Practical Applications of Sparse Modeling

Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision. Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the...

Full description

Saved in:
Bibliographic Details
Main Authors Rish, Irina, Cecchi, Guillermo A, Lozano, Aurélie Chloé, Niculescu-Mizil, Alexandru
Format eBook Book
LanguageEnglish
Published Cambridge, Massachusetts MIT Press 2014
The MIT Press
Edition1
SeriesNeural Information Processing series
Subjects
Online AccessGet full text
ISBN9780262325325
0262325322
0262027720
9780262027724
DOI10.7551/mitpress/9333.001.0001

Cover

Abstract Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision. Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models. Contributors A. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing
AbstractList Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision. Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models. Contributors A. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing
Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision.
Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models.ContributorsA. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing
Sparse modelling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modelling, focusing on its applications in fields including neuroscience, computational biology, and computer vision.
Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and computer vision. Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional datasets. This collection describes key approaches in sparse modeling, focusing on its applications in fields including neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models. Contributors A. Vania Apkarian, Marwan Baliki, Melissa K. Carroll, Guillermo A. Cecchi, Volkan Cevher, Xi Chen, Nathan W. Churchill, Rémi Emonet, Rahul Garg, Zoubin Ghahramani, Lars Kai Hansen, Matthias Hein, Katherine Heller, Sina Jafarpour, Seyoung Kim, Mladen Kolar, Anastasios Kyrillidis, Seunghak Lee, Aurelie Lozano, Matthew L. Malloy, Pablo Meyer, Shakir Mohamed, Alexandru Niculescu-Mizil, Robert D. Nowak, Jean-Marc Odobez, Peter M. Rasmussen, Irina Rish, Saharon Rosset, Martin Slawski, Stephen C. Strother, Jagannadan Varadarajan, Eric P. Xing
Author Cecchi, Guillermo A
Lozano, Aurélie Chloé
Rish, Irina
Niculescu-Mizil, Alexandru
Author_xml – sequence: 1
  fullname: Rish, Irina
– sequence: 2
  fullname: Cecchi, Guillermo A
– sequence: 3
  fullname: Lozano, Aurélie Chloé
– sequence: 4
  fullname: Niculescu-Mizil, Alexandru
BackLink https://cir.nii.ac.jp/crid/1130000795884830464$$DView record in CiNii
BookMark eNqVUU2P0zAQNYKuoKWHPaIVKAck6KGtP2P7uFQFKrWARMXVcpNJN9sQhzjA32fadLVoxQVpPLb13huP5w3JkzrUQMgrRmdaKTb_XnZNCzHOrRBiRinDRdkjMrbaUJ5ywRXG4wf3ARlyyiSlwjB-QS7fblbbRdh_gm7CUkoVe0rGMd4eS0kllNHPyORL67OuzHyVXDdNhYeuDHVMQpF8bXwbIdmEHKqy3j8ng8JXEcbnfUS-vV9uFx-n688fVovr9dRzhU1MrdopIZnVmKQtdKHAcAZgmNI2FyqluciNsik3O5-lkuZsx7XJcp8XMs-4GJFJX9jHA_yON6HqovtVwS6EQ3R_fVj8BxdjRN703KYNP35C7NyJlkHdtb5yy3cLbArHpJH5umfWZemy8pgZEzg2qq0yRhpBZSqRdtXT0C2XhX0N3fldNA3Rl_9GeysQn9_jZ4S6o_vuzv1TIYduuaNlqHjRK0oAOEtSmwpmmfgDUV-gBw
ContentType eBook
Book
Contributor Hein, Matthias
Kim, Seyoung
Chen, Xi
Cecchi, Guillermo A
Heller, Katherine
Slawski, Martin
Carroll, Melissa K
Apkarian, A. Vania
Kyrillidis, Anastasios
Odobez, Jean-Marc
Churchill, Nathan W
Rish, Irina
Emonet, Rémi
Baliki, Marwan
Jafarpour, Sina
Malloy, Matthew L
Cevher, Volkan
Mohamed, Shakir
Lozano, Aurelie
Niculescu-Mizil, Alexandru
Varadarajan, Jagannadan
Kolar, Mladen
Nowak, Robert D
Rasmussen, Peter M
Rosset, Saharon
Xing, Eric P
Strother, Stephen C
Meyer, Pablo
Ghahramani, Zoubin
Hansen, Lars Kai
Garg, Rahul
Contributor_xml – sequence: 1
  givenname: Irina
  surname: Rish
  fullname: Rish, Irina
– sequence: 2
  givenname: Guillermo A
  surname: Cecchi
  fullname: Cecchi, Guillermo A
– sequence: 3
  givenname: Aurelie
  surname: Lozano
  fullname: Lozano, Aurelie
– sequence: 4
  givenname: Alexandru
  surname: Niculescu-Mizil
  fullname: Niculescu-Mizil, Alexandru
– sequence: 5
  givenname: Irina
  surname: Rish
  fullname: Rish, Irina
– sequence: 6
  givenname: Guillermo A
  surname: Cecchi
  fullname: Cecchi, Guillermo A
– sequence: 7
  givenname: Aurelie
  surname: Lozano
  fullname: Lozano, Aurelie
– sequence: 8
  givenname: Alexandru
  surname: Niculescu-Mizil
  fullname: Niculescu-Mizil, Alexandru
– sequence: 9
  givenname: Pablo
  surname: Meyer
  fullname: Meyer, Pablo
– sequence: 10
  givenname: Saharon
  surname: Rosset
  fullname: Rosset, Saharon
– sequence: 11
  givenname: Eric P
  surname: Xing
  fullname: Xing, Eric P
– sequence: 12
  givenname: Mladen
  surname: Kolar
  fullname: Kolar, Mladen
– sequence: 13
  givenname: Seyoung
  surname: Kim
  fullname: Kim, Seyoung
– sequence: 14
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
– sequence: 15
  givenname: Martin
  surname: Slawski
  fullname: Slawski, Martin
– sequence: 16
  givenname: Matthias
  surname: Hein
  fullname: Hein, Matthias
  organization: Universität des Saarlandes
– sequence: 17
  givenname: Stephen C
  surname: Strother
  fullname: Strother, Stephen C
  organization: Baycrest
– sequence: 18
  givenname: Peter M
  surname: Rasmussen
  fullname: Rasmussen, Peter M
– sequence: 19
  givenname: Nathan W
  surname: Churchill
  fullname: Churchill, Nathan W
– sequence: 20
  givenname: Lars Kai
  surname: Hansen
  fullname: Hansen, Lars Kai
  organization: Technical University of Denmark
– sequence: 21
  givenname: Melissa K
  surname: Carroll
  fullname: Carroll, Melissa K
– sequence: 22
  givenname: Rahul
  surname: Garg
  fullname: Garg, Rahul
– sequence: 23
  givenname: Marwan
  surname: Baliki
  fullname: Baliki, Marwan
– sequence: 24
  givenname: A. Vania
  surname: Apkarian
  fullname: Apkarian, A. Vania
  organization: Northwestern University
– sequence: 25
  givenname: Matthew L
  surname: Malloy
  fullname: Malloy, Matthew L
– sequence: 26
  givenname: Robert D
  surname: Nowak
  fullname: Nowak, Robert D
– sequence: 27
  givenname: Volkan
  surname: Cevher
  fullname: Cevher, Volkan
– sequence: 28
  givenname: Sina
  surname: Jafarpour
  fullname: Jafarpour, Sina
– sequence: 29
  givenname: Anastasios
  surname: Kyrillidis
  fullname: Kyrillidis, Anastasios
– sequence: 30
  givenname: Shakir
  surname: Mohamed
  fullname: Mohamed, Shakir
– sequence: 31
  givenname: Katherine
  surname: Heller
  fullname: Heller, Katherine
– sequence: 32
  givenname: Zoubin
  surname: Ghahramani
  fullname: Ghahramani, Zoubin
  organization: Cambridge University
– sequence: 33
  givenname: Jagannadan
  surname: Varadarajan
  fullname: Varadarajan, Jagannadan
– sequence: 34
  givenname: Rémi
  surname: Emonet
  fullname: Emonet, Rémi
– sequence: 35
  givenname: Jean-Marc
  surname: Odobez
  fullname: Odobez, Jean-Marc
Copyright 2014 Massachusetts Institute of Technology
Copyright_xml – notice: 2014 Massachusetts Institute of Technology
DBID RYH
DEWEY 003/.74
DOI 10.7551/mitpress/9333.001.0001
DatabaseName CiNii Complete
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
Engineering
Mathematics
EISBN 9780262325325
0262325322
9780262325332
0262325330
Edition 1
Editor Cecchi, Guillermo A
Rish, Irina
Lozano, Aurelie
Niculescu-Mizil, Alexandru
Editor_xml – sequence: 1
  givenname: Irina
  surname: Rish
  fullname: Rish, Irina
– sequence: 2
  givenname: Guillermo A
  surname: Cecchi
  fullname: Cecchi, Guillermo A
– sequence: 3
  givenname: Aurelie
  surname: Lozano
  fullname: Lozano, Aurelie
– sequence: 4
  givenname: Alexandru
  surname: Niculescu-Mizil
  fullname: Niculescu-Mizil, Alexandru
ExternalDocumentID 9780262325332
9780262325325
EBC5966007
BB16736123
9333
160051
10_7551_mitpress_9333_001_0001
6963191
GroupedDBID -D2
38.
6IK
AABBV
ABFEK
AEFEZ
AGMVS
ALMA_UNASSIGNED_HOLDINGS
AZFZN
BBABE
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
D2
EBRZX
ECNEQ
MIJRL
OCL
AAOBU
AEGYG
ISLSO
MCG
MICIX
ABAZT
AHWGJ
RYH
ID FETCH-LOGICAL-a25532-95b53419734149f7f5e821ee81579d3560d3d859628bac640d1b278cdadf4dc23
IEDL.DBID -D2
ISBN 9780262325325
0262325322
0262027720
9780262027724
IngestDate Fri Nov 08 05:43:05 EST 2024
Thu Mar 20 12:07:31 EDT 2025
Fri May 30 21:31:50 EDT 2025
Thu Jun 26 23:05:48 EDT 2025
Wed Dec 15 04:12:17 EST 2021
Mon Sep 05 02:14:05 EDT 2022
Tue Jun 18 19:33:10 EDT 2024
Tue Jan 05 21:15:43 EST 2021
IsPeerReviewed false
IsScholarly false
LCCN 2014003812
LCCallNum_Ident TA342
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a25532-95b53419734149f7f5e821ee81579d3560d3d859628bac640d1b278cdadf4dc23
Notes Includes bibliographical references and index
OCLC (MITCogNet)160051
904731597
(OCoLC-P)904731597
PQID EBC5966007
PageCount 264
ParticipantIDs askewsholts_vlebooks_9780262325332
askewsholts_vlebooks_9780262325325
proquest_ebookcentral_EBC5966007
nii_cinii_1130000795884830464
mit_cognetbooks_9333
mit_cognetbooks_160051
mit_books_10_7551_mitpress_9333_001_0001
ieee_books_6963191
ProviderPackageCode BPEOZ
BGNUA
ECNEQ
6IK
EBRZX
OCL
BKEBE
-D2
BEFXN
BFFAM
MIJRL
PublicationCentury 2000
PublicationDate 2014
20140912
c2014
2014-10-10
2014-09-19
PublicationDateYYYYMMDD 2014-01-01
2014-09-12
2014-10-10
2014-09-19
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationPlace Cambridge, Massachusetts
PublicationPlace_xml – name: Cambridge, Massachusetts
– name: Cambridge, Mass
– name: Cambridge
PublicationSeriesSubtitle Neural information processing series
PublicationSeriesTitle Neural Information Processing series
PublicationYear 2014
Publisher MIT Press
The MIT Press
Publisher_xml – name: MIT Press
– name: The MIT Press
SSID ssj0001453587
ssib023429269
Score 2.0322616
Snippet Key approaches in the rapidly developing area of sparse modeling, focusing on its application in fields including neuroscience, computational biology, and...
Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of...
Sparse modelling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem...
