Subcubic Equivalences Between Path, Matrix, and Triangle Problems
We say an algorithm on n × n matrices with integer entries in [−M,M] (or n-node graphs with edge weights from [−M,M]) is truly subcubic if it runs in O(n3 − δ poly(log M)) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices...
Saved in:
Published in | Journal of the ACM Vol. 65; no. 5; pp. 1 - 38 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY, USA
ACM
29.08.2018
Association for Computing Machinery |
Subjects | |
Online Access | Get full text |
ISSN | 0004-5411 1557-735X |
DOI | 10.1145/3186893 |
Cover
Loading…
Abstract | We say an algorithm on n × n matrices with integer entries in [−M,M] (or n-node graphs with edge weights from [−M,M]) is truly subcubic if it runs in O(n3 − δ poly(log M)) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices solvable in O(n3) time are equivalent under subcubic reductions. Namely, the following weighted problems either all have truly subcubic algorithms, or none of them do: *The all-pairs shortest paths problem on weighted digraphs (APSP). *Detecting if a weighted graph has a triangle of negative total edge weight. *Listing up to n2.99 negative triangles in an edge-weighted graph. *Finding a minimum weight cycle in a graph of non-negative edge weights. *The replacement paths problem on weighted digraphs. *Finding the second shortest simple path between two nodes in a weighted digraph. *Checking whether a given matrix defines a metric. *Verifying the correctness of a matrix product over the (min, +)-semiring. *Finding a maximum subarray in a given matrix. Therefore, if APSP cannot be solved in n3−ε time for any ε > 0, then many other problems also need essentially cubic time. In fact, we show generic equivalences between matrix products over a large class of algebraic structures used in optimization, verifying a matrix product over the same structure, and corresponding triangle detection problems over the structure. These equivalences simplify prior work on subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle detection algorithms. Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection would imply practical BMM algorithms, among other results. Building on our techniques, we give two improved BMM algorithms: a derandomization of the combinatorial BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm for BMM. |
---|---|
AbstractList | We say an algorithm on n × n matrices with integer entries in [−M,M] (or n-node graphs with edge weights from [−M,M]) is truly subcubic if it runs in O(n3 − δ ċ poly(log M)) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices solvable in O(n3) time are equivalent under subcubic reductions. Namely, the following weighted problems either all have truly subcubic algorithms, or none of them do: •The all-pairs shortest paths problem on weighted digraphs (APSP). •Detecting if a weighted graph has a triangle of negative total edge weight. •Listing up to n2.99 negative triangles in an edge-weighted graph. •Finding a minimum weight cycle in a graph of non-negative edge weights. •The replacement paths problem on weighted digraphs. •Finding the second shortest simple path between two nodes in a weighted digraph. •Checking whether a given matrix defines a metric. •Verifying the correctness of a matrix product over the (min, +)-semiring. •Finding a maximum subarray in a given matrix. Therefore, if APSP cannot be solved in n3−ϵ time for any ϵ > 0, then many other problems also need essentially cubic time. In fact, we show generic equivalences between matrix products over a large class of algebraic structures used in optimization, verifying a matrix product over the same structure, and corresponding triangle detection problems over the structure. These equivalences simplify prior work on subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle detection algorithms. Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection would imply practical BMM algorithms, among other results. Building on our techniques, we give two improved BMM algorithms: a derandomization of the combinatorial BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm for BMM. We say an algorithm on n × n matrices with integer entries in [−M,M] (or n-node graphs with edge weights from [−M,M]) is truly subcubic if it runs in O(n3 − δ poly(log M)) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices solvable in O(n3) time are equivalent under subcubic reductions. Namely, the following weighted problems either all have truly subcubic algorithms, or none of them do: *The all-pairs shortest paths problem on weighted digraphs (APSP). *Detecting if a weighted graph has a triangle of negative total edge weight. *Listing up to n2.99 negative triangles in an edge-weighted graph. *Finding a minimum weight cycle in a graph of non-negative edge weights. *The replacement paths problem on weighted digraphs. *Finding the second shortest simple path between two nodes in a weighted digraph. *Checking whether a given matrix defines a metric. *Verifying the correctness of a matrix product over the (min, +)-semiring. *Finding a maximum subarray in a given matrix. Therefore, if APSP cannot be solved in n3−ε time for any ε > 0, then many other problems also need essentially cubic time. In fact, we show generic equivalences between matrix products over a large class of algebraic structures used in optimization, verifying a matrix product over the same structure, and corresponding triangle detection problems over the structure. These equivalences simplify prior work on subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle detection algorithms. Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection would imply practical BMM algorithms, among other results. Building on our techniques, we give two improved BMM algorithms: a derandomization of the combinatorial BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm for BMM. We say an algorithm on n × n matrices with integer entries in [− M , M ] (or n -node graphs with edge weights from [− M , M ]) is truly subcubic if it runs in O ( n 3 − δ ċ poly(log M )) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices solvable in O ( n 3 ) time are equivalent under subcubic reductions. Namely, the following weighted problems either all have truly subcubic algorithms, or none of them do: •The all-pairs shortest paths problem on weighted digraphs (APSP). •Detecting if a weighted graph has a triangle of negative total edge weight. •Listing up to n 2.99 negative triangles in an edge-weighted graph. •Finding a minimum weight cycle in a graph of non-negative edge weights. •The replacement paths problem on weighted digraphs. •Finding the second shortest simple path between two nodes in a weighted digraph. •Checking whether a given matrix defines a metric. •Verifying the correctness of a matrix product over the (min, +)-semiring. •Finding a maximum subarray in a given matrix. Therefore, if APSP cannot be solved in n 3−ε time for any ε > 0, then many other problems also need essentially cubic time. In fact, we show generic equivalences between matrix products over a large class of algebraic structures used in optimization, verifying a matrix product over the same structure, and corresponding triangle detection problems over the structure. These equivalences simplify prior work on subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle detection algorithms. Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection would imply practical BMM algorithms, among other results. Building on our techniques, we give two improved BMM algorithms: a derandomization of the combinatorial BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm for BMM. |
ArticleNumber | 27 |
Author | Williams, Virginia Vassilevska Williams, R. Ryan |
Author_xml | – sequence: 1 givenname: Virginia Vassilevska surname: Williams fullname: Williams, Virginia Vassilevska email: virgi@mit.edu organization: Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 2 givenname: R. Ryan surname: Williams fullname: Williams, R. Ryan email: rrw@mit.edu organization: Massachusetts Institute of Technology, Cambridge, MA, USA |
BookMark | eNpt0EtLAzEQB_AgCrZVvHta8OClq3ludo-11AdULFjB2zJJs5qyzbZJ1se3d6XVg3gahvnNDPz7aN81ziB0QvAFIVxcMpJnecH2UI8IIVPJxPM-6mGMeSo4IYeoH8KyazHFsodGj63SrbI6mWxa-wa1cdqE5MrEd2NcMoP4OkzuIXr7MUzALZK5t-BeapPMfKNqswpH6KCCOpjjXR2gp-vJfHybTh9u7sajaQpUsJhCzllWsAwXVaULqmQOVGfaqIJXWknJiFrIIue5pAoLseBKK1ZJBkKrDChjA3S2vbv2zaY1IZbLpvWue1lSwijtNhnpVLpV2jcheFOV2kaItnHRg61LgsvvlMpdSp0__-PX3q7Af_4jT7cS9OoX_Qy_ADuWbtA |
CitedBy_id | crossref_primary_10_1016_j_dam_2023_08_027 crossref_primary_10_1145_3442352 crossref_primary_10_1016_j_jcss_2021_02_002 crossref_primary_10_1145_3341730 crossref_primary_10_1016_j_artint_2021_103499 crossref_primary_10_1145_3591251 crossref_primary_10_1137_20M1330415 crossref_primary_10_1145_3695838 crossref_primary_10_1016_j_dam_2021_06_019 crossref_primary_10_1016_j_jcss_2019_02_004 crossref_primary_10_1137_22M1520190 crossref_primary_10_1145_3591233 crossref_primary_10_4204_EPTCS_390_15 crossref_primary_10_1007_s00453_023_01102_6 crossref_primary_10_1145_3707448 crossref_primary_10_1145_3704854 crossref_primary_10_1137_22M1478112 crossref_primary_10_1007_s11856_025_2732_3 crossref_primary_10_1145_3563393 crossref_primary_10_1016_j_dam_2023_07_029 crossref_primary_10_1145_3498702 crossref_primary_10_1007_s00453_022_00999_9 crossref_primary_10_1016_j_ipl_2021_106135 crossref_primary_10_1145_3571252 crossref_primary_10_1145_3374857_3374870 crossref_primary_10_1007_s00446_021_00418_2 crossref_primary_10_1016_j_ipl_2024_106555 crossref_primary_10_1016_j_tcs_2024_114911 crossref_primary_10_1137_19M1280399 crossref_primary_10_1145_3434315 crossref_primary_10_1002_jgt_22754 crossref_primary_10_1016_j_tcs_2024_114976 crossref_primary_10_1007_s41060_021_00301_0 crossref_primary_10_1016_j_tcs_2025_115182 |
Cites_doi | 10.1002/net.3230120406 10.1109/FOCS.2009.76 10.1017/CBO9780511581274 10.1007/11523468_21 10.1145/1250790.1250877 10.5555/1109557.1109654 10.1007/BF02165411 10.1137/060653391 10.1145/567112.567114 10.1137/0207033 10.1145/358234.381162 10.1145/1250790.1250876 10.1145/200836.200880 10.1145/1806689.1806772 10.1109/SWAT.1971.4 10.1016/j.dam.2007.03.023 10.5555/1958033.1958044 10.1145/1236457.1236460 10.1145/1824777.1824790 10.1016/S0022-0000(75)80046-8 10.1145/321105.321107 10.5555/2722129.2722145 10.1109/SFCS.1978.34 10.1145/2608628.2608664 10.1137/0222071 10.1145/1186810.1186815 10.1137/0209027 10.1137/08071990X 10.1145/28869.28874 10.1007/11786986_24 10.1145/1798596.1798597 10.5555/646511.695324 10.1016/0020-0190(71)90006-8 10.1145/1132516.1132550 10.1007/978-3-642-04128-0_37 10.1016/0020-0190(76)90085-5 10.1145/2591796.2591811 10.1016/0925-7721(95)00022-2 10.1007/978-3-662-47672-7_89 10.1016/0020-0190(91)90071-O 10.1145/367766.368168 10.4086/toc.2009.v005a009 10.1287/mnsc.18.7.401 10.1016/S0747-7171(08)80013-2 10.5555/3118772.3119148 10.1007/PL00009478 10.4086/toc.2012.v008a004 10.1145/2213977.2214056 10.1287/mnsc.17.11.712 10.5555/2722129.2722241 10.1145/505241.505242 10.1137/070695149 10.1145/2344422.2344423 10.1007/978-3-642-31594-7_44 10.1006/jcss.1997.1388 10.1137/S0097539795290477 10.5555/2616915.2616941 10.5555/1873601.1873662 10.5555/2095116.2095232 10.1007/s004930050052 10.1137/S0097539704441629 |
ContentType | Journal Article |
Copyright | ACM Copyright Association for Computing Machinery Sep 2018 |
Copyright_xml | – notice: ACM – notice: Copyright Association for Computing Machinery Sep 2018 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1145/3186893 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1557-735X |
EndPage | 38 |
ExternalDocumentID | 10_1145_3186893 3186893 |
GrantInformation_xml | – fundername: CRA Computing Innovations Fellowship grantid: NSF CCF-0830797 and CCF-1118083 – fundername: AFOSR MURI |
GroupedDBID | --Z -DZ -~X .4S .DC 29L 3R3 4.4 5GY 5VS 85S 8US 8VB AAHTB AAIKC AAKMM AALFJ AAMNW AAYFX ABCQX ABFSI ABPEJ ABPPZ ACGOD ACM ACNCT ADBCU ADL ADMLS ADPZR AEBYY AEGXH AEMOZ AENEX AENSD AFWIH AFWXC AGHSJ AHQJS AIKLT AKVCP ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BDXCO CCLIF CS3 D0L DU5 EBE EBR EBS EBU EDO EJD EMK FEDTE GUFHI HGAVV H~9 I-F IAO ICD IEA IOF K1G L7B LHSKQ P1C PQQKQ QWB RNS TAE TH9 TN5 UKR UPT W7O WH7 XSW YIN YQT Z5M ZCA ZL0 AAYXX AEFXT AEJOY AKRVB AMVHM CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-a253t-a843693609ffc92b78a2c6ceb94fcb7731bd7984872b055d4bcb3f73a5cb6a233 |
ISSN | 0004-5411 |
IngestDate | Mon Jun 30 02:23:52 EDT 2025 Tue Jul 15 05:56:29 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Fri Feb 21 01:28:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | all-pairs shortest paths subcubic time Fine-grained complexity fine-grained reductions equivalences |
Language | English |
License | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a253t-a843693609ffc92b78a2c6ceb94fcb7731bd7984872b055d4bcb3f73a5cb6a233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2132248731 |
PQPubID | 47580 |
PageCount | 38 |
ParticipantIDs | proquest_journals_2132248731 crossref_citationtrail_10_1145_3186893 crossref_primary_10_1145_3186893 acm_primary_3186893 |
PublicationCentury | 2000 |
PublicationDate | 2018-08-29 |
PublicationDateYYYYMMDD | 2018-08-29 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY, USA |
PublicationPlace_xml | – name: New York, NY, USA – name: New York |
PublicationTitle | Journal of the ACM |
PublicationTitleAbbrev | ACM JACM |
PublicationYear | 2018 |
Publisher | ACM Association for Computing Machinery |
Publisher_xml | – name: ACM – name: Association for Computing Machinery |
References | D. P. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press. J. Brickell, I. S. Dhillon, S. Sra, and J. A. Tropp. 2008. The metric nearness problem. SIAM J. Matrix Anal. Appl. 30, 1 (2008), 375--396. 10.1137/060653391 R. Williams. 2007. Matrix-vector multiplication in sub-quadratic time (some preprocessing required). In Proceedings of the Symposium on Discrete Algorithms (SODA’07). 995--1001. N. Alon and A. Naor. 2006. Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput. 35 (2006), 787--803. 10.1137/S0097539704441629 Ryan Williams. 2014. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the Symposium on Theory of Computing (STOC’14). 664--673. 10.1145/2591796.2591811 Jon Bentley. 1984. Programming pearls: Algorithm design techniques. Commun. ACM 27, 9 (Sept. 1984), 865--873. 10.1145/358234.381162 L. Roditty and U. Zwick. 2004. On dynamic shortest paths problems. In Proceedings of the European Symposium on Algorithms (ESA’04). 580--591. A. M. Frieze and R. Kannan. 1999. Quick approximation to matrices and applications. Combinatorica 19, 2 (1999), 175--220. F. Magniez, M. Santha, and M. Szegedy. 2005. Quantum algorithms for the triangle problem. In Proceedings of the Symposium on Discrete Algorithms (SODA’05). 1109--1117. Andrzej Lingas. 2011. A fast output-sensitive algorithm for boolean matrix multiplication. Algorithmica 61, 1 (2011), 36--50. U. Zwick. 2002. All-pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49, 3 (2002), 289--317. 10.1145/567112.567114 Timothy M. Chan. 2010. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput. 39, 5 (2010), 2075--2089. Liam Roditty and Uri Zwick. 2012. Replacement paths and k simple shortest paths in unweighted directed graphs. ACM Trans. Algor. 8, 4 (2012), 33. 10.1145/2344422.2344423 M. Blum and S. Kannan. 1995. Designing programs that check their work. J. ACM 42, 1 (1995), 269--291. 10.1145/200836.200880 L. G. Valiant. 1975. General context-free recognition in less than cubic time. J. Comput. Syst. Sci. 10 (1975), 308--315. 10.1016/S0022-0000(75)80046-8 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. 2015. Subcubic equivalences between graph centrality problems, APSP and diameter. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 1681--1697. V. Strassen. 1969. Gaussian elimination is not optimal. Numer. Math. 13 (1969), 354--356. 10.1007/BF02165411 Timothy M. Chan. 2015. Speeding up the four russians algorithm by about one more logarithmic factor. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 212--217. V. Vassilevska, R. Williams, and R. Yuster. 2007. All-pairs bottleneck paths for general graphs in truly sub-cubic time. In Proceedings of the Symposium on Theory of Computing (STOC’07). 585--589. 10.1145/1250790.1250876 H. Buhrman and R. Špalek. 2006. Quantum verification of matrix products. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'06). 880--889. G. J. Woeginger. 2008. Open problems around exact algorithms. Discrete Appl. Math. 156, 3 (2008), 397--405. 10.1016/j.dam.2007.03.023 J. Y. Yen. 1970/71. Finding the K shortest loopless paths in a network. Manage. Sci. 17 (1970/71), 712--716. Huacheng Yu. 2015. An improved combinatorial algorithm for boolean matrix multiplication. In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP’15). 1094--1105. S. Jeffery, R. Kothari, and F. Magniez. 2012. Improving quantum query complexity of boolean matrix multiplication using graph collision. In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’12). 522--532. 10.1007/978-3-642-31594-7_44 Timothy M. Chan and Ryan Williams. 2016. Deterministic APSP, orthogonal vectors, and more: Quickly derandomizing razborov-smolensky. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 1246--1255. V. Y. Pan. 1980. New fast algorithms for matrix operations. SIAM J. Comput. 9, 2 (1980), 321--342. J. Matousek. 1991. Computing dominances in En. Info. Process. Lett. 38, 5 (1991), 277--278. 10.1016/0020-0190(91)90071-O M. J. Fischer and A. R. Meyer. 1971. Boolean matrix multiplication and transitive closure. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’71). 129--131. 10.1109/SWAT.1971.4 R. W. Floyd. 1962. Algorithm : Shortest path. Comm. ACM 5 (1962), 345. 10.1145/367766.368168 N. Katoh, T. Ibaraki, and H. Mine. 1982. An efficient algorithm for K shortest simple paths. Networks 12, 4 (1982), 411--427. Arne Andersson and Mikkel Thorup. 2007. Dynamic ordered sets with exponential search trees. J. ACM 54, 3 (2007), 13. 10.1145/1236457.1236460 R. Freivalds. 1977. Probabilistic machines can use less running time. Proceedings of the IFIP Congress. 839--842. V. Y. Pan. 1978. Strassen’s algorithm is not optimal; trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’78). 166--176. 10.1109/SFCS.1978.34 D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic progressions. J. Symbol. Comput. 9, 3 (1990), 251--280. 10.1016/S0747-7171(08)80013-2 A. Czumaj and A. Lingas. 2007. Finding a heaviest triangle is not harder than matrix multiplication. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07). 986--994. A.M. Davie and A. J. Stothers. 2013. Improved bound for complexity of matrix multiplication. Proc. Roy. Soc. Edinburgh, Sec. A Math. 143 (4 2013), 351--369. Issue 02. I. Baran, E.D. Demaine, and M. Patrascu. 2008. Subquadratic algorithms for 3 SUM. Algorithmica 50, 4 (2008), 584--596. N. Alon. 2009. Personal communication. J. I. Munro. 1971. Efficient determination of the transitive closure of a directed graph. Info. Process. Lett. 1, 2 (1971), 56--58. 10.1016/0020-0190(71)90006-8 A. Lingas. 2009. A fast output-sensitive algorithm for boolean matrix multiplication. In Proceedings of the European Symposium on Algorithms (ESA’09). 408--419. L. Roditty. 2007. On the -simple shortest paths problem in weighted directed graphs. In Proceedings of the Symposium on Discrete Algorithms (SODA’07). 920--928. L. Roditty and U. Zwick. 2005. Replacement paths and k simple shortest paths in unweighted directed graphs. In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’05). 249--260. 10.1007/11523468_21 Artur Czumaj and Andrzej Lingas. 2009. Finding a heaviest vertex-weighted triangle is not harder than matrix multiplication. SIAM J. Comput. 39, 2 (2009), 431--444. 10.1137/070695149 E. L. Lawler. 1971/72. A procedure for computing the K best solutions to discrete optimization problems and its application to the shortest path problem. Manage. Sci. 18 (1971/72), 401--405. T. M. Chan. 2007. More algorithms for all-pairs shortest paths in weighted graphs. In Proceedings of the Symposium on Theory of Computing (STOC’07). 590--598. 10.1145/1250790.1250877 M. Patrascu. 2010. Towards polynomial lowed bounds for dynamic problems. In Proceedings of the Symposium on Theory of Computing (STOC’10). 603--610. 10.1145/1806689.1806772 D. Eppstein. 1998. Finding the k shortest paths. SIAM J. Comput. 28, 2 (1998), 652--673. 10.1137/S0097539795290477 Virginia Vassilevska, Ryan Williams, and Raphael Yuster. 2010. Finding heaviest H-subgraphs in real weighted graphs, with applications. ACM Trans. Algor. 6, 3 (2010). 10.1145/1798596.1798597 M. Dietzfelbinger. 1996. Universal hashing and k-wise independent random variables via integer arithmetic without primes. In Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS’96). 569--580. François Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’14). 296--303. 10.1145/2608628.2608664 Virginia Vassilevska Williams. 2012. Multiplying matrices faster than coppersmith-winograd. In Proceedings of the 44th Symposium on Theory of Computing (STOC’12). 887--898. 10.1145/2213977.2214056 D. Karger, D. Koller, and S. Phillips. 1993. Finding the hidden path: Time bounds for all-pairs shortest paths. SIAM J. Comput. 22, 6 (1993), 1199--1217. 10.1137/0222071 Liam Roditty. 2010. On the k shortest simple paths problem in weighted directed graphs. SIAM J. Comput. 39, 6 (2010), 2363--2376. G. Yuval. 1976. An algorithm for finding all shortest paths using N2.81 infinite-precision multiplications. Inf. Proc. Lett. 4 (1976), 155--156. A. Bernstein. 2010. A nearly optimal algorithm for approximating replacement paths and k shortest simple paths in general graphs. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). 742--755. L. Lee. 2002. Fast context-free grammar parsing requires fast boolean matrix multiplication. J. ACM 49, 1 (2002), 1--15. 10.1145/505241.505242 V. Vassilevska. 2008. Nondecreasing paths in weighted graphs, or: How to optimally read a train schedule. In Proceedings of the Symposium on Discrete Algorithms (SODA’08). 465--472. Nikhil Bansal and Ryan Williams. 2012. Regularity lemmas and combinatorial algorithms. Theory Comput. 8, 1 (2012), 69--94. N. Alon, Z. Galil, and O. Margalit. 1997. On the exponent of the all-pairs shortest path problem. J. Comput. Syst. Sci. 54, 2 (1997), 255--262. 10.1006/jcss.1997.1388 M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 3 (1987), 596--615. 10.1145/28869.28874 A. Gajentaan and M. Overmars. 1995. On a class of O(n2) problems in computational geometry. Computational Geometry 5, 3 (1995), 165--185. 10.1016/0925-7721(95)00022-2 Virginia Vassilevska Williams. 2010. Nondecreasing paths in a weighted graph or: How to optimally read a train schedule. Shoshan A. (e_1_2_1_56_1) Davie A.M. (e_1_2_1_22_1) 2013 Timothy (e_1_2_1_18_1) 2016 e_1_2_1_41_1 e_1_2_1_66_1 e_1_2_1_68_1 e_1_2_1_43_1 e_1_2_1_64_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 Roditty L. (e_1_2_1_53_1) e_1_2_1_71_1 Vassilevska V. (e_1_2_1_62_1) 2008 e_1_2_1_54_1 e_1_2_1_77_1 e_1_2_1_8_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_73_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_75_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 Williams R. (e_1_2_1_70_1) 2007 Spinrad J. P. (e_1_2_1_57_1) 2003 Tamaki Hisao (e_1_2_1_60_1) 1998 Roditty L. (e_1_2_1_51_1) 2007 Czumaj A. (e_1_2_1_20_1) e_1_2_1_42_1 e_1_2_1_65_1 e_1_2_1_40_1 e_1_2_1_67_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_69_1 e_1_2_1_29_1 Magniez F. (e_1_2_1_45_1) Freivalds R. (e_1_2_1_31_1) 1977 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_55_1 e_1_2_1_76_1 e_1_2_1_5_1 Duan R. (e_1_2_1_24_1) e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_72_1 e_1_2_1_1_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_74_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – reference: N. Alon, Z. Galil, and O. Margalit. 1997. On the exponent of the all-pairs shortest path problem. J. Comput. Syst. Sci. 54, 2 (1997), 255--262. 10.1006/jcss.1997.1388 – reference: J. Y. Yen. 1970/71. Finding the K shortest loopless paths in a network. Manage. Sci. 17 (1970/71), 712--716. – reference: D. Dubois and H. Prade. 1980. Fuzzy Sets and Systems: Theory and Applications. Academic Press. – reference: A. M. Frieze and R. Kannan. 1999. Quick approximation to matrices and applications. Combinatorica 19, 2 (1999), 175--220. – reference: L. Roditty and U. Zwick. 2005. Replacement paths and k simple shortest paths in unweighted directed graphs. In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’05). 249--260. 10.1007/11523468_21 – reference: A. Czumaj and A. Lingas. 2007. Finding a heaviest triangle is not harder than matrix multiplication. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07). 986--994. – reference: Timothy M. Chan. 2015. Speeding up the four russians algorithm by about one more logarithmic factor. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 212--217. – reference: M. Patrascu. 2010. Towards polynomial lowed bounds for dynamic problems. In Proceedings of the Symposium on Theory of Computing (STOC’10). 603--610. 10.1145/1806689.1806772 – reference: V. Vassilevska and R. Williams. 2006. Finding a maximum weight triangle in n3 − Δ time, with applications. In Proceedings of the Symposium on Theory of Computing (STOC’06). 225--231. 10.1145/1132516.1132550 – reference: J. P. Spinrad. 2003. Efficient graph representations. Fields Inst. Monogr. 19 (2003). – reference: J. Hershberger, S. Suri, and A. Bhosle. 2007. On the difficulty of some shortest path problems. ACM TALG 3, 1 (2007), 5. 10.1145/1186810.1186815 – reference: Virginia Vassilevska Williams. 2010. Nondecreasing paths in a weighted graph or: How to optimally read a train schedule. ACM Trans. Algor. 6, 4 (2010). 10.1145/1824777.1824790 – reference: A. Gajentaan and M. Overmars. 1995. On a class of O(n2) problems in computational geometry. Computational Geometry 5, 3 (1995), 165--185. 10.1016/0925-7721(95)00022-2 – reference: J. Matousek. 1991. Computing dominances in En. Info. Process. Lett. 38, 5 (1991), 277--278. 10.1016/0020-0190(91)90071-O – reference: L. G. Valiant. 1975. General context-free recognition in less than cubic time. J. Comput. Syst. Sci. 10 (1975), 308--315. 10.1016/S0022-0000(75)80046-8 – reference: V. Y. Pan. 1980. New fast algorithms for matrix operations. SIAM J. Comput. 9, 2 (1980), 321--342. – reference: M. Dietzfelbinger. 1996. Universal hashing and k-wise independent random variables via integer arithmetic without primes. In Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS’96). 569--580. – reference: R. W. Floyd. 1962. Algorithm : Shortest path. Comm. ACM 5 (1962), 345. 10.1145/367766.368168 – reference: L. Roditty and U. Zwick. 2004. On dynamic shortest paths problems. In Proceedings of the European Symposium on Algorithms (ESA’04). 580--591. – reference: N. Alon and A. Naor. 2006. Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput. 35 (2006), 787--803. 10.1137/S0097539704441629 – reference: Andrzej Lingas. 2011. A fast output-sensitive algorithm for boolean matrix multiplication. Algorithmica 61, 1 (2011), 36--50. – reference: V. Vassilevska, R. Williams, and R. Yuster. 2007. All-pairs bottleneck paths for general graphs in truly sub-cubic time. In Proceedings of the Symposium on Theory of Computing (STOC’07). 585--589. 10.1145/1250790.1250876 – reference: N. Bansal and R. Williams. 2009. Regularity lemmas and combinatorial algorithms. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’09). 745--754. 10.1109/FOCS.2009.76 – reference: A. Bernstein. 2010. A nearly optimal algorithm for approximating replacement paths and k shortest simple paths in general graphs. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). 742--755. – reference: Timothy M. Chan. 2010. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput. 39, 5 (2010), 2075--2089. – reference: L. Lee. 2002. Fast context-free grammar parsing requires fast boolean matrix multiplication. J. ACM 49, 1 (2002), 1--15. 10.1145/505241.505242 – reference: V. Y. Pan. 1978. Strassen’s algorithm is not optimal; trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’78). 166--176. 10.1109/SFCS.1978.34 – reference: T. M. Chan. 2007. More algorithms for all-pairs shortest paths in weighted graphs. In Proceedings of the Symposium on Theory of Computing (STOC’07). 590--598. 10.1145/1250790.1250877 – reference: A. Lingas. 2009. A fast output-sensitive algorithm for boolean matrix multiplication. In Proceedings of the European Symposium on Algorithms (ESA’09). 408--419. – reference: G. Yuval. 1976. An algorithm for finding all shortest paths using N2.81 infinite-precision multiplications. Inf. Proc. Lett. 4 (1976), 155--156. – reference: S. Warshall. 1962. A theorem on boolean matrices. J. ACM 9, 1 (1962), 11--12. 10.1145/321105.321107 – reference: A.M. Davie and A. J. Stothers. 2013. Improved bound for complexity of matrix multiplication. Proc. Roy. Soc. Edinburgh, Sec. A Math. 143 (4 2013), 351--369. Issue 02. – reference: V. Vassilevska. 2008. Nondecreasing paths in weighted graphs, or: How to optimally read a train schedule. In Proceedings of the Symposium on Discrete Algorithms (SODA’08). 465--472. – reference: M. J. Fischer and A. R. Meyer. 1971. Boolean matrix multiplication and transitive closure. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’71). 129--131. 10.1109/SWAT.1971.4 – reference: V. Strassen. 1969. Gaussian elimination is not optimal. Numer. Math. 13 (1969), 354--356. 10.1007/BF02165411 – reference: N. Alon. 2009. Personal communication. – reference: François Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’14). 296--303. 10.1145/2608628.2608664 – reference: V. Vassilevska, R. Williams, and R. Yuster. 2006. Finding the smallest H-subgraph in real weighted graphs and related problems. In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’06). 262--273. 10.1007/11786986_24 – reference: R. Williams. 2007. Matrix-vector multiplication in sub-quadratic time (some preprocessing required). In Proceedings of the Symposium on Discrete Algorithms (SODA’07). 995--1001. – reference: Virginia Vassilevska Williams. 2012. Multiplying matrices faster than coppersmith-winograd. In Proceedings of the 44th Symposium on Theory of Computing (STOC’12). 887--898. 10.1145/2213977.2214056 – reference: Timothy M. Chan and Ryan Williams. 2016. Deterministic APSP, orthogonal vectors, and more: Quickly derandomizing razborov-smolensky. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 1246--1255. – reference: M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 3 (1987), 596--615. 10.1145/28869.28874 – reference: N. Katoh, T. Ibaraki, and H. Mine. 1982. An efficient algorithm for K shortest simple paths. Networks 12, 4 (1982), 411--427. – reference: Liam Roditty and Uri Zwick. 2012. Replacement paths and k simple shortest paths in unweighted directed graphs. ACM Trans. Algor. 8, 4 (2012), 33. 10.1145/2344422.2344423 – reference: Hisao Tamaki and Takeshi Tokuyama. 1998. Algorithms for the maximum subarray problem based on matrix multiplication. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98). 446--452. – reference: Huacheng Yu. 2015. An improved combinatorial algorithm for boolean matrix multiplication. In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP’15). 1094--1105. – reference: A. Itai and M. Rodeh. 1978. Finding a minimum circuit in a graph. SIAM J. Comput. 7, 4 (1978), 413--423. – reference: Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. 2015. Subcubic equivalences between graph centrality problems, APSP and diameter. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 1681--1697. – reference: J. I. Munro. 1971. Efficient determination of the transitive closure of a directed graph. Info. Process. Lett. 1, 2 (1971), 56--58. 10.1016/0020-0190(71)90006-8 – reference: A. Stothers. 2010. On the Complexity of Matrix Multiplication. Ph.D. Thesis, University of Edinburgh. – reference: Virginia Vassilevska, Ryan Williams, and Raphael Yuster. 2009. All-pairs bottleneck paths and max-min matrix products in truly subcubic time. Theory Comput. 5, 1 (2009), 173--189. – reference: R. Duan and S. Pettie. 2009. Fast algorithms for (max, min)-matrix multiplication and bottleneck shortest paths. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09). 384--391. – reference: S. Jeffery, R. Kothari, and F. Magniez. 