging, providing a promising pathway for high-throughput and real-time biochemical analysis.Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning mechanism, it usually costs a prolonged data acquisition duration for achieving high-resolution Raman images. In this study, we propose a generative adversarial network (GANs) based algorithm to significantly enhance both the Raman spectral imaging speed and spatial resolution. The proposed method was trained and evaluated on 186 hyperspectral Raman datasets acquired from unlabeled cells, and its reconstruction performance was quantitatively evaluated by the parameters of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root-mean-square error (RMSE). Univariate imaging and K-means clustering analysis (KCA) were both adopted to evaluate the preservation of biochemical information after image reconstructing. The results demonstrated that the proposed method effectively enhances spatial resolution by a factor of 2-4 while accelerating imaging speed by a factor of 4-16. Furthermore, transfer learning was utilized to adapt the pretrained model to different objects, validating its generalization capabilities and extending its universalities. This study highlighted the potential of deep learning for super-resolution Raman imaging, providing a promising pathway for high-throughput and real-time biochemical analysis. |
Author | Kong, Xiangtao Zhang, Zixuan An, Haorui Xu, Jie Qin, Jie Li, Jie Wang, Shuang Liu, Qidong Bratchenko, Ivan A. |
AuthorAffiliation | Xianyang Normal University The Second Affiliated Hospital of Xi’an Jiaotong University Samara National Research University Institute of Photonics and Photon-Technology College of Physics and Electronic Engineering Department of Orthopedics Laser and Biotechnical Systems Department |
AuthorAffiliation_xml | – name: The Second Affiliated Hospital of Xi’an Jiaotong University – name: Laser and Biotechnical Systems Department – name: Institute of Photonics and Photon-Technology – name: Department of Orthopedics – name: Xianyang Normal University – name: Samara National Research University – name: College of Physics and Electronic Engineering |
Author_xml | – sequence: 1 givenname: Jie surname: Xu fullname: Xu, Jie organization: Institute of Photonics and Photon-Technology – sequence: 2 givenname: Haorui surname: An fullname: An, Haorui organization: Institute of Photonics and Photon-Technology – sequence: 3 givenname: Xiangtao surname: Kong fullname: Kong, Xiangtao organization: Institute of Photonics and Photon-Technology – sequence: 4 givenname: Zixuan surname: Zhang fullname: Zhang, Zixuan organization: Institute of Photonics and Photon-Technology – sequence: 5 givenname: Qidong surname: Liu fullname: Liu, Qidong organization: Institute of Photonics and Photon-Technology – sequence: 6 givenname: Jie surname: Li fullname: Li, Jie organization: Xianyang Normal University – sequence: 7 givenname: Jie surname: Qin fullname: Qin, Jie organization: The Second Affiliated Hospital of Xi’an Jiaotong University – sequence: 8 givenname: Ivan A. orcidid: 0000-0003-3629-7064 surname: Bratchenko fullname: Bratchenko, Ivan A. organization: Samara National Research University – sequence: 9 givenname: Shuang orcidid: 0000-0002-5558-4029 surname: Wang fullname: Wang, Shuang email: swang@nwu.edu.cn organization: Institute of Photonics and Photon-Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40735851$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1P3DAQBmCroioL7T-oqkhcuGQ7_sLJcVkBRUKttJRzNHEmSyCxF9uh6r8n2104cOhpDn5ejzTvETtw3hFjXznMOQj-HW2co8Pe3tMw1xZEKdUHNuNaQH5WFOKAzQBA5sIAHLKjGB8AOAd-9okdKjBSF5rP2OOKrHcxhdGmzq2z23FDIV9R9P2YOu-yFQ7ostsN2RSwz64HXFN2F7cWsytyFDB1z5QtmmcKEUM3oZ-U_vjwmJ9jpCZb9GsfunQ_fGYfW-wjfdnPY3Z3efF7-SO_-XV1vVzc5Ci0TrkGK6WBujFoStsAEXFNNRSNMEYRYGsKqI0WotVoFZEsoRa8IVBNUepWHrPT3b-b4J9Giqkaumip79GRH2MlhVQGClnwiZ68ow9-DNNV_6lSSQUcJvVtr8Z6oKbahG7A8Ld6PeME1A7Y4GMM1L4RDtW2rWpqq3ptq9q3NcVgF9u-vi3-b-QF4NibfQ |
Cites_doi | 10.1002/jbio.202200189 10.1021/acs.analchem.4c01550 10.48550/arXiv.1807.02758 10.1364/BOE.432933 10.48550/arXiv.1502.03167 10.1016/j.talanta.2019.120343 10.48550/arXiv.1710.09412 10.1109/CVPR.2018.00745 10.1016/j.saa.2022.121937 10.1038/s41467-024-44864-5 10.1109/TPAMI.2015.2439281 10.48550/arXiv.1609.04802 10.1007/978-3-319-46493-0_38 10.1146/annurev.anchem.1.031207.112754 10.48550/arXiv.1809.00219 10.1002/jbio.202000238 10.1109/TIP.2003.819861 10.1038/s42254-020-0171-y 10.1002/lpor.201500023 10.1016/j.saa.2020.118372 10.1021/ar400331q 10.1002/jbio.202000456 10.1038/s41565-024-01825-9 10.1016/j.jphotobiol.2021.112280 10.1021/ac400570w 10.1016/j.jphotobiol.2021.112366 10.1007/s00253-019-09952-3 10.1109/TCI.2016.2644865 10.1063/5.0228645 10.1109/CANDARW53999.2021.00089 10.48550/arXiv.1412.6980 10.1002/smtd.202301243 10.1021/acs.analchem.1c02178 10.1002/anie.201803394 10.1016/j.patrec.2009.09.011 10.1109/SBCCI.2003.1232813 10.1002/jrs.6177 10.48550/arXiv.1807.06521 10.48550/arXiv.1707.02921 10.1021/cr300147r 10.1038/s41551-016-0027 10.1021/acs.analchem.8b05962 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society Copyright American Chemical Society 2025 |
Copyright_xml | – notice: 2025 American Chemical Society – notice: Copyright American Chemical Society 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1021/acs.analchem.5c02934 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 17131 |
ExternalDocumentID | 40735851 10_1021_acs_analchem_5c02934 c921259437 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .DC .K2 23M 4.4 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI AAHBH ABBLG ABHFT ABHMW ABJNI ABLBI ABMVS ABOCM ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACGOD ACIWK ACJ ACKOT ACNCT ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ D0L EBS ED~ F5P GGK GNL IH9 IHE JG~ KZ1 LMP P2P PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 W1F WH7 X6Y XSW YZZ ZCA ~02 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-a255t-50c3370bd7a79cd0eee15eb08d2774e0af780b7522f5ac4ee390b21de04d895f3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Wed Jul 30 23:55:42 EDT 2025 Thu Aug 14 19:49:22 EDT 2025 Thu Aug 14 01:43:32 EDT 2025 Thu Aug 14 00:02:17 EDT 2025 Wed Aug 13 03:11:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a255t-50c3370bd7a79cd0eee15eb08d2774e0af780b7522f5ac4ee390b21de04d895f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3629-7064 0000-0002-5558-4029 |
PMID | 40735851 |
PQID | 3239434010 |
