Efficient NH3‑Tolerant Nickel-Based Hydrogen Oxidation Catalyst for Anion Exchange Membrane Fuel Cells

Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammoni...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 145; no. 31; pp. 17485 - 17494
Main Authors Wang, Ye-Hua, Gao, Fei-Yue, Zhang, Xiao-Long, Yang, Yu, Liao, Jie, Niu, Zhuang-Zhuang, Qin, Shuai, Yang, Peng-Peng, Yu, Peng-Cheng, Sun, Mei, Gao, Min-Rui
Format Journal Article
LanguageEnglish
Published American Chemical Society 09.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH3). Here we demonstrate remarkable NH3 resistivity over a nickel–molybdenum alloy (MoNi4) modulated by chromium (Cr) dopants. The resultant Cr-MoNi4 exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH3. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH3 (10 ppm)/H2 was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH3 adsorption.
AbstractList Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH3). Here we demonstrate remarkable NH3 resistivity over a nickel-molybdenum alloy (MoNi4) modulated by chromium (Cr) dopants. The resultant Cr-MoNi4 exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH3. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH3 (10 ppm)/H2 was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH3 adsorption.Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH3). Here we demonstrate remarkable NH3 resistivity over a nickel-molybdenum alloy (MoNi4) modulated by chromium (Cr) dopants. The resultant Cr-MoNi4 exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH3. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH3 (10 ppm)/H2 was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH3 adsorption.
Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH₃). Here we demonstrate remarkable NH₃ resistivity over a nickel–molybdenum alloy (MoNi₄) modulated by chromium (Cr) dopants. The resultant Cr-MoNi₄ exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH₃. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH₃ (10 ppm)/H₂ was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH₃ adsorption.
Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH3). Here we demonstrate remarkable NH3 resistivity over a nickel–molybdenum alloy (MoNi4) modulated by chromium (Cr) dopants. The resultant Cr-MoNi4 exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH3. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH3 (10 ppm)/H2 was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH3 adsorption.
Author Qin, Shuai
Zhang, Xiao-Long
Niu, Zhuang-Zhuang
Gao, Fei-Yue
Yang, Peng-Peng
Wang, Ye-Hua
Yu, Peng-Cheng
Liao, Jie
Sun, Mei
Yang, Yu
Gao, Min-Rui
AuthorAffiliation Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry
AuthorAffiliation_xml – name: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry
Author_xml – sequence: 1
  givenname: Ye-Hua
  surname: Wang
  fullname: Wang, Ye-Hua
– sequence: 2
  givenname: Fei-Yue
  surname: Gao
  fullname: Gao, Fei-Yue
– sequence: 3
  givenname: Xiao-Long
  orcidid: 0000-0002-5596-0776
  surname: Zhang
  fullname: Zhang, Xiao-Long
– sequence: 4
  givenname: Yu
  surname: Yang
  fullname: Yang, Yu
– sequence: 5
  givenname: Jie
  surname: Liao
  fullname: Liao, Jie
– sequence: 6
  givenname: Zhuang-Zhuang
  surname: Niu
  fullname: Niu, Zhuang-Zhuang
– sequence: 7
  givenname: Shuai
  surname: Qin
  fullname: Qin, Shuai
– sequence: 8
  givenname: Peng-Peng
  surname: Yang
  fullname: Yang, Peng-Peng
– sequence: 9
  givenname: Peng-Cheng
  surname: Yu
  fullname: Yu, Peng-Cheng
– sequence: 10
  givenname: Mei
  surname: Sun
  fullname: Sun, Mei
– sequence: 11
  givenname: Min-Rui
  orcidid: 0000-0002-7805-803X
  surname: Gao
  fullname: Gao, Min-Rui
  email: mgao@ustc.edu.cn
BookMark eNqFkM1OwkAUhScGEwHd-QCzdFOc_06X2ICYoGxw3UzbO1AsM9opCex8BV_RJ7GNJC5d3Zybk5NzvhEaOO8AoVtKJpQwer8zRZjwgqiE8As0pJKRSFKmBmhICGFRrBW_QqMQdp0UTNMh2s6srYoKXItfFvz782vta2hML6viDerowQQo8eJUNn4DDq-OVWnayjucmtbUp9Bi6xs8df1rdiy2xm0AP8M-70IAzw9Q4xTqOlyjS2vqADfnO0av89k6XUTL1eNTOl1GhknRRiZnTNgyl0ViqdVaGmFprnOq8lyqRCkrFQGIkxjAKqM0UZYLVkpOpFBG8zG6-819b_zHAUKb7atQdA26Ov4QMk4EEVTzDtF_VqaFUJrSOPmzdoSznT80rtuQUZL13LOee3bmzn8A-T14Mw
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID 7X8
7S9
L.6
DOI 10.1021/jacs.3c06903
DatabaseName MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 17494
ExternalDocumentID h9347597
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFRP
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
7X8
AAHBH
ABBLG
ABJNI
ABLBI
ACBEA
CUPRZ
7S9
L.6
ID FETCH-LOGICAL-a254t-ab224fdb5c9f1f885a4f1b8b16bb56966f560ee797eef6a6806f342d530546a83
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Jul 11 02:21:45 EDT 2025
Fri Jul 11 16:09:59 EDT 2025
Fri Aug 11 03:12:29 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a254t-ab224fdb5c9f1f885a4f1b8b16bb56966f560ee797eef6a6806f342d530546a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7805-803X
0000-0002-5596-0776
PQID 2844681179
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3040418390
proquest_miscellaneous_2844681179
acs_journals_10_1021_jacs_3c06903
PublicationCentury 2000
PublicationDate 2023-08-09
PublicationDateYYYYMMDD 2023-08-09
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-09
  day: 09
PublicationDecade 2020
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0004281
Score 2.572355
Snippet Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over...
SourceID proquest
acs
SourceType Aggregation Database
Publisher
StartPage 17485
SubjectTerms adsorption
alloys
ammonia
anion-exchange membranes
carbon
catalysts
chromium
electric power
electrodes
energy
fuel cells
fuels
hydrogen
oxidation
platinum
Title Efficient NH3‑Tolerant Nickel-Based Hydrogen Oxidation Catalyst for Anion Exchange Membrane Fuel Cells
URI http://dx.doi.org/10.1021/jacs.3c06903
https://www.proquest.com/docview/2844681179
https://www.proquest.com/docview/3040418390
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bSsMwGA46L_TGs3gmgrcda9Om6eUsm0PYvHCD3ZUmTXBYW1hb2LzyFXxFn8Q_PTDYEL1sSE85fd-X_AeE7qXGiJAJYG5eBAKFmIYOiWIwjwoqdEQwpf2dhyM6mNhPU2e6MpBdP8G3dHwgkbWJ0BF1yTbasShztcjq-i8r_0eLmQ3NdRkltYH7-t0agES2seiWSNI_QI-NP05lQPLWLnLeFh-b4Rn_-MhDtF-TSdytev8IbcnkGO36TQ63E_TaKyNEALDg0YB8f36N01gCOsHlDKZvbDwAiEV4sIzmKYwk_LyYVTmWsK-3dZZZjoHU4m6ii3qLyksYD-U7aOxE4n4hY-zLOM5O0aTfG_sDo86tYIQgCXMj5IDdKuKO8JSpGHNCW5mccZNy7lDQQAqokJSu50qpaEhZhypiW5ED64NNQ0bOUCtJE3mOMJFUKaoYKC3X9uAh1HEiKiOdxVx1InKB7qB1gnpuZEF57G2B7NCldZtBnaZTAmgifWgBv5EWWQDwaVPtDev9XofASmRrqte5_Me7rtCezhlfWvF516iVzwt5A8wi57flsPoBCBrIXg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT4MwFG50PswX78a7NfGVZaxQyuMkW1A3fHBL9ka4tHERIRks2XzyL_gX_SWew5hLZkx8pCmlHNp-30d7ziHkViJGBCIC5mbHIFCYrmFIFE3YPOIRRgRT6O_c97g7NB5G5qhyVkdfGOhEDi3l5Sb-KroAhgmCQhZhYF22SbaAh7RQa7Wd55UbZEvoS7ZrCc6qc-7rdyMORfmvtbcElO4u8X66Up4jeW1Mi7ARva9Fafx3X_fITkUtaXsxFvbJhkwPSN1ZZnQ7JC-dMl4EwAz1XPb18TnIEglYBZdjmMyJdgeQFlN3Hk8yGFf0aTZeZFyiDv7kmecFBYpL2ykWdWYLn2Hal2-guFNJu1OZUEcmSX5Eht3OwHG1KtOCFoBALLQgBCRXcWhGttKVEGZgKD0Uoc7D0OSgiBQQIykt25JS8YCLJlfMaMUmrBYGDwQ7JrU0S-UJoUxypbgSoLssw4ZGuGnGXMaY01w1Y3ZKbsA6fjVTcr_cBG-BCMHSymZQZ_ltfDARbmHAa2TT3AcwNTj6xtp_12GwLhlI_Jpn_3jWNam7g37P7917j-dkG7PJl-f77AtSKyZTeQmcowivypH2DeCP0L8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4QE_XFu_FuTXwdYXQr3SNOCF5Ao5DwtmxrG4lzGDYS8Mm_4F_0l3jOGJpgTPRxXbd1Xdvv-3Z6ziHkTCFG-CIE5uZIECjMNDAkiiEcHvIQI4Jp9HdutXmza1317F6BmDNfGGhEAndKMiM-zuoXqfMIAxgqCE6wEIPrsgWyiBY71Fs19-HbFbIizBnjrQrO8r3u81cjFoXJj_U3A5XGGrn_ak62l-SpNEqDUvg6F6nxX-1dJ6s5xaS16ZjYIAUVb5Jld5bZbYs81rO4EQA3tN1kH2_vnUGkALPgsA-TOjLOAdokbU7kcADji96O-9PMS9TFnz2TJKVAdWktxqL6eOo7TFvqGZR3rGhjpCLqqihKtkm3Ue-4TSPPuGD4IBRTww8A0bUM7NDRphbC9i1tBiIweRDYHJSRBoKkVNWpKqW5z0WZa2ZVpA2rhsV9wXZIMR7EapdQprjWXAvQX1XLgZtw25ZcScxtrsuS7ZFT6B0vnzGJlxnDKyBGsDTvM6gz-z4edBGaMuA1BqPEA1C1OPrIOr_XYbA-WUgAy_t_eNYJWbq7aHg3l-3rA7KCSeWzbX7OISmmw5E6AuqRBsfZYPsEx3rTQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+NH%E2%82%83%E2%80%91Tolerant+Nickel-Based+Hydrogen+Oxidation+Catalyst+for+Anion+Exchange+Membrane+Fuel+Cells&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Wang%2C+Ye-Hua&rft.au=Gao%2C+Fei-Yue&rft.au=Zhang%2C+Xiao-Long&rft.au=Yang%2C+Yu&rft.date=2023-08-09&rft.issn=1520-5126&rft.volume=145&rft.issue=31+p.17485-17494&rft.spage=17485&rft.epage=17494&rft_id=info:doi/10.1021%2Fjacs.3c06903&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon