Efficient NH3‑Tolerant Nickel-Based Hydrogen Oxidation Catalyst for Anion Exchange Membrane Fuel Cells
Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammoni...
Saved in:
Published in | Journal of the American Chemical Society Vol. 145; no. 31; pp. 17485 - 17494 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
09.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH3). Here we demonstrate remarkable NH3 resistivity over a nickel–molybdenum alloy (MoNi4) modulated by chromium (Cr) dopants. The resultant Cr-MoNi4 exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH3. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH3 (10 ppm)/H2 was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH3 adsorption. |
---|---|
AbstractList | Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH3). Here we demonstrate remarkable NH3 resistivity over a nickel-molybdenum alloy (MoNi4) modulated by chromium (Cr) dopants. The resultant Cr-MoNi4 exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH3. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH3 (10 ppm)/H2 was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH3 adsorption.Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH3). Here we demonstrate remarkable NH3 resistivity over a nickel-molybdenum alloy (MoNi4) modulated by chromium (Cr) dopants. The resultant Cr-MoNi4 exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH3. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH3 (10 ppm)/H2 was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH3 adsorption. Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH₃). Here we demonstrate remarkable NH₃ resistivity over a nickel–molybdenum alloy (MoNi₄) modulated by chromium (Cr) dopants. The resultant Cr-MoNi₄ exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH₃. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH₃ (10 ppm)/H₂ was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH₃ adsorption. Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH3). Here we demonstrate remarkable NH3 resistivity over a nickel–molybdenum alloy (MoNi4) modulated by chromium (Cr) dopants. The resultant Cr-MoNi4 exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH3. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH3 (10 ppm)/H2 was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH3 adsorption. |
Author | Qin, Shuai Zhang, Xiao-Long Niu, Zhuang-Zhuang Gao, Fei-Yue Yang, Peng-Peng Wang, Ye-Hua Yu, Peng-Cheng Liao, Jie Sun, Mei Yang, Yu Gao, Min-Rui |
AuthorAffiliation | Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry |
AuthorAffiliation_xml | – name: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry |
Author_xml | – sequence: 1 givenname: Ye-Hua surname: Wang fullname: Wang, Ye-Hua – sequence: 2 givenname: Fei-Yue surname: Gao fullname: Gao, Fei-Yue – sequence: 3 givenname: Xiao-Long orcidid: 0000-0002-5596-0776 surname: Zhang fullname: Zhang, Xiao-Long – sequence: 4 givenname: Yu surname: Yang fullname: Yang, Yu – sequence: 5 givenname: Jie surname: Liao fullname: Liao, Jie – sequence: 6 givenname: Zhuang-Zhuang surname: Niu fullname: Niu, Zhuang-Zhuang – sequence: 7 givenname: Shuai surname: Qin fullname: Qin, Shuai – sequence: 8 givenname: Peng-Peng surname: Yang fullname: Yang, Peng-Peng – sequence: 9 givenname: Peng-Cheng surname: Yu fullname: Yu, Peng-Cheng – sequence: 10 givenname: Mei surname: Sun fullname: Sun, Mei – sequence: 11 givenname: Min-Rui orcidid: 0000-0002-7805-803X surname: Gao fullname: Gao, Min-Rui email: mgao@ustc.edu.cn |
BookMark | eNqFkM1OwkAUhScGEwHd-QCzdFOc_06X2ICYoGxw3UzbO1AsM9opCex8BV_RJ7GNJC5d3Zybk5NzvhEaOO8AoVtKJpQwer8zRZjwgqiE8As0pJKRSFKmBmhICGFRrBW_QqMQdp0UTNMh2s6srYoKXItfFvz782vta2hML6viDerowQQo8eJUNn4DDq-OVWnayjucmtbUp9Bi6xs8df1rdiy2xm0AP8M-70IAzw9Q4xTqOlyjS2vqADfnO0av89k6XUTL1eNTOl1GhknRRiZnTNgyl0ViqdVaGmFprnOq8lyqRCkrFQGIkxjAKqM0UZYLVkpOpFBG8zG6-819b_zHAUKb7atQdA26Ov4QMk4EEVTzDtF_VqaFUJrSOPmzdoSznT80rtuQUZL13LOee3bmzn8A-T14Mw |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | 7X8 7S9 L.6 |
DOI | 10.1021/jacs.3c06903 |
DatabaseName | MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 17494 |