PQPubID | 45400 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3234708381 proquest_journals_3239434010 pubmed_primary_40735851 crossref_primary_10_1021_acs_analchem_5c02934 acs_journals_10_1021_acs_analchem_5c02934 |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug-12 |
PublicationDateYYYYMMDD | 2025-08-12 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref22/cit22 ref13/cit13 ref33/cit33 S Filho A. G. (ref41/cit41) 2003 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref5/cit5 doi: 10.1002/jbio.202200189 – ident: ref15/cit15 doi: 10.1021/acs.analchem.4c01550 – ident: ref18/cit18 doi: 10.48550/arXiv.1807.02758 – ident: ref25/cit25 doi: 10.1364/BOE.432933 – ident: ref31/cit31 doi: 10.48550/arXiv.1502.03167 – ident: ref4/cit4 doi: 10.1016/j.talanta.2019.120343 – ident: ref38/cit38 doi: 10.48550/arXiv.1710.09412 – ident: ref42/cit42 doi: 10.1109/CVPR.2018.00745 – ident: ref28/cit28 doi: 10.1016/j.saa.2022.121937 – ident: ref16/cit16 doi: 10.1038/s41467-024-44864-5 – ident: ref17/cit17 doi: 10.1109/TPAMI.2015.2439281 – ident: ref22/cit22 doi: 10.48550/arXiv.1609.04802 – ident: ref34/cit34 doi: 10.1007/978-3-319-46493-0_38 – ident: ref8/cit8 doi: 10.1146/annurev.anchem.1.031207.112754 – ident: ref23/cit23 doi: 10.48550/arXiv.1809.00219 – ident: ref24/cit24 doi: 10.1002/jbio.202000238 – ident: ref37/cit37 doi: 10.1109/TIP.2003.819861 – ident: ref7/cit7 doi: 10.1038/s42254-020-0171-y – ident: ref12/cit12 doi: 10.1002/lpor.201500023 – ident: ref26/cit26 doi: 10.1016/j.saa.2020.118372 – ident: ref10/cit10 doi: 10.1021/ar400331q – ident: ref29/cit29 doi: 10.1002/jbio.202000456 – ident: ref13/cit13 doi: 10.1038/s41565-024-01825-9 – ident: ref3/cit3 doi: 10.1016/j.jphotobiol.2021.112280 – ident: ref9/cit9 doi: 10.1021/ac400570w – ident: ref27/cit27 doi: 10.1016/j.jphotobiol.2021.112366 – ident: ref1/cit1 doi: 10.1007/s00253-019-09952-3 – ident: ref36/cit36 doi: 10.1109/TCI.2016.2644865 – ident: ref21/cit21 doi: 10.1063/5.0228645 – ident: ref35/cit35 doi: 10.1109/CANDARW53999.2021.00089 – ident: ref39/cit39 doi: 10.48550/arXiv.1412.6980 – ident: ref14/cit14 doi: 10.1002/smtd.202301243 – ident: ref20/cit20 doi: 10.1021/acs.analchem.1c02178 – ident: ref2/cit2 doi: 10.1002/anie.201803394 – ident: ref40/cit40 doi: 10.1016/j.patrec.2009.09.011 – start-page: 99 volume-title: Proceedings of the 16th Symposium on Integrated Circuits and Systems Design, 2003 (SBCCI 2003) year: 2003 ident: ref41/cit41 doi: 10.1109/SBCCI.2003.1232813 – ident: ref30/cit30 doi: 10.1002/jrs.6177 – ident: ref33/cit33 doi: 10.48550/arXiv.1807.06521 – ident: ref32/cit32 doi: 10.48550/arXiv.1707.02921 – ident: ref6/cit6 doi: 10.1021/cr300147r – ident: ref11/cit11 doi: 10.1038/s41551-016-0027 – ident: ref19/cit19 doi: 10.1021/acs.analchem.8b05962 |
SSID | ssj0011016 |
Score | 2.4842322 |
Snippet | Raman imaging utilizes molecular fingerprint information to visualize the spatial distribution of a substance within the scanned area. Subject to its scanning... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 17121 |
SubjectTerms | Algorithms Biochemical analysis Chemical fingerprinting Cluster analysis Clustering Data acquisition Deep learning Generative Adversarial Networks Image acquisition Image Processing, Computer-Assisted - methods Image reconstruction Image resolution Information processing Machine learning Neural Networks, Computer Performance evaluation Real time Root-mean-square errors Signal to noise ratio Spatial discrimination Spatial distribution Spatial resolution Spectrum Analysis, Raman - methods Transfer learning Vector quantization |
Title | Reconstructing Super-Resolution Raman Spectral Image Using a Generative Adversarial Network-Based Algorithm |
URI | http://dx.doi.org/10.1021/acs.analchem.5c02934 https://www.ncbi.nlm.nih.gov/pubmed/40735851 https://www.proquest.com/docview/3239434010 https://www.proquest.com/docview/3234708381 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcigcgFIKy0uu1EsP2Tp-JNkjrECABJVKkbhFfmWpYLNoHxd-PTPJZilFqPQaW3Y8D883HnsG4Kt2CcLiwqGKZypSibZR5kjxFGXj0lLYjN4OX1wmp9fq_EbfPDuKf0fwRfzduHHHIFFxDYOOxnG6Ui3CkkhQjwkK9a7mUQPyRJsKeRRQbZ7KvTEKGSQ3fmmQ3kCZlbU5WYMfzZud-pLJXWc6sR33-DqF4zsXsg6rM-DJDmtJ-QgLodyAD72m3tsGrPyRmvAT3JFf2mSXLfvsavoQRhEd9teiyn6agSkZla-nsxJ2NsCNiVUXEJhhdTJr2klZVfF5bEjO2WV95zw6QtPp2eF9fzj6PbkdbML1yfGv3mk0K8wQGfRAJpHmTsqUW5-atOs8DyHEOlieeYFoMnBTpBm3KUK7QhunQpBdbkXsA1c-6-pCfoZWOSzDNrCgbJb4AiXG4p5trfVeFCn6kIjFPLdFG74h3fKZYo3zKmYu4pw-NsTMZ8RsQ9RwMn-oc3X8o_9ew-7nCSTVipfodfI2fJk3IysokGLKMJxWfVSK2DWL27BVi8l8QhRxSaHWnf_48V1YFlRWmDLtij1oIW_DPmKdiT2oBPwJI5P6tg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6V5VD2wGN3gUABI3HhkK4T2016LBWrFnZ7oFvUW2THTkG7TaumvfDrmcmjC0gr1KsT-TEztr_x2N8AfFBpD2FxluIUj6Uve8r4cUoTTxIblxKhient8NWkN5rJL3M1b4Fq3sJgJwqsqSiD-HfsAsE5lWmULQ5l2VVYXV_IB_AQ8UhIhj0YTvfBA3JIm0R5FFdtXszdUwvtS2nx9750D9gsN52LJ_B9393yrslNd7c13fTXP0yOB4_nKTyuYSgbVHbzDFouP4H2sMn-dgLHfxAVnsINeakN12y-YNPd2m18OvqvDJd900udM0pmTycnbLzEZYqV1xGYZhW1Na2rrMz_XGiyejapbqD7n3AjtWxwu1htfm5_LM9gdvH5ejjy6zQNvkZ_ZOsrngoRcWMjHfVTy51zgXKGxzZEbOm4zqKYmwiBXqZ0Kp0TfW7CwDoubdxXmXgOR_kqdy-BOWnins3Qfgyu4MYYa8MsQo8SkZnlJvPgI8otqadZkZQR9DBIqLARZlIL0wO_UWiyrpg7_vN_p9H6XQOCMscL9EG5B-_3n1EVFFbRuVvtyn9khEg2Djx4UVnLvkE0eEGB11cHdPwdtEfXV5fJ5Xjy9TU8CinhMHHwhh04Qj27N4iCtuZtafO_AWSxAyY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB61VKJwoEB5BCi4EhcOG7xrO7s5htCIRxtVBSTUy8peewFBNhGbXPj1zOwjQCWEytVr-TEPz8yO_Q3Arkpa6BanCap4JD3ZUsaLElI8SWhcSgQmorfDv_qtowt5cqkun5X6wkXkOFJeJPFJq0c2rRAG_H1q10hf3M6gqXDItpAf4RNl7ki4O92zaQKBgtK6WB7lVutXc6-MQrYpyV_aplcczsLw9L7A3-mSi_smt83J2DSTh3_QHN-1p0VYqNxR1inlZwk-uGwZPnfrKnDLMP8MsPAr3FK0WmPOZlfsbDJy9x6lAEoBZn_0QGeMitrTHxR2PMDjihXXEphmJcQ1na-sqAOda5J-1i9vonsHaFAt69xdDe9vxteDFbjo_TjvHnlVuQZPY1wy9hRPhAi5saEO24nlzjlfOcMjG6CP6bhOw4ibEB2-VOlEOifa3AS-dVzaqK1SsQoz2TBz68CcNFHLpihHBk9yY4y1QRpiZIkemuUmbcAe0i2u1C2Pi0x64MfUWBMzrojZAK9majwqETze6L9Vc_5pAkEV5AXGorwB36efkRWUXtGZG06KPjJEjzbyG7BWSsx0QhR8QQnYjf9Y-A7M_j7sxT-P-6ebMBdQ3WGC4g22YAbZ7L6hMzQ224XYPwK3HQWp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstructing+Super-Resolution+Raman+Spectral+Image+Using+a+Generative+Adversarial+Network-Based+Algorithm&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Xu%2C+Jie&rft.au=An%2C+Haorui&rft.au=Kong%2C+Xiangtao&rft.au=Zhang%2C+Zixuan&rft.date=2025-08-12&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=97&rft.issue=31&rft.spage=17121&rft.epage=17131&rft_id=info:doi/10.1021%2Facs.analchem.5c02934&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_analchem_5c02934 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |