A Distributed Threshold Algorithm for Vehicle Classification Based on Binary Proximity Sensors and Intelligent Neuron Classifier

To improve the accuracy of real time vehicle surveillance, utilize the advances in wireless sensor networks to develop a magnetic signature and length estimation based vehicle classification methodology with binary proximity magnetic sensor networks and intelligent neuron classifier. In this algorit...

Full description

Saved in:
Bibliographic Details
Published inJournal of Information Science and Engineering Vol. 26; no. 3; pp. 769 - 783
Main Authors 張偉(Wei Zhang), 譚國真(Guo-Zhen Tan), 史慧敏(Hui-Min Shi), 林明文(Ming-Wen Lin)
Format Journal Article
LanguageEnglish
Published 社團法人中華民國計算語言學學會 01.05.2010
Subjects
Online AccessGet full text
ISSN1016-2364
DOI10.6688/JISE.2010.26.3.3

Cover

Loading…
Abstract To improve the accuracy of real time vehicle surveillance, utilize the advances in wireless sensor networks to develop a magnetic signature and length estimation based vehicle classification methodology with binary proximity magnetic sensor networks and intelligent neuron classifier. In this algorithm, we use the low cost and high sensitive magnetic sensors to measure the magnetic field distortion when vehicle crosses the sensors and detect vehicle via an adaptive threshold. The vehicle length is estimated with the geometrical characteristics of the proximity sensor networks, and finally identifies vehicle type from an intelligent neural network classifier. Simulation and on-road experiment obtains high recognition rate over 90%. It verified that this algorithm enhances the vehicle surveillance with high accuracy and solid robustness.
AbstractList To improve the accuracy of real time vehicle surveillance, utilize the advances in wireless sensor networks to develop a magnetic signature and length estimation based vehicle classification methodology with binary proximity magnetic sensor networks and intelligent neuron classifier. In this algorithm, we use the low cost and high sensitive magnetic sensors to measure the magnetic field distortion when vehicle crosses the sensors and detect vehicle via an adaptive threshold. The vehicle length is estimated with the geometrical characteristics of the proximity sensor networks, and finally identifies vehicle type from an intelligent neural network classifier. Simulation and on-road experiment obtains high recognition rate over 90%. It verified that this algorithm enhances the vehicle surveillance with high accuracy and solid robustness.
Author 譚國真(Guo-Zhen Tan)
張偉(Wei Zhang)
林明文(Ming-Wen Lin)
史慧敏(Hui-Min Shi)
Author_xml – sequence: 1
  fullname: 張偉(Wei Zhang)
– sequence: 2
  fullname: 譚國真(Guo-Zhen Tan)
– sequence: 3
  fullname: 史慧敏(Hui-Min Shi)
– sequence: 4
  fullname: 林明文(Ming-Wen Lin)
BookMark eNpVkL1PwzAQxT0UibawM3pjSrHzYadjKYUWVYDUwho5yblxldpgOxLd-NNx1DIw3b3Tu6en3wgNtNGA0A0lE8by_O55tVlMYhJkzCbJJBmgISWURXHC0ks0cm5PSMyyNB2inxl-UM5bVXYearxtLLjGtDWetTtjlW8OWBqLP6BRVQt43grnlFSV8MpofC9ceOoXpYU94jdrvtVB-SPegHbGOix0jVfaQ9uqHWiPX6Czwf-XA_YKXUjROrg-zzF6f1xs58to_fq0ms_WkYiz2EdQgqi5rCjIlPGSVEzKhGfTDGRNyzwcIM0kpzKrpADKRQWiFHmdlnlVxlOWjNHtKffTmq8OnC8OylWhl9BgOlfwLOEs5NHgXJ6cQgUAqtibzupQregZ9giLHi3JzoOmhKT0v-BsWvA8SX4B0vN6lg
ContentType Journal Article
DBID 188
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.6688/JISE.2010.26.3.3
DatabaseName Chinese Electronic Periodical Services (CEPS)
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 783
ExternalDocumentID 10162364_201005_201005140041_201005140041_769_783
GroupedDBID .4S
.DC
188
2UF
2WC
5GY
AAKPC
ACGFO
ADMLS
AENEX
AIAGR
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATFKH
C1A
CNMHZ
CVCKV
EBS
EDO
EJD
I-F
MK~
ML~
OK1
P2P
TN5
TR2
TUS
UZ4
77I
7SC
8FD
A8Z
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-a252t-ebead7fc1ef467b0c6ff37595efd1b8b0ce45f71f5cfae17aceaba8d4b8cb2963
ISSN 1016-2364
IngestDate Fri Sep 05 08:44:17 EDT 2025
Tue May 20 00:40:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 3
Keywords vehicle detection
adaptive
wireless sensor networks
real-time traffic surveillance
intelligent neurons
distributed threshold
clustering
vehicle classification
binary proximity sensor networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a252t-ebead7fc1ef467b0c6ff37595efd1b8b0ce45f71f5cfae17aceaba8d4b8cb2963
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 753765951
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_753765951
airiti_journals_10162364_201005_201005140041_201005140041_769_783
PublicationCentury 2000
PublicationDate 20100501
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 20100501
  day: 01
PublicationDecade 2010
PublicationTitle Journal of Information Science and Engineering
PublicationYear 2010
Publisher 社團法人中華民國計算語言學學會
Publisher_xml – name: 社團法人中華民國計算語言學學會
SSID ssj0026544
Score 1.5849012
Snippet To improve the accuracy of real time vehicle surveillance, utilize the advances in wireless sensor networks to develop a magnetic signature and length...
SourceID proquest
airiti
SourceType Aggregation Database
Publisher
StartPage 769
SubjectTerms Adaptive algorithms
Algorithms
Classification
Classifiers
Computer simulation
Distortion
Low cost
Magnetic fields
Magnetic signatures
Methodology
Networks
Neural networks
Neurons
Proximity
Real time
Recognition
Robustness
Sensors
Surveillance
Thresholds
Vehicles
Title A Distributed Threshold Algorithm for Vehicle Classification Based on Binary Proximity Sensors and Intelligent Neuron Classifier
URI https://www.airitilibrary.com/Article/Detail/10162364-201005-201005140041-201005140041-769-783
https://www.proquest.com/docview/753765951
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9sKFN6JQ0B64VQ7xc-2jCymlSgpSHBpxsdbr3SYS2FJjS6gnrvxrZrzrRxskHpfEWTlry9_nmdmdFyGvxcQRPufc8pQnLC9zIivMIhCGmStCX3k2V7g1MD8PTpfe2cpfjUY_B1FLdZWNxfVv80r-B1UYA1wxS_YfkO0mhQE4BnzhExCGz7_COMbimbplFdiNCcCyRW_SUfz1soRF__pbE0T4Wa7xj7r_JUYGacyPQX_l6Cs41im5n67K75jtBMIElrbYg0eHCrclO6ujppBH0c1j4np3LVtTjLW5Sps2hHPJvvbhzn71hdz0mwiNJHxfl9aXdZ-ptljrBtv1xppvip0JYOzSujCnm20M7YE32xha8oLtaWE1-6Fo1sn0hoLuQM4y3d_FqGyme-Hc1gZBEGKGw9mHxVTH8DnB2B27veZrvf3nH9OT5WyWJtNVcofsO4yhx38_fjefLbrVe-A3nYG7-9Q-b7zGm9tXAGuGb7Am1Y6Cb6yW5AG5Z0ChsebOQzKSxSNyv23lQY1kf0x-xHRAJdpRiXZUooApNVSiN6lEGypRPGioRDsqUUMlCvDTAZWophLtqfSELE-mydtTyzTnsLjjO5UFLz_PmRK2VKBrs4kIlHKZH_lS5XYWwoD0fMVs5QvFpc24kDzjYe5loQCJELhPyV5RFvIZocJzwNCNYCGQ5R5Y5FEY5AIsT8kYGPfMPiCxfpypefe2TWAigpDiU5_45stGhWTf_AFMSYEfB4S2SKQgQNErxgtZ1tuUYUEjuG_7-Z9PeUHu9tw9JHvVVS1fglFaZa8MXX4B4_uQ5w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributed+Threshold+Algorithm+for+Vehicle+Classification+Based+on+Binary+Proximity+Sensors+and+Intelligent+Neuron+Classifier&rft.jtitle=Journal+of+information+science+and+engineering&rft.au=Zhang%2C+Wei&rft.au=Tan%2C+Guo-Zhen&rft.au=Shi%2C+Hui-Min&rft.au=Zhang%2C+Ming-Wen&rft.date=2010-05-01&rft.issn=1016-2364&rft.volume=26&rft.issue=3&rft.spage=769&rft.epage=783&rft_id=info:doi/10.6688%2FJISE.2010.26.3.3&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F10162364-c.jpg