ExternalDocumentID | h9347597 |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFRP ABMVS ABPPZ ABPTK ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YQT YZZ ZCA ~02 53G 7X8 AAHBH ABBLG ABJNI ABLBI ACBEA CUPRZ 7S9 L.6 |
ID | FETCH-LOGICAL-a254t-ab224fdb5c9f1f885a4f1b8b16bb56966f560ee797eef6a6806f342d530546a83 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Jul 11 02:21:45 EDT 2025 Fri Jul 11 16:09:59 EDT 2025 Fri Aug 11 03:12:29 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a254t-ab224fdb5c9f1f885a4f1b8b16bb56966f560ee797eef6a6806f342d530546a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7805-803X 0000-0002-5596-0776 |
PQID | 2844681179 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3040418390 proquest_miscellaneous_2844681179 acs_journals_10_1021_jacs_3c06903 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-09 |
PublicationDateYYYYMMDD | 2023-08-09 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-09 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
SSID | ssj0004281 |
Score | 2.572355 |
Snippet | Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over... |
SourceID | proquest acs |
SourceType | Aggregation Database Publisher |
StartPage | 17485 |
SubjectTerms | adsorption alloys ammonia anion-exchange membranes carbon catalysts chromium electric power electrodes energy fuel cells fuels hydrogen oxidation platinum |
Title | Efficient NH3‑Tolerant Nickel-Based Hydrogen Oxidation Catalyst for Anion Exchange Membrane Fuel Cells |
URI | http://dx.doi.org/10.1021/jacs.3c06903 https://www.proquest.com/docview/2844681179 https://www.proquest.com/docview/3040418390 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bSsMwGA46L_TGs3gmgrcda9Om6eUsm0PYvHCD3ZUmTXBYW1hb2LzyFXxFn8Q_PTDYEL1sSE85fd-X_AeE7qXGiJAJYG5eBAKFmIYOiWIwjwoqdEQwpf2dhyM6mNhPU2e6MpBdP8G3dHwgkbWJ0BF1yTbasShztcjq-i8r_0eLmQ3NdRkltYH7-t0agES2seiWSNI_QI-NP05lQPLWLnLeFh-b4Rn_-MhDtF-TSdytev8IbcnkGO36TQ63E_TaKyNEALDg0YB8f36N01gCOsHlDKZvbDwAiEV4sIzmKYwk_LyYVTmWsK-3dZZZjoHU4m6ii3qLyksYD-U7aOxE4n4hY-zLOM5O0aTfG_sDo86tYIQgCXMj5IDdKuKO8JSpGHNCW5mccZNy7lDQQAqokJSu50qpaEhZhypiW5ED64NNQ0bOUCtJE3mOMJFUKaoYKC3X9uAh1HEiKiOdxVx1InKB7qB1gnpuZEF57G2B7NCldZtBnaZTAmgifWgBv5EWWQDwaVPtDev9XofASmRrqte5_Me7rtCezhlfWvF516iVzwt5A8wi57flsPoBCBrIXg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT4MwFG50PswX78a7NfGVZaxQyuMkW1A3fHBL9ka4tHERIRks2XzyL_gX_SWew5hLZkx8pCmlHNp-30d7ziHkViJGBCIC5mbHIFCYrmFIFE3YPOIRRgRT6O_c97g7NB5G5qhyVkdfGOhEDi3l5Sb-KroAhgmCQhZhYF22SbaAh7RQa7Wd55UbZEvoS7ZrCc6qc-7rdyMORfmvtbcElO4u8X66Up4jeW1Mi7ARva9Fafx3X_fITkUtaXsxFvbJhkwPSN1ZZnQ7JC-dMl4EwAz1XPb18TnIEglYBZdjmMyJdgeQFlN3Hk8yGFf0aTZeZFyiDv7kmecFBYpL2ykWdWYLn2Hal2-guFNJu1OZUEcmSX5Eht3OwHG1KtOCFoBALLQgBCRXcWhGttKVEGZgKD0Uoc7D0OSgiBQQIykt25JS8YCLJlfMaMUmrBYGDwQ7JrU0S-UJoUxypbgSoLssw4ZGuGnGXMaY01w1Y3ZKbsA6fjVTcr_cBG-BCMHSymZQZ_ltfDARbmHAa2TT3AcwNTj6xtp_12GwLhlI_Jpn_3jWNam7g37P7917j-dkG7PJl-f77AtSKyZTeQmcowivypH2DeCP0L8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4QE_XFu_FuTXwdYXQr3SNOCF5Ao5DwtmxrG4lzGDYS8Mm_4F_0l3jOGJpgTPRxXbd1Xdvv-3Z6ziHkTCFG-CIE5uZIECjMNDAkiiEcHvIQI4Jp9HdutXmza1317F6BmDNfGGhEAndKMiM-zuoXqfMIAxgqCE6wEIPrsgWyiBY71Fs19-HbFbIizBnjrQrO8r3u81cjFoXJj_U3A5XGGrn_ak62l-SpNEqDUvg6F6nxX-1dJ6s5xaS16ZjYIAUVb5Jld5bZbYs81rO4EQA3tN1kH2_vnUGkALPgsA-TOjLOAdokbU7kcADji96O-9PMS9TFnz2TJKVAdWktxqL6eOo7TFvqGZR3rGhjpCLqqihKtkm3Ue-4TSPPuGD4IBRTww8A0bUM7NDRphbC9i1tBiIweRDYHJSRBoKkVNWpKqW5z0WZa2ZVpA2rhsV9wXZIMR7EapdQprjWXAvQX1XLgZtw25ZcScxtrsuS7ZFT6B0vnzGJlxnDKyBGsDTvM6gz-z4edBGaMuA1BqPEA1C1OPrIOr_XYbA-WUgAy_t_eNYJWbq7aHg3l-3rA7KCSeWzbX7OISmmw5E6AuqRBsfZYPsEx3rTQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+NH%E2%82%83%E2%80%91Tolerant+Nickel-Based+Hydrogen+Oxidation+Catalyst+for+Anion+Exchange+Membrane+Fuel+Cells&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wang%2C+Ye-Hua&rft.au=Gao%2C+Fei-Yue&rft.au=Zhang%2C+Xiao-Long&rft.au=Yang%2C+Yu&rft.date=2023-08-09&rft.issn=1520-5126&rft.volume=145&rft.issue=31+p.17485-17494&rft.spage=17485&rft.epage=17494&rft_id=info:doi/10.1021%2Fjacs.3c06903&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |