Subcubic Equivalences Between Path, Matrix, and Triangle Problems

We say an algorithm on n × n matrices with integer entries in [−M,M] (or n-node graphs with edge weights from [−M,M]) is truly subcubic if it runs in O(n3 − δ poly(log M)) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices...

Full description

Saved in:
Bibliographic Details
Published inJournal of the ACM Vol. 65; no. 5; pp. 1 - 38
Main Authors Williams, Virginia Vassilevska, Williams, R. Ryan
Format Journal Article
LanguageEnglish
Published New York, NY, USA ACM 29.08.2018
Association for Computing Machinery
Subjects
Online AccessGet full text
ISSN0004-5411
1557-735X
DOI10.1145/3186893

Cover

Loading…
Abstract We say an algorithm on n × n matrices with integer entries in [−M,M] (or n-node graphs with edge weights from [−M,M]) is truly subcubic if it runs in O(n3 − δ poly(log M)) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices solvable in O(n3) time are equivalent under subcubic reductions. Namely, the following weighted problems either all have truly subcubic algorithms, or none of them do: *The all-pairs shortest paths problem on weighted digraphs (APSP). *Detecting if a weighted graph has a triangle of negative total edge weight. *Listing up to n2.99 negative triangles in an edge-weighted graph. *Finding a minimum weight cycle in a graph of non-negative edge weights. *The replacement paths problem on weighted digraphs. *Finding the second shortest simple path between two nodes in a weighted digraph. *Checking whether a given matrix defines a metric. *Verifying the correctness of a matrix product over the (min, +)-semiring. *Finding a maximum subarray in a given matrix. Therefore, if APSP cannot be solved in n3−ε time for any ε > 0, then many other problems also need essentially cubic time. In fact, we show generic equivalences between matrix products over a large class of algebraic structures used in optimization, verifying a matrix product over the same structure, and corresponding triangle detection problems over the structure. These equivalences simplify prior work on subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle detection algorithms. Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection would imply practical BMM algorithms, among other results. Building on our techniques, we give two improved BMM algorithms: a derandomization of the combinatorial BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm for BMM.
AbstractList We say an algorithm on n × n matrices with integer entries in [−M,M] (or n-node graphs with edge weights from [−M,M]) is truly subcubic if it runs in O(n3 − δ ċ poly(log M)) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices solvable in O(n3) time are equivalent under subcubic reductions. Namely, the following weighted problems either all have truly subcubic algorithms, or none of them do: •The all-pairs shortest paths problem on weighted digraphs (APSP). •Detecting if a weighted graph has a triangle of negative total edge weight. •Listing up to n2.99 negative triangles in an edge-weighted graph. •Finding a minimum weight cycle in a graph of non-negative edge weights. •The replacement paths problem on weighted digraphs. •Finding the second shortest simple path between two nodes in a weighted digraph. •Checking whether a given matrix defines a metric. •Verifying the correctness of a matrix product over the (min, +)-semiring. •Finding a maximum subarray in a given matrix. Therefore, if APSP cannot be solved in n3−ϵ time for any ϵ > 0, then many other problems also need essentially cubic time. In fact, we show generic equivalences between matrix products over a large class of algebraic structures used in optimization, verifying a matrix product over the same structure, and corresponding triangle detection problems over the structure. These equivalences simplify prior work on subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle detection algorithms. Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection would imply practical BMM algorithms, among other results. Building on our techniques, we give two improved BMM algorithms: a derandomization of the combinatorial BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm for BMM.
We say an algorithm on n × n matrices with integer entries in [−M,M] (or n-node graphs with edge weights from [−M,M]) is truly subcubic if it runs in O(n3 − δ poly(log M)) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices solvable in O(n3) time are equivalent under subcubic reductions. Namely, the following weighted problems either all have truly subcubic algorithms, or none of them do: *The all-pairs shortest paths problem on weighted digraphs (APSP). *Detecting if a weighted graph has a triangle of negative total edge weight. *Listing up to n2.99 negative triangles in an edge-weighted graph. *Finding a minimum weight cycle in a graph of non-negative edge weights. *The replacement paths problem on weighted digraphs. *Finding the second shortest simple path between two nodes in a weighted digraph. *Checking whether a given matrix defines a metric. *Verifying the correctness of a matrix product over the (min, +)-semiring. *Finding a maximum subarray in a given matrix. Therefore, if APSP cannot be solved in n3−ε time for any ε > 0, then many other problems also need essentially cubic time. In fact, we show generic equivalences between matrix products over a large class of algebraic structures used in optimization, verifying a matrix product over the same structure, and corresponding triangle detection problems over the structure. These equivalences simplify prior work on subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle detection algorithms. Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection would imply practical BMM algorithms, among other results. Building on our techniques, we give two improved BMM algorithms: a derandomization of the combinatorial BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm for BMM.
We say an algorithm on n × n matrices with integer entries in [− M , M ] (or n -node graphs with edge weights from [− M , M ]) is truly subcubic if it runs in O ( n 3 − δ ċ poly(log M )) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices solvable in O ( n 3 ) time are equivalent under subcubic reductions. Namely, the following weighted problems either all have truly subcubic algorithms, or none of them do: •The all-pairs shortest paths problem on weighted digraphs (APSP). •Detecting if a weighted graph has a triangle of negative total edge weight. •Listing up to n 2.99 negative triangles in an edge-weighted graph. •Finding a minimum weight cycle in a graph of non-negative edge weights. •The replacement paths problem on weighted digraphs. •Finding the second shortest simple path between two nodes in a weighted digraph. •Checking whether a given matrix defines a metric. •Verifying the correctness of a matrix product over the (min, +)-semiring. •Finding a maximum subarray in a given matrix. Therefore, if APSP cannot be solved in n 3−ε time for any ε > 0, then many other problems also need essentially cubic time. In fact, we show generic equivalences between matrix products over a large class of algebraic structures used in optimization, verifying a matrix product over the same structure, and corresponding triangle detection problems over the structure. These equivalences simplify prior work on subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle detection algorithms. Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection would imply practical BMM algorithms, among other results. Building on our techniques, we give two improved BMM algorithms: a derandomization of the combinatorial BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm for BMM.
ArticleNumber 27
Author Williams, Virginia Vassilevska
Williams, R. Ryan
Author_xml – sequence: 1
  givenname: Virginia Vassilevska
  surname: Williams
  fullname: Williams, Virginia Vassilevska
  email: virgi@mit.edu
  organization: Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: R. Ryan
  surname: Williams
  fullname: Williams, R. Ryan
  email: rrw@mit.edu
  organization: Massachusetts Institute of Technology, Cambridge, MA, USA
BookMark eNpt0EtLAzEQB_AgCrZVvHta8OClq3ludo-11AdULFjB2zJJs5qyzbZJ1se3d6XVg3gahvnNDPz7aN81ziB0QvAFIVxcMpJnecH2UI8IIVPJxPM-6mGMeSo4IYeoH8KyazHFsodGj63SrbI6mWxa-wa1cdqE5MrEd2NcMoP4OkzuIXr7MUzALZK5t-BeapPMfKNqswpH6KCCOpjjXR2gp-vJfHybTh9u7sajaQpUsJhCzllWsAwXVaULqmQOVGfaqIJXWknJiFrIIue5pAoLseBKK1ZJBkKrDChjA3S2vbv2zaY1IZbLpvWue1lSwijtNhnpVLpV2jcheFOV2kaItnHRg61LgsvvlMpdSp0__-PX3q7Af_4jT7cS9OoX_Qy_ADuWbtA
CitedBy_id crossref_primary_10_1016_j_dam_2023_08_027
crossref_primary_10_1145_3442352
crossref_primary_10_1016_j_jcss_2021_02_002
crossref_primary_10_1145_3341730
crossref_primary_10_1016_j_artint_2021_103499
crossref_primary_10_1145_3591251
crossref_primary_10_1137_20M1330415
crossref_primary_10_1145_3695838
crossref_primary_10_1016_j_dam_2021_06_019
crossref_primary_10_1016_j_jcss_2019_02_004
crossref_primary_10_1137_22M1520190
crossref_primary_10_1145_3591233
crossref_primary_10_4204_EPTCS_390_15
crossref_primary_10_1007_s00453_023_01102_6
crossref_primary_10_1145_3707448
crossref_primary_10_1145_3704854
crossref_primary_10_1137_22M1478112
crossref_primary_10_1007_s11856_025_2732_3
crossref_primary_10_1145_3563393
crossref_primary_10_1016_j_dam_2023_07_029
crossref_primary_10_1145_3498702
crossref_primary_10_1007_s00453_022_00999_9
crossref_primary_10_1016_j_ipl_2021_106135
crossref_primary_10_1145_3571252
crossref_primary_10_1145_3374857_3374870
crossref_primary_10_1007_s00446_021_00418_2
crossref_primary_10_1016_j_ipl_2024_106555
crossref_primary_10_1016_j_tcs_2024_114911
crossref_primary_10_1137_19M1280399
crossref_primary_10_1145_3434315
crossref_primary_10_1002_jgt_22754
crossref_primary_10_1016_j_tcs_2024_114976
crossref_primary_10_1007_s41060_021_00301_0
crossref_primary_10_1016_j_tcs_2025_115182
Cites_doi 10.1002/net.3230120406
10.1109/FOCS.2009.76
10.1017/CBO9780511581274
10.1007/11523468_21
10.1145/1250790.1250877
10.5555/1109557.1109654
10.1007/BF02165411
10.1137/060653391
10.1145/567112.567114
10.1137/0207033
10.1145/358234.381162
10.1145/1250790.1250876
10.1145/200836.200880
10.1145/1806689.1806772
10.1109/SWAT.1971.4
10.1016/j.dam.2007.03.023
10.5555/1958033.1958044
10.1145/1236457.1236460
10.1145/1824777.1824790
10.1016/S0022-0000(75)80046-8
10.1145/321105.321107
10.5555/2722129.2722145
10.1109/SFCS.1978.34
10.1145/2608628.2608664
10.1137/0222071
10.1145/1186810.1186815
10.1137/0209027
10.1137/08071990X
10.1145/28869.28874
10.1007/11786986_24
10.1145/1798596.1798597
10.5555/646511.695324
10.1016/0020-0190(71)90006-8
10.1145/1132516.1132550
10.1007/978-3-642-04128-0_37
10.1016/0020-0190(76)90085-5
10.1145/2591796.2591811
10.1016/0925-7721(95)00022-2
10.1007/978-3-662-47672-7_89
10.1016/0020-0190(91)90071-O
10.1145/367766.368168
10.4086/toc.2009.v005a009
10.1287/mnsc.18.7.401
10.1016/S0747-7171(08)80013-2
10.5555/3118772.3119148
10.1007/PL00009478
10.4086/toc.2012.v008a004
10.1145/2213977.2214056
10.1287/mnsc.17.11.712
10.5555/2722129.2722241
10.1145/505241.505242
10.1137/070695149
10.1145/2344422.2344423
10.1007/978-3-642-31594-7_44
10.1006/jcss.1997.1388
10.1137/S0097539795290477
10.5555/2616915.2616941
10.5555/1873601.1873662
10.5555/2095116.2095232
10.1007/s004930050052
10.1137/S0097539704441629
ContentType Journal Article
Copyright ACM
Copyright Association for Computing Machinery Sep 2018
Copyright_xml – notice: ACM
– notice: Copyright Association for Computing Machinery Sep 2018
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1145/3186893
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1557-735X
EndPage 38
ExternalDocumentID 10_1145_3186893
3186893
GrantInformation_xml – fundername: CRA Computing Innovations Fellowship
  grantid: NSF CCF-0830797 and CCF-1118083
– fundername: AFOSR MURI
GroupedDBID --Z
-DZ
-~X
.4S
.DC
29L
3R3
4.4
5GY
5VS
85S
8US
8VB
AAHTB
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
ABCQX
ABFSI
ABPEJ
ABPPZ
ACGOD
ACM
ACNCT
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AEGXH
AEMOZ
AENEX
AENSD
AFWIH
AFWXC
AGHSJ
AHQJS
AIKLT
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
D0L
DU5
EBE
EBR
EBS
EBU
EDO
EJD
EMK
FEDTE
GUFHI
HGAVV
H~9
I-F
IAO
ICD
IEA
IOF
K1G
L7B
LHSKQ
P1C
PQQKQ
QWB
RNS
TAE
TH9
TN5
UKR
UPT
W7O
WH7
XSW
YIN
YQT
Z5M
ZCA
ZL0
AAYXX
AEFXT
AEJOY
AKRVB
AMVHM
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-a253t-a843693609ffc92b78a2c6ceb94fcb7731bd7984872b055d4bcb3f73a5cb6a233
ISSN 0004-5411
IngestDate Mon Jun 30 02:23:52 EDT 2025
Tue Jul 15 05:56:29 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Fri Feb 21 01:28:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords all-pairs shortest paths
subcubic time
Fine-grained complexity
fine-grained reductions
equivalences
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a253t-a843693609ffc92b78a2c6ceb94fcb7731bd7984872b055d4bcb3f73a5cb6a233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2132248731
PQPubID 47580
PageCount 38
ParticipantIDs proquest_journals_2132248731
crossref_citationtrail_10_1145_3186893
crossref_primary_10_1145_3186893
acm_primary_3186893
PublicationCentury 2000
PublicationDate 2018-08-29
PublicationDateYYYYMMDD 2018-08-29
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-29
  day: 29
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
– name: New York
PublicationTitle Journal of the ACM
PublicationTitleAbbrev ACM JACM
PublicationYear 2018
Publisher ACM
Association for Computing Machinery
Publisher_xml – name: ACM
– name: Association for Computing Machinery
References D. P. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press.
J. Brickell, I. S. Dhillon, S. Sra, and J. A. Tropp. 2008. The metric nearness problem. SIAM J. Matrix Anal. Appl. 30, 1 (2008), 375--396. 10.1137/060653391
R. Williams. 2007. Matrix-vector multiplication in sub-quadratic time (some preprocessing required). In Proceedings of the Symposium on Discrete Algorithms (SODA’07). 995--1001.
N. Alon and A. Naor. 2006. Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput. 35 (2006), 787--803. 10.1137/S0097539704441629
Ryan Williams. 2014. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the Symposium on Theory of Computing (STOC’14). 664--673. 10.1145/2591796.2591811
Jon Bentley. 1984. Programming pearls: Algorithm design techniques. Commun. ACM 27, 9 (Sept. 1984), 865--873. 10.1145/358234.381162
L. Roditty and U. Zwick. 2004. On dynamic shortest paths problems. In Proceedings of the European Symposium on Algorithms (ESA’04). 580--591.
A. M. Frieze and R. Kannan. 1999. Quick approximation to matrices and applications. Combinatorica 19, 2 (1999), 175--220.
F. Magniez, M. Santha, and M. Szegedy. 2005. Quantum algorithms for the triangle problem. In Proceedings of the Symposium on Discrete Algorithms (SODA’05). 1109--1117.
Andrzej Lingas. 2011. A fast output-sensitive algorithm for boolean matrix multiplication. Algorithmica 61, 1 (2011), 36--50.
U. Zwick. 2002. All-pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49, 3 (2002), 289--317. 10.1145/567112.567114
Timothy M. Chan. 2010. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput. 39, 5 (2010), 2075--2089.
Liam Roditty and Uri Zwick. 2012. Replacement paths and k simple shortest paths in unweighted directed graphs. ACM Trans. Algor. 8, 4 (2012), 33. 10.1145/2344422.2344423
M. Blum and S. Kannan. 1995. Designing programs that check their work. J. ACM 42, 1 (1995), 269--291. 10.1145/200836.200880
L. G. Valiant. 1975. General context-free recognition in less than cubic time. J. Comput. Syst. Sci. 10 (1975), 308--315. 10.1016/S0022-0000(75)80046-8
Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. 2015. Subcubic equivalences between graph centrality problems, APSP and diameter. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 1681--1697.
V. Strassen. 1969. Gaussian elimination is not optimal. Numer. Math. 13 (1969), 354--356. 10.1007/BF02165411
Timothy M. Chan. 2015. Speeding up the four russians algorithm by about one more logarithmic factor. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 212--217.
V. Vassilevska, R. Williams, and R. Yuster. 2007. All-pairs bottleneck paths for general graphs in truly sub-cubic time. In Proceedings of the Symposium on Theory of Computing (STOC’07). 585--589. 10.1145/1250790.1250876
H. Buhrman and R. Špalek. 2006. Quantum verification of matrix products. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'06). 880--889.
G. J. Woeginger. 2008. Open problems around exact algorithms. Discrete Appl. Math. 156, 3 (2008), 397--405. 10.1016/j.dam.2007.03.023
J. Y. Yen. 1970/71. Finding the K shortest loopless paths in a network. Manage. Sci. 17 (1970/71), 712--716.
Huacheng Yu. 2015. An improved combinatorial algorithm for boolean matrix multiplication. In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP’15). 1094--1105.
S. Jeffery, R. Kothari, and F. Magniez. 2012. Improving quantum query complexity of boolean matrix multiplication using graph collision. In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’12). 522--532. 10.1007/978-3-642-31594-7_44
Timothy M. Chan and Ryan Williams. 2016. Deterministic APSP, orthogonal vectors, and more: Quickly derandomizing razborov-smolensky. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 1246--1255.