2012. Improving quantum query complexity of boolean matrix multiplication using graph collision. In Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’12). 522--532. 10.1007/978-3-642-31594-7_44 – reference: A. Shoshan and U. Zwick. 1999. All-pairs shortest paths in undirected graphs with integer weights. In Proceedings of the Symposium on Foundations of Computer Science (FOCS’99). 605--614. – reference: L. Roditty. 2007. On the -simple shortest paths problem in weighted directed graphs. In Proceedings of the Symposium on Discrete Algorithms (SODA’07). 920--928. – reference: T. M. Chan. 1999. Geometric applications of a randomized optimization technique. Discrete Comput. Geom. 22, 4 (1999), 547--567. – reference: F. Magniez, M. Santha, and M. Szegedy. 2005. Quantum algorithms for the triangle problem. In Proceedings of the Symposium on Discrete Algorithms (SODA’05). 1109--1117. – reference: J. Brickell, I. S. Dhillon, S. Sra, and J. A. Tropp. 2008. The metric nearness problem. SIAM J. Matrix Anal. Appl. 30, 1 (2008), 375--396. 10.1137/060653391 – reference: H. Buhrman and R. Špalek. 2006. Quantum verification of matrix products. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'06). 880--889. – reference: E. L. Lawler. 1971/72. A procedure for computing the K best solutions to discrete optimization problems and its application to the shortest path problem. Manage. Sci. 18 (1971/72), 401--405. – reference: Artur Czumaj and Andrzej Lingas. 2009. Finding a heaviest vertex-weighted triangle is not harder than matrix multiplication. SIAM J. Comput. 39, 2 (2009), 431--444. 10.1137/070695149 – reference: Jon Bentley. 1984. Programming pearls: Algorithm design techniques. Commun. ACM 27, 9 (Sept. 1984), 865--873. 10.1145/358234.381162 – reference: R. Freivalds. 1977. Probabilistic machines can use less running time. Proceedings of the IFIP Congress. 839--842. – reference: Virginia Vassilevska, Ryan Williams, and Raphael Yuster. 2010. Finding heaviest H-subgraphs in real weighted graphs, with applications. ACM Trans. Algor. 6, 3 (2010). 10.1145/1798596.1798597 – reference: Ryan Williams. 2014. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the Symposium on Theory of Computing (STOC’14). 664--673. 10.1145/2591796.2591811 – reference: G. J. Woeginger. 2008. Open problems around exact algorithms. Discrete Appl. Math. 156, 3 (2008), 397--405. 10.1016/j.dam.2007.03.023 – reference: Nikhil Bansal and Ryan Williams. 2012. Regularity lemmas and combinatorial algorithms. Theory Comput. 8, 1 (2012), 69--94. – reference: Arne Andersson and Mikkel Thorup. 2007. Dynamic ordered sets with exponential search trees. J. ACM 54, 3 (2007), 13. 10.1145/1236457.1236460 – reference: M. Blum and S. Kannan. 1995. Designing programs that check their work. J. ACM 42, 1 (1995), 269--291. 10.1145/200836.200880 – reference: D. Eppstein. 1998. Finding the k shortest paths. SIAM J. Comput. 28, 2 (1998), 652--673. 10.1137/S0097539795290477 – reference: Liam Roditty. 2010. On the k shortest simple paths problem in weighted directed graphs. SIAM J. Comput. 39, 6 (2010), 2363--2376. – reference: F. Le Gall. 2012. Improved output-sensitive quantum algorithms for Boolean matrix multiplication. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 1464--1476. – reference: U. Zwick. 2002. All-pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49, 3 (2002), 289--317. 10.1145/567112.567114 – reference: D. Karger, D. Koller, and S. Phillips. 1993. Finding the hidden path: Time bounds for all-pairs shortest paths. SIAM J. Comput. 22, 6 (1993), 1199--1217. 10.1137/0222071 – reference: I. Baran, E.D. Demaine, and M. Patrascu. 2008. Subquadratic algorithms for 3 SUM. Algorithmica 50, 4 (2008), 584--596. – reference: D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic progressions. J. Symbol. Comput. 9, 3 (1990), 251--280. 10.1016/S0747-7171(08)80013-2 – reference: D. P. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press. – ident: e_1_2_1_39_1 doi: 10.1002/net.3230120406 – ident: e_1_2_1_6_1 doi: 10.1109/FOCS.2009.76 – ident: e_1_2_1_25_1 doi: 10.1017/CBO9780511581274 – ident: e_1_2_1_54_1 doi: 10.1007/11523468_21 – volume-title: Efficient graph representations. Fields Inst. Monogr. 19 year: 2003 ident: e_1_2_1_57_1 – ident: e_1_2_1_15_1 doi: 10.1145/1250790.1250877 – volume-title: Chan and Ryan Williams year: 2016 ident: e_1_2_1_18_1 – ident: e_1_2_1_26_1 – volume-title: Proceedings of the Symposium on Foundations of Computer Science (FOCS’99) ident: e_1_2_1_56_1 – ident: e_1_2_1_13_1 doi: 10.5555/1109557.1109654 – ident: e_1_2_1_59_1 doi: 10.1007/BF02165411 – ident: e_1_2_1_12_1 doi: 10.1137/060653391 – ident: e_1_2_1_77_1 doi: 10.1145/567112.567114 – volume-title: Proceedings of the Symposium on Discrete Algorithms (SODA’08) year: 2008 ident: e_1_2_1_62_1 – ident: e_1_2_1_36_1 doi: 10.1137/0207033 – ident: e_1_2_1_9_1 doi: 10.1145/358234.381162 – volume-title: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07) ident: e_1_2_1_20_1 – ident: e_1_2_1_65_1 doi: 10.1145/1250790.1250876 – ident: e_1_2_1_11_1 doi: 10.1145/200836.200880 – ident: e_1_2_1_50_1 doi: 10.1145/1806689.1806772 – ident: e_1_2_1_28_1 doi: 10.1109/SWAT.1971.4 – ident: e_1_2_1_73_1 doi: 10.1016/j.dam.2007.03.023 – ident: e_1_2_1_52_1 doi: 10.5555/1958033.1958044 – ident: e_1_2_1_5_1 doi: 10.1145/1236457.1236460 – volume-title: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09) ident: e_1_2_1_24_1 – ident: e_1_2_1_68_1 doi: 10.1145/1824777.1824790 – ident: e_1_2_1_2_1 – ident: e_1_2_1_61_1 doi: 10.1016/S0022-0000(75)80046-8 – ident: e_1_2_1_69_1 doi: 10.1145/321105.321107 – ident: e_1_2_1_17_1 doi: 10.5555/2722129.2722145 – ident: e_1_2_1_48_1 doi: 10.1109/SFCS.1978.34 – ident: e_1_2_1_34_1 doi: 10.1145/2608628.2608664 – ident: e_1_2_1_38_1 doi: 10.1137/0222071 – ident: e_1_2_1_35_1 doi: 10.1145/1186810.1186815 – ident: e_1_2_1_49_1 doi: 10.1137/0209027 – ident: e_1_2_1_16_1 doi: 10.1137/08071990X – volume-title: Proceedings of the European Symposium on Algorithms (ESA’04) ident: e_1_2_1_53_1 – ident: e_1_2_1_30_1 doi: 10.1145/28869.28874 – ident: e_1_2_1_64_1 doi: 10.1007/11786986_24 – ident: e_1_2_1_67_1 doi: 10.1145/1798596.1798597 – ident: e_1_2_1_23_1 doi: 10.5555/646511.695324 – ident: e_1_2_1_47_1 doi: 10.1016/0020-0190(71)90006-8 – ident: e_1_2_1_63_1 doi: 10.1145/1132516.1132550 – ident: e_1_2_1_43_1 doi: 10.1007/978-3-642-04128-0_37 – ident: e_1_2_1_76_1 doi: 10.1016/0020-0190(76)90085-5 – ident: e_1_2_1_71_1 doi: 10.1145/2591796.2591811 – ident: e_1_2_1_33_1 doi: 10.1016/0925-7721(95)00022-2 – ident: e_1_2_1_75_1 doi: 10.1007/978-3-662-47672-7_89 – ident: e_1_2_1_46_1 doi: 10.1016/0020-0190(91)90071-O – ident: e_1_2_1_29_1 doi: 10.1145/367766.368168 – ident: e_1_2_1_66_1 doi: 10.4086/toc.2009.v005a009 – ident: e_1_2_1_40_1 doi: 10.1287/mnsc.18.7.401 – ident: e_1_2_1_19_1 doi: 10.1016/S0747-7171(08)80013-2 – ident: e_1_2_1_8_1 doi: 10.5555/3118772.3119148 – volume-title: Proceedings of the Symposium on Discrete Algorithms (SODA’07) year: 2007 ident: e_1_2_1_70_1 – ident: e_1_2_1_14_1 doi: 10.1007/PL00009478 – ident: e_1_2_1_7_1 doi: 10.4086/toc.2012.v008a004 – volume-title: Proceedings of the Symposium on Discrete Algorithms (SODA’07) year: 2007 ident: e_1_2_1_51_1 – ident: e_1_2_1_72_1 doi: 10.1145/2213977.2214056 – ident: e_1_2_1_74_1 doi: 10.1287/mnsc.17.11.712 – ident: e_1_2_1_1_1 doi: 10.5555/2722129.2722241 – ident: e_1_2_1_42_1 doi: 10.1145/505241.505242 – ident: e_1_2_1_21_1 doi: 10.1137/070695149 – ident: e_1_2_1_55_1 doi: 10.1145/2344422.2344423 – ident: e_1_2_1_37_1 doi: 10.1007/978-3-642-31594-7_44 – volume-title: Proc. Roy. Soc year: 2013 ident: e_1_2_1_22_1 – volume-title: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98) year: 1998 ident: e_1_2_1_60_1 – ident: e_1_2_1_3_1 doi: 10.1006/jcss.1997.1388 – volume-title: Proceedings of the IFIP Congress. 839--842 year: 1977 ident: e_1_2_1_31_1 – ident: e_1_2_1_27_1 doi: 10.1137/S0097539795290477 – ident: e_1_2_1_44_1 doi: 10.5555/2616915.2616941 – ident: e_1_2_1_10_1 doi: 10.5555/1873601.1873662 – ident: e_1_2_1_41_1 doi: 10.5555/2095116.2095232 – ident: e_1_2_1_32_1 doi: 10.1007/s004930050052 – ident: e_1_2_1_4_1 doi: 10.1137/S0097539704441629 – volume-title: Proceedings of the Symposium on Discrete Algorithms (SODA’05) ident: e_1_2_1_45_1 |
SSID | ssj0000207 |
Score | 2.6177325 |
Snippet | We say an algorithm on n × n matrices with integer entries in [−M,M] (or n-node graphs with edge weights from [−M,M]) is truly subcubic if it runs in O(n3 − δ... We say an algorithm on n × n matrices with integer entries in [− M , M ] (or n -node graphs with edge weights from [− M , M ]) is truly subcubic if it runs in... |
SourceID | proquest crossref acm |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Boolean algebra Combinatorial analysis Computational complexity and cryptography Design and analysis of algorithms Equivalence Graph algorithms Graph algorithms analysis Graph theory Graphs Integer programming Matrix Minimum weight Problems, reductions and completeness Shortest paths Theory of computation |
SubjectTermsDisplay | Theory of computation -- Computational complexity and cryptography -- Problems, reductions and completeness Theory of computation -- Design and analysis of algorithms -- Graph algorithms analysis -- Shortest paths |
Title | Subcubic Equivalences Between Path, Matrix, and Triangle Problems |
URI | https://dl.acm.org/doi/10.1145/3186893 https://www.proquest.com/docview/2132248731 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELbacOmlUAriWflQ9RLcJvZ6Nz7yCEIooQg2KLeV7ayjCAiPJAj49YzXNpuIULW9rKLNyLLmG49nR_PNIPQ9j2sKbi5OjJKCRDJmRIBlkJowlCbaxA1ZVFucxEed6LjLu-WkwoJdMlY_9fNcXsn_oArvAFfLkv0HZF8XhRfwG_CFJyAMz7_CGE69nqiBrjbvJgNYuKiJru750qtT6XImbduF_zGUaaawr2H_KrcUATtKZvROeFpQTvbn5mUuBvf9gWVzXUDkDV7lYXQp58mdVc-evPH5vELd9qkmtPReU9ZRFDy6IRM2fdEuqjwDYzv41YjwyLvN3LtSgDxhvDvta91cCG9TfL4Lj2y3C2bb-LvZibNNsk9-Z4edVitLm930I1qg8HVAK2hh96DdOi-vYOp48mFbji1tl_7lF7bBiL6eDUZm7-IiwEiX0GeverzrYP6CPuTDZbQYpm5g74S_wkXoUcfTqGOPOrao72CH-Q4GxHFAHAfEV1DnsJnuHxE_CINIytmYyEbEYsFiOEBGC6qShqQ61rkSkdEqSVhd9RLRgG9Pqmqc9yKlFTMJk1yrWFLGVlFleDPM1xDmVBpLpq5LBWJMCkV7NaW5YdQwJnrraBn0kt26VieZ19Y6-hH0lGnfO96OMLnKHK-dl4L4VTCs8UZkKyg682dplFGbFIH9s_rGn__eRJ9KY91ClfH9JN-GsHCsvnkjeAFt0mL2 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subcubic+Equivalences+Between+Path%2C+Matrix%2C+and+Triangle+Problems&rft.jtitle=Journal+of+the+ACM&rft.au=Williams%2C+Virginia+Vassilevska&rft.au=Williams%2C+R+Ryan&rft.date=2018-08-29&rft.pub=Association+for+Computing+Machinery&rft.issn=0004-5411&rft.eissn=1557-735X&rft.volume=65&rft.issue=5&rft_id=info:doi/10.1145%2F3186893&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-5411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-5411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-5411&client=summon |