A Distributed Threshold Algorithm for Vehicle Classification Based on Binary Proximity Sensors and Intelligent Neuron Classifier
To improve the accuracy of real time vehicle surveillance, utilize the advances in wireless sensor networks to develop a magnetic signature and length estimation based vehicle classification methodology with binary proximity magnetic sensor networks and intelligent neuron classifier. In this algorit...
Saved in:
Published in | Journal of Information Science and Engineering Vol. 26; no. 3; pp. 769 - 783 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
社團法人中華民國計算語言學學會
01.05.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1016-2364 |
DOI | 10.6688/JISE.2010.26.3.3 |
Cover
Loading…
Abstract | To improve the accuracy of real time vehicle surveillance, utilize the advances in wireless sensor networks to develop a magnetic signature and length estimation based vehicle classification methodology with binary proximity magnetic sensor networks and intelligent neuron classifier. In this algorithm, we use the low cost and high sensitive magnetic sensors to measure the magnetic field distortion when vehicle crosses the sensors and detect vehicle via an adaptive threshold. The vehicle length is estimated with the geometrical characteristics of the proximity sensor networks, and finally identifies vehicle type from an intelligent neural network classifier. Simulation and on-road experiment obtains high recognition rate over 90%. It verified that this algorithm enhances the vehicle surveillance with high accuracy and solid robustness. |
---|---|
AbstractList | To improve the accuracy of real time vehicle surveillance, utilize the advances in wireless sensor networks to develop a magnetic signature and length estimation based vehicle classification methodology with binary proximity magnetic sensor networks and intelligent neuron classifier. In this algorithm, we use the low cost and high sensitive magnetic sensors to measure the magnetic field distortion when vehicle crosses the sensors and detect vehicle via an adaptive threshold. The vehicle length is estimated with the geometrical characteristics of the proximity sensor networks, and finally identifies vehicle type from an intelligent neural network classifier. Simulation and on-road experiment obtains high recognition rate over 90%. It verified that this algorithm enhances the vehicle surveillance with high accuracy and solid robustness. |
Author | 譚國真(Guo-Zhen Tan) 張偉(Wei Zhang) 林明文(Ming-Wen Lin) 史慧敏(Hui-Min Shi) |
Author_xml | – sequence: 1 fullname: 張偉(Wei Zhang) – sequence: 2 fullname: 譚國真(Guo-Zhen Tan) – sequence: 3 fullname: 史慧敏(Hui-Min Shi) – sequence: 4 fullname: 林明文(Ming-Wen Lin) |
BookMark | eNpVkL1