V. Y. Pan. 1980. New fast algorithms for matrix operations. SIAM J. Comput. 9, 2 (1980), 321--342.
J. Matousek. 1991. Computing dominances in En. Info. Process. Lett. 38, 5 (1991), 277--278. 10.1016/0020-0190(91)90071-O
M. J. Fischer and A. R. Meyer. 1971. Boolean matrix multiplication and transitive closure. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’71). 129--131. 10.1109/SWAT.1971.4
R. W. Floyd. 1962. Algorithm : Shortest path. Comm. ACM 5 (1962), 345. 10.1145/367766.368168
N. Katoh, T. Ibaraki, and H. Mine. 1982. An efficient algorithm for K shortest simple paths. Networks 12, 4 (1982), 411--427.
Arne Andersson and Mikkel Thorup. 2007. Dynamic ordered sets with exponential search trees. J. ACM 54, 3 (2007), 13. 10.1145/1236457.1236460
R. Freivalds. 1977. Probabilistic machines can use less running time. Proceedings of the IFIP Congress. 839--842.
V. Y. Pan. 1978. Strassen’s algorithm is not optimal; trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’78). 166--176. 10.1109/SFCS.1978.34
D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic progressions. J. Symbol. Comput. 9, 3 (1990), 251--280. 10.1016/S0747-7171(08)80013-2
A. Czumaj and A. Lingas. 2007. Finding a heaviest triangle is not harder than matrix multiplication. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07). 986--994.
A.M. Davie and A. J. Stothers. 2013. Improved bound for complexity of matrix multiplication. Proc. Roy. Soc. Edinburgh, Sec. A Math. 143 (4 2013), 351--369. Issue 02.
I. Baran, E.D. Demaine, and M. Patrascu. 2008. Subquadratic algorithms for 3 SUM. Algorithmica 50, 4 (2008), 584--596.
N. Alon. 2009. Personal communication.
J. I. Munro. 1971. Efficient determination of the transitive closure of a directed graph. Info. Process. Lett. 1, 2 (1971), 56--58. 10.1016/0020-0190(71)90006-8
A. Lingas. 2009. A fast output-sensitive algorithm for boolean matrix multiplication. In Proceedings of the European Symposium on Algorithms (ESA’09). 408--419.
L. Roditty. 2007. On the -simple shortest paths problem in weighted directed graphs. In Proceedings of the Symposium on Discrete Algorithms (SODA’07). 920--928.
L. Roditty and U. Zwick. 2005. Replacement paths and k simple shortest paths in unweighted directed graphs. In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’05). 249--260. 10.1007/11523468_21
Artur Czumaj and Andrzej Lingas. 2009. Finding a heaviest vertex-weighted triangle is not harder than matrix multiplication. SIAM J. Comput. 39, 2 (2009), 431--444. 10.1137/070695149
E. L. Lawler. 1971/72. A procedure for computing the K best solutions to discrete optimization problems and its application to the shortest path problem. Manage. Sci. 18 (1971/72), 401--405.
T. M. Chan. 2007. More algorithms for all-pairs shortest paths in weighted graphs. In Proceedings of the Symposium on Theory of Computing (STOC’07). 590--598. 10.1145/1250790.1250877
M. Patrascu. 2010. Towards polynomial lowed bounds for dynamic problems. In Proceedings of the Symposium on Theory of Computing (STOC’10). 603--610. 10.1145/1806689.1806772
D. Eppstein. 1998. Finding the k shortest paths. SIAM J. Comput. 28, 2 (1998), 652--673. 10.1137/S0097539795290477
Virginia Vassilevska, Ryan Williams, and Raphael Yuster. 2010. Finding heaviest H-subgraphs in real weighted graphs, with applications. ACM Trans. Algor. 6, 3 (2010). 10.1145/1798596.1798597
M. Dietzfelbinger. 1996. Universal hashing and k-wise independent random variables via integer arithmetic without primes. In Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS’96). 569--580.
François Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’14). 296--303. 10.1145/2608628.2608664
Virginia Vassilevska Williams. 2012. Multiplying matrices faster than coppersmith-winograd. In Proceedings of the 44th Symposium on Theory of Computing (STOC’12). 887--898. 10.1145/2213977.2214056
D. Karger, D. Koller, and S. Phillips. 1993. Finding the hidden path: Time bounds for all-pairs shortest paths. SIAM J. Comput. 22, 6 (1993), 1199--1217. 10.1137/0222071
Liam Roditty. 2010. On the k shortest simple paths problem in weighted directed graphs. SIAM J. Comput. 39, 6 (2010), 2363--2376.
G. Yuval. 1976. An algorithm for finding all shortest paths using N2.81 infinite-precision multiplications. Inf. Proc. Lett. 4 (1976), 155--156.
A. Bernstein. 2010. A nearly optimal algorithm for approximating replacement paths and k shortest simple paths in general graphs. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). 742--755.
L. Lee. 2002. Fast context-free grammar parsing requires fast boolean matrix multiplication. J. ACM 49, 1 (2002), 1--15. 10.1145/505241.505242
V. Vassilevska. 2008. Nondecreasing paths in weighted graphs, or: How to optimally read a train schedule. In Proceedings of the Symposium on Discrete Algorithms (SODA’08). 465--472.
Nikhil Bansal and Ryan Williams. 2012. Regularity lemmas and combinatorial algorithms. Theory Comput. 8, 1 (2012), 69--94.
N. Alon, Z. Galil, and O. Margalit. 1997. On the exponent of the all-pairs shortest path problem. J. Comput. Syst. Sci. 54, 2 (1997), 255--262. 10.1006/jcss.1997.1388
M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 3 (1987), 596--615. 10.1145/28869.28874
A. Gajentaan and M. Overmars. 1995. On a class of O(n2) problems in computational geometry. Computational Geometry 5, 3 (1995), 165--185. 10.1016/0925-7721(95)00022-2
Virginia Vassilevska Williams. 2010. Nondecreasing paths in a weighted graph or: How to optimally read a train schedule.
Shoshan A. (e_1_2_1_56_1)
Davie A.M. (e_1_2_1_22_1) 2013
Timothy (e_1_2_1_18_1) 2016
e_1_2_1_41_1
e_1_2_1_66_1
e_1_2_1_68_1
e_1_2_1_43_1
e_1_2_1_64_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Roditty L. (e_1_2_1_53_1)
e_1_2_1_71_1
Vassilevska V. (e_1_2_1_62_1) 2008
e_1_2_1_54_1
e_1_2_1_77_1
e_1_2_1_8_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_73_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_75_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
Williams R. (e_1_2_1_70_1) 2007
Spinrad J. P. (e_1_2_1_57_1) 2003
Tamaki Hisao (e_1_2_1_60_1) 1998
Roditty L. (e_1_2_1_51_1) 2007
Czumaj A. (e_1_2_1_20_1)
e_1_2_1_42_1
e_1_2_1_65_1
e_1_2_1_40_1
e_1_2_1_67_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_69_1
e_1_2_1_29_1
Magniez F. (e_1_2_1_45_1)
Freivalds R. (e_1_2_1_31_1) 1977
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_76_1
e_1_2_1_5_1
Duan R. (e_1_2_1_24_1)
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_72_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_74_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: N. Alon, Z. Galil, and O. Margalit. 1997. On the exponent of the all-pairs shortest path problem. J. Comput. Syst. Sci. 54, 2 (1997), 255--262. 10.1006/jcss.1997.1388
– reference: J. Y. Yen. 1970/71. Finding the K shortest loopless paths in a network. Manage. Sci. 17 (1970/71), 712--716.
– reference: D. Dubois and H. Prade. 1980. Fuzzy Sets and Systems: Theory and Applications. Academic Press.
– reference: A. M. Frieze and R. Kannan. 1999. Quick approximation to matrices and applications. Combinatorica 19, 2 (1999), 175--220.
– reference: L. Roditty and U. Zwick. 2005. Replacement paths and k simple shortest paths in unweighted directed graphs. In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’05). 249--260. 10.1007/11523468_21
– reference: A. Czumaj and A. Lingas. 2007. Finding a heaviest triangle is not harder than matrix multiplication. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07). 986--994.
– reference: Timothy M. Chan. 2015. Speeding up the four russians algorithm by about one more logarithmic factor. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 212--217.
– reference: M. Patrascu. 2010. Towards polynomial lowed bounds for dynamic problems. In Proceedings of the Symposium on Theory of Computing (STOC’10). 603--610. 10.1145/1806689.1806772
– reference: V. Vassilevska and R. Williams. 2006. Finding a maximum weight triangle in n3 − Δ time, with applications. In Proceedings of the Symposium on Theory of Computing (STOC’06). 225--231. 10.1145/1132516.1132550
– reference: J. P. Spinrad. 2003. Efficient graph representations. Fields Inst. Monogr. 19 (2003).
– reference: J. Hershberger, S. Suri, and A. Bhosle. 2007. On the difficulty of some shortest path problems. ACM TALG 3, 1 (2007), 5. 10.1145/1186810.1186815
– reference: Virginia Vassilevska Williams. 2010. Nondecreasing paths in a weighted graph or: How to optimally read a train schedule. ACM Trans. Algor. 6, 4 (2010). 10.1145/1824777.1824790
– reference: A. Gajentaan and M. Overmars. 1995. On a class of O(n2) problems in computational geometry. Computational Geometry 5, 3 (1995), 165--185. 10.1016/0925-7721(95)00022-2
– reference: J. Matousek. 1991. Computing dominances in En. Info. Process. Lett. 38, 5 (1991), 277--278. 10.1016/0020-0190(91)90071-O
– reference: L. G. Valiant. 1975. General context-free recognition in less than cubic time. J. Comput. Syst. Sci. 10 (1975), 308--315. 10.1016/S0022-0000(75)80046-8
– reference: V. Y. Pan. 1980. New fast algorithms for matrix operations. SIAM J. Comput. 9, 2 (1980), 321--342.
– reference: M. Dietzfelbinger. 1996. Universal hashing and k-wise independent random variables via integer arithmetic without primes. In Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS’96). 569--580.
– reference: R. W. Floyd. 1962. Algorithm : Shortest path. Comm. ACM 5 (1962), 345. 10.1145/367766.368168
– reference: L. Roditty and U. Zwick. 2004. On dynamic shortest paths problems. In Proceedings of the European Symposium on Algorithms (ESA’04). 580--591.
– reference: N. Alon and A. Naor. 2006. Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput. 35 (2006), 787--803. 10.1137/S0097539704441629
– reference: Andrzej Lingas. 2011. A fast output-sensitive algorithm for boolean matrix multiplication. Algorithmica 61, 1 (2011), 36--50.
– reference: V. Vassilevska, R. Williams, and R. Yuster. 2007. All-pairs bottleneck paths for general graphs in truly sub-cubic time. In Proceedings of the Symposium on Theory of Computing (STOC’07). 585--589. 10.1145/1250790.1250876
– reference: N. Bansal and R. Williams. 2009. Regularity lemmas and combinatorial algorithms. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’09). 745--754. 10.1109/FOCS.2009.76
– reference: A. Bernstein. 2010. A nearly optimal algorithm for approximating replacement paths and k shortest simple paths in general graphs. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). 742--755.
– reference: Timothy M. Chan. 2010. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput. 39, 5 (2010), 2075--2089.
– reference: L. Lee. 2002. Fast context-free grammar parsing requires fast boolean matrix multiplication. J. ACM 49, 1 (2002), 1--15. 10.1145/505241.505242
– reference: V. Y. Pan. 1978. Strassen’s algorithm is not optimal; trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’78). 166--176. 10.1109/SFCS.1978.34
– reference: T. M. Chan. 2007. More algorithms for all-pairs shortest paths in weighted graphs. In Proceedings of the Symposium on Theory of Computing (STOC’07). 590--598. 10.1145/1250790.1250877
– reference: A. Lingas. 2009. A fast output-sensitive algorithm for boolean matrix multiplication. In Proceedings of the European Symposium on Algorithms (ESA’09). 408--419.
– reference: G. Yuval. 1976. An algorithm for finding all shortest paths using N2.81 infinite-precision multiplications. Inf. Proc. Lett. 4 (1976), 155--156.
– reference: S. Warshall. 1962. A theorem on boolean matrices. J. ACM 9, 1 (1962), 11--12. 10.1145/321105.321107
– reference: A.M. Davie and A. J. Stothers. 2013. Improved bound for complexity of matrix multiplication. Proc. Roy. Soc. Edinburgh, Sec. A Math. 143 (4 2013), 351--369. Issue 02.
– reference: V. Vassilevska. 2008. Nondecreasing paths in weighted graphs, or: How to optimally read a train schedule. In Proceedings of the Symposium on Discrete Algorithms (SODA’08). 465--472.
– reference: M. J. Fischer and A. R. Meyer. 1971. Boolean matrix multiplication and transitive closure. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’71). 129--131. 10.1109/SWAT.1971.4
– reference: V. Strassen. 1969. Gaussian elimination is not optimal. Numer. Math. 13 (1969), 354--356. 10.1007/BF02165411
– reference: N. Alon. 2009. Personal communication.
– reference: François Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’14). 296--303. 10.1145/2608628.2608664
– reference: V. Vassilevska, R. Williams, and R. Yuster. 2006. Finding the smallest H-subgraph in real weighted graphs and related problems. In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’06). 262--273. 10.1007/11786986_24
– reference: R. Williams. 2007. Matrix-vector multiplication in sub-quadratic time (some preprocessing required). In Proceedings of the Symposium on Discrete Algorithms (SODA’07). 995--1001.
– reference: Virginia Vassilevska Williams. 2012. Multiplying matrices faster than coppersmith-winograd. In Proceedings of the 44th Symposium on Theory of Computing (STOC’12). 887--898. 10.1145/2213977.2214056
– reference: Timothy M. Chan and Ryan Williams. 2016. Deterministic APSP, orthogonal vectors, and more: Quickly derandomizing razborov-smolensky. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 1246--1255.
– reference: M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 3 (1987), 596--615. 10.1145/28869.28874
– reference: N. Katoh, T. Ibaraki, and H. Mine. 1982. An efficient algorithm for K shortest simple paths. Networks 12, 4 (1982), 411--427.
– reference: Liam Roditty and Uri Zwick. 2012. Replacement paths and k simple shortest paths in unweighted directed graphs. ACM Trans. Algor. 8, 4 (2012), 33. 10.1145/2344422.2344423
– reference: Hisao Tamaki and Takeshi Tokuyama. 1998. Algorithms for the maximum subarray problem based on matrix multiplication. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98). 446--452.
– reference: Huacheng Yu. 2015. An improved combinatorial algorithm for boolean matrix multiplication. In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP’15). 1094--1105.
– reference: A. Itai and M. Rodeh. 1978. Finding a minimum circuit in a graph. SIAM J. Comput. 7, 4 (1978), 413--423.
– reference: Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. 2015. Subcubic equivalences between graph centrality problems, APSP and diameter. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 1681--1697.
– reference: J. I. Munro. 1971. Efficient determination of the transitive closure of a directed graph. Info. Process. Lett. 1, 2 (1971), 56--58. 10.1016/0020-0190(71)90006-8
– reference: A. Stothers. 2010. On the Complexity of Matrix Multiplication. Ph.D. Thesis, University of Edinburgh.
– reference: Virginia Vassilevska, Ryan Williams, and Raphael Yuster. 2009. All-pairs bottleneck paths and max-min matrix products in truly subcubic time. Theory Comput. 5, 1 (2009), 173--189.
– reference: R. Duan and S. Pettie. 2009. Fast algorithms for (max, min)-matrix multiplication and bottleneck shortest paths. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09). 384--391.
– reference: S. Jeffery, R. Kothari, and F. Magniez. 2012. Improving quantum query complexity of boolean matrix multiplication using graph collision. In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’12). 522--532. 10.1007/978-3-642-31594-7_44
– reference: A. Shoshan and U. Zwick. 1999. All-pairs shortest paths in undirected graphs with integer weights. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’99). 605--614.
– reference: L. Roditty. 2007. On the -simple shortest paths problem in weighted directed graphs. In Proceedings of the Symposium on Discrete Algorithms (SODA’07). 920--928.
– reference: T. M. Chan. 1999. Geometric applications of a randomized optimization technique. Discrete Comput. Geom. 22, 4 (1999), 547--567.
– reference: F. Magniez, M. Santha, and M. Szegedy. 2005. Quantum algorithms for the triangle problem. In Proceedings of the Symposium on Discrete Algorithms (SODA’05). 1109--1117.
– reference: J. Brickell, I. S. Dhillon, S. Sra, and J. A. Tropp. 2008. The metric nearness problem. SIAM J. Matrix Anal. Appl. 30, 1 (2008), 375--396. 10.1137/060653391
– reference: H. Buhrman and R. Špalek. 2006. Quantum verification of matrix products. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'06). 880--889.
– reference: E. L. Lawler. 1971/72. A procedure for computing the K best solutions to discrete optimization problems and its application to the shortest path problem. Manage. Sci. 18 (1971/72), 401--405.
– reference: Artur Czumaj and Andrzej Lingas. 2009. Finding a heaviest vertex-weighted triangle is not harder than matrix multiplication. SIAM J. Comput. 39, 2 (2009), 431--444. 10.1137/070695149
– reference: Jon Bentley. 1984. Programming pearls: Algorithm design techniques. Commun. ACM 27, 9 (Sept. 1984), 865--873. 10.1145/358234.381162
– reference: R. Freivalds. 1977. Probabilistic machines can use less running time. Proceedings of the IFIP Congress. 839--842.
– reference: Virginia Vassilevska, Ryan Williams, and Raphael Yuster. 2010. Finding heaviest H-subgraphs in real weighted graphs, with applications. ACM Trans. Algor. 6, 3 (2010). 10.1145/1798596.1798597
– reference: Ryan Williams. 2014. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the Symposium on Theory of Computing (STOC’14). 664--673. 10.1145/2591796.2591811
– reference: G. J. Woeginger. 2008. Open problems around exact algorithms. Discrete Appl. Math. 156, 3 (2008), 397--405. 10.1016/j.dam.2007.03.023
– reference: Nikhil Bansal and Ryan Williams. 2012. Regularity lemmas and combinatorial algorithms. Theory Comput. 8, 1 (2012), 69--94.
– reference: Arne Andersson and Mikkel Thorup. 2007. Dynamic ordered sets with exponential search trees. J. ACM 54, 3 (2007), 13. 10.1145/1236457.1236460
– reference: M. Blum and S. Kannan. 1995. Designing programs that check their work. J. ACM 42, 1 (1995), 269--291. 10.1145/200836.200880
– reference: D. Eppstein. 1998. Finding the k shortest paths. SIAM J. Comput. 28, 2 (1998), 652--673. 10.1137/S0097539795290477
– reference: Liam Roditty. 2010. On the k shortest simple paths problem in weighted directed graphs. SIAM J. Comput. 39, 6 (2010), 2363--2376.
– reference: F. Le Gall. 2012. Improved output-sensitive quantum algorithms for Boolean matrix multiplication. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 1464--1476.
– reference: U. Zwick. 2002. All-pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49, 3 (2002), 289--317. 10.1145/567112.567114
– reference: D. Karger, D. Koller, and S. Phillips. 1993. Finding the hidden path: Time bounds for all-pairs shortest paths. SIAM J. Comput. 22, 6 (1993), 1199--1217. 10.1137/0222071
– reference: I. Baran, E.D. Demaine, and M. Patrascu. 2008. Subquadratic algorithms for 3 SUM. Algorithmica 50, 4 (2008), 584--596.
– reference: D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic progressions. J. Symbol. Comput. 9, 3 (1990), 251--280. 10.1016/S0747-7171(08)80013-2
– reference: D. P. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press.
– ident: e_1_2_1_39_1
  doi: 10.1002/net.3230120406
– ident: e_1_2_1_6_1
  doi: 10.1109/FOCS.2009.76
– ident: e_1_2_1_25_1
  doi: 10.1017/CBO9780511581274
– ident: e_1_2_1_54_1
  doi: 10.1007/11523468_21
– volume-title: Efficient graph representations. Fields Inst. Monogr. 19
  year: 2003
  ident: e_1_2_1_57_1
– ident: e_1_2_1_15_1
  doi: 10.1145/1250790.1250877
– volume-title: Chan and Ryan Williams
  year: 2016
  ident: e_1_2_1_18_1
– ident: e_1_2_1_26_1
– volume-title: Proceedings of the Symposium on Foundations of Computer Science (FOCS’99)
  ident: e_1_2_1_56_1
– ident: e_1_2_1_13_1
  doi: 10.5555/1109557.1109654
– ident: e_1_2_1_59_1
  doi: 10.1007/BF02165411
– ident: e_1_2_1_12_1
  doi: 10.1137/060653391
– ident: e_1_2_1_77_1
  doi: 10.1145/567112.567114
– volume-title: Proceedings of the Symposium on Discrete Algorithms (SODA’08)
  year: 2008
  ident: e_1_2_1_62_1
– ident: e_1_2_1_36_1
  doi: 10.1137/0207033
– ident: e_1_2_1_9_1
  doi: 10.1145/358234.381162
– volume-title: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07)
  ident: e_1_2_1_20_1
– ident: e_1_2_1_65_1
  doi: 10.1145/1250790.1250876
– ident: e_1_2_1_11_1
  doi: 10.1145/200836.200880
– ident: e_1_2_1_50_1
  doi: 10.1145/1806689.1806772
– ident: e_1_2_1_28_1
  doi: 10.1109/SWAT.1971.4
– ident: e_1_2_1_73_1
  doi: 10.1016/j.dam.2007.03.023
– ident: e_1_2_1_52_1
  doi: 10.5555/1958033.1958044
– ident: e_1_2_1_5_1
  doi: 10.1145/1236457.1236460
– volume-title: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09)
  ident: e_1_2_1_24_1
– ident: e_1_2_1_68_1
  doi: 10.1145/1824777.1824790
– ident: e_1_2_1_2_1
– ident: e_1_2_1_61_1
  doi: 10.1016/S0022-0000(75)80046-8
– ident: e_1_2_1_69_1
  doi: 10.1145/321105.321107
– ident: e_1_2_1_17_1
  doi: 10.5555/2722129.2722145
– ident: e_1_2_1_48_1
  doi: 10.1109/SFCS.1978.34
– ident: e_1_2_1_34_1
  doi: 10.1145/2608628.2608664
– ident: e_1_2_1_38_1
  doi: 10.1137/0222071
– ident: e_1_2_1_35_1
  doi: 10.1145/1186810.1186815
– ident: e_1_2_1_49_1
  doi: 10.1137/0209027
– ident: e_1_2_1_16_1
  doi: 10.1137/08071990X
– volume-title: Proceedings of the European Symposium on Algorithms (ESA’04)
  ident: e_1_2_1_53_1
– ident: e_1_2_1_30_1
  doi: 10.1145/28869.28874
– ident: e_1_2_1_64_1
  doi: 10.1007/11786986_24
– ident: e_1_2_1_67_1
  doi: 10.1145/1798596.1798597
– ident: e_1_2_1_23_1
  doi: 10.5555/646511.695324
– ident: e_1_2_1_47_1
  doi: 10.1016/0020-0190(71)90006-8
– ident: e_1_2_1_63_1
  doi: 10.1145/1132516.1132550
– ident: e_1_2_1_43_1
  doi: 10.1007/978-3-642-04128-0_37
– ident: e_1_2_1_76_1
  doi: 10.1016/0020-0190(76)90085-5
– ident: e_1_2_1_71_1
  doi: 10.1145/2591796.2591811
– ident: e_1_2_1_33_1
  doi: 10.1016/0925-7721(95)00022-2
– ident: e_1_2_1_75_1
  doi: 10.1007/978-3-662-47672-7_89
– ident: e_1_2_1_46_1
  doi: 10.1016/0020-0190(91)90071-O
– ident: e_1_2_1_29_1
  doi: 10.1145/367766.368168
– ident: e_1_2_1_66_1
  doi: 10.4086/toc.2009.v005a009
– ident: e_1_2_1_40_1
  doi: 10.1287/mnsc.18.7.401
– ident: e_1_2_1_19_1
  doi: 10.1016/S0747-7171(08)80013-2
– ident: e_1_2_1_8_1
  doi: 10.5555/3118772.3119148
– volume-title: Proceedings of the Symposium on Discrete Algorithms (SODA’07)
  year: 2007
  ident: e_1_2_1_70_1
– ident: e_1_2_1_14_1
  doi: 10.1007/PL00009478
– ident: e_1_2_1_7_1
  doi: 10.4086/toc.2012.v008a004
– volume-title: Proceedings of the Symposium on Discrete Algorithms (SODA’07)
  year: 2007
  ident: e_1_2_1_51_1
– ident: e_1_2_1_72_1
  doi: 10.1145/2213977.2214056
– ident: e_1_2_1_74_1
  doi: 10.1287/mnsc.17.11.712
– ident: e_1_2_1_1_1
  doi: 10.5555/2722129.2722241
– ident: e_1_2_1_42_1
  doi: 10.1145/505241.505242
– ident: e_1_2_1_21_1
  doi: 10.1137/070695149
– ident: e_1_2_1_55_1
  doi: 10.1145/2344422.2344423
– ident: e_1_2_1_37_1
  doi: 10.1007/978-3-642-31594-7_44
– volume-title: Proc. Roy. Soc
  year: 2013
  ident: e_1_2_1_22_1
– volume-title: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98)
  year: 1998
  ident: e_1_2_1_60_1
– ident: e_1_2_1_3_1
  doi: 10.1006/jcss.1997.1388
– volume-title: Proceedings of the IFIP Congress. 839--842
  year: 1977
  ident: e_1_2_1_31_1
– ident: e_1_2_1_27_1
  doi: 10.1137/S0097539795290477
– ident: e_1_2_1_44_1
  doi: 10.5555/2616915.2616941
– ident: e_1_2_1_10_1
  doi: 10.5555/1873601.1873662
– ident: e_1_2_1_41_1
  doi: 10.5555/2095116.2095232
– ident: e_1_2_1_32_1
  doi: 10.1007/s004930050052
– ident: e_1_2_1_4_1
  doi: 10.1137/S0097539704441629
– volume-title: Proceedings of the Symposium on Discrete Algorithms (SODA’05)
  ident: e_1_2_1_45_1
SSID ssj0000207
Score 2.6177325
Snippet We say an algorithm on n × n matrices with integer entries in [−M,M] (or n-node graphs with edge weights from [−M,M]) is truly subcubic if it runs in O(n3 − δ...
We say an algorithm on n × n matrices with integer entries in [− M , M ] (or n -node graphs with edge weights from [− M , M ]) is truly subcubic if it runs in...
SourceID proquest
crossref
acm
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Boolean algebra
Combinatorial analysis
Computational complexity and cryptography
Design and analysis of algorithms
Equivalence
Graph algorithms
Graph algorithms analysis
Graph theory
Graphs
Integer programming
Matrix
Minimum weight
Problems, reductions and completeness
Shortest paths
Theory of computation
SubjectTermsDisplay Theory of computation -- Computational complexity and cryptography -- Problems, reductions and completeness
Theory of computation -- Design and analysis of algorithms -- Graph algorithms analysis -- Shortest paths
Title Subcubic Equivalences Between Path, Matrix, and Triangle Problems
URI https://dl.acm.org/doi/10.1145/3186893
https://www.proquest.com/docview/2132248731
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELbacOmlUAriWflQ9RLcJvZ6Nz7yCEIooQg2KLeV7ayjCAiPJAj49YzXNpuIULW9rKLNyLLmG49nR_PNIPQ9j2sKbi5OjJKCRDJmRIBlkJowlCbaxA1ZVFucxEed6LjLu-WkwoJdMlY_9fNcXsn_oArvAFfLkv0HZF8XhRfwG_CFJyAMz7_CGE69nqiBrjbvJgNYuKiJru750qtT6XImbduF_zGUaaawr2H_KrcUATtKZvROeFpQTvbn5mUuBvf9gWVzXUDkDV7lYXQp58mdVc-evPH5vELd9qkmtPReU9ZRFDy6IRM2fdEuqjwDYzv41YjwyLvN3LtSgDxhvDvta91cCG9TfL4Lj2y3C2bb-LvZibNNsk9-Z4edVitLm930I1qg8HVAK2hh96DdOi-vYOp48mFbji1tl_7lF7bBiL6eDUZm7-IiwEiX0GeverzrYP6CPuTDZbQYpm5g74S_wkXoUcfTqGOPOrao72CH-Q4GxHFAHAfEV1DnsJnuHxE_CINIytmYyEbEYsFiOEBGC6qShqQ61rkSkdEqSVhd9RLRgG9Pqmqc9yKlFTMJk1yrWFLGVlFleDPM1xDmVBpLpq5LBWJMCkV7NaW5YdQwJnrraBn0kt26VieZ19Y6-hH0lGnfO96OMLnKHK-dl4L4VTCs8UZkKyg682dplFGbFIH9s_rGn__eRJ9KY91ClfH9JN-GsHCsvnkjeAFt0mL2
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subcubic+Equivalences+Between+Path%2C+Matrix%2C+and+Triangle+Problems&rft.jtitle=Journal+of+the+ACM&rft.au=Williams%2C+Virginia+Vassilevska&rft.au=Williams%2C+R+Ryan&rft.date=2018-08-29&rft.pub=Association+for+Computing+Machinery&rft.issn=0004-5411&rft.eissn=1557-735X&rft.volume=65&rft.issue=5&rft_id=info:doi/10.1145%2F3186893&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-5411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-5411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-5411&client=summon