SourceID askewsholts
proquest
nii
mit
ieee
SourceType Aggregation Database
Publisher
SubjectTerms Computer Science
computer science/machine learning & neural networks
Computing and Processing
Data reduction
General Topics for Engineers
Machine Learning & Neural Networks
Mathematical models
Neuroscience
neuroscience/general
sampling (statistics)
Sparse matrices
TableOfContents Intro -- Contents -- Series Foreword -- 1 Introduction -- 2 The Challenges of Systems Biology -- 3 Practical Sparse Modeling: An Overview and Two Examples from Genetics -- 4 High-Dimensional Sparse Structured Input-Output Models, with Applications to GWAS -- 5 Sparse Recovery for Protein Mass Spectrometry Data -- 6 Stability and Reproducibility in fMRI Analysis -- 7 Reliability Estimation and Enhancement via Spatial Smoothing in Sparse fMRI Modeling -- 8 Sequential Testing for Sparse Recovery -- 9 Linear Inverse Problems with Norm and Sparsity Constraints -- 10 Bayesian Approaches for Sparse Latent Variable Models -- 11 Sparsity in Topic Models -- Contributors -- Index
Title Practical Applications of Sparse Modeling
URI https://ieeexplore.ieee.org/servlet/opac?bknumber=6963191
http://dx.doi.org/10.7551/mitpress/9333.001.0001
http://cognet.mit.edu/book/practical-applications-of-sparse-modeling
https://cir.nii.ac.jp/crid/1130000795884830464
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5966007
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780262325325&uid=none
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780262325332&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsQwcBC96MXnYn1RxIMeurtNkzY5iU9E0IsPFi8lr8KyuIpbL369M20WF_UgXkJpEphkJpOZzAvgQEutjXAmsZViCdeVT0zOLVkKTc5IxVYUjXxzm1898OuBGMyU-qIKJ43zme_SZ2PLp-dJXESjRR6bUSiVkSPppBS3voAaTEbEnZyzr-cVLjIhizYmuECxoPc8rBvX0h6q8JTVNKXUhekSLOnJCPkJ8pp6Ekqs4D2Do7EdD4c_eHRz8Vwuw9MU5NbfZNR9r03XfnzL5vivNa3AgqdQh1WY8-M1WA4CaRyO-2QdjtpsRojG-GTG0B2_VPHdK2rEPqZSahTQvgGPlxf3Z1dJqK2QaFQiMobIMIJyuRXYcFUVlfCSpd7LVBTKZSgIucxJqs0jjbY577vUsEJap13FnWVZB-bHL2O_CbF1XGk8-UZzwW2VK-28lL7IkAsblaoI9mf2uMR1kwIxKSn5EUPxiyE84g-DMhbBKu1g2XaF3YrgELEV_qFOQ9gup9guCdvkuNdY2SPo0FDyzPJ1mJATX4pg_XsHTYxgF0mgtENqU7L8oUilKLZXkkWZRxBPiaNs4A0eteXF6ZmgvKf9Yus3kLdhEc8Bb59ydmC-fnv3uyjc1GavIeNP9EvyJw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h9kB7WUqpCKUQVRzgkN3GsRP7CEurhT4utKg3y69Iqy27iKQ98OuZcVxRLRx6saLYkZyZ8XjGM_MZ4J2RxljhbeFaxQpu2lDYmjuKFNqakYutqBr5_KKeXfGv1-I6nXfEWpgQQkw-C2N6jLF8MjcnNUpKSWXqm7jnc5Ll4jP7e5rCRSVkM5QAN2gFTH7M-5hJOkGPnUBMS0IqLLdh23QLVB-oWvou3aiC2wqOxnY5n_-jkuM-czIaQI-6CE9I6SWL8W1vx-73GnjjY37hGWwGKmTYgSdh-RxGydzM02LuduHDgFWETMo_Pghj56s2__YT_d2Q00VpVK7-Ar6fHF9OZ0W6OaEw6CJUDEltBSG1Ndhw1TatCJKVIchSNMpXaOb4yku6eUda42p-5EvLGum88S33jlV7sLFcLcNLyJ3nyuC6tgbp7tpaGR-kDE2FOtaqUmVw-ICk-u4mRnk7TdBGDI0rhvMRjxhUsQx2iGB66ErUyuA9Mie9Q4-FmKvvmauJuZSWF2PoGezRUMq7Cn36oCatk8Huegd9mMEBcly7ObUlxfXQYFJUuSspXswzyO9lQcf5pnxZffxpKgjV9Kh59b8pv4Wns8vzM3325eJ0H7ZQ4vlwaPMaNvpft-EAzZjevokS_AfU-edY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Practical+Applications+of+Sparse+Modeling&rft.date=2014-09-12&rft.pub=The+MIT+Press&rft.isbn=9780262325325&rft_id=info:doi/10.7551%2Fmitpress%2F9333.001.0001&rft.externalDocID=10_7551_mitpress_9333_001_0001
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97802623%2F9780262325325.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97802623%2F9780262325332.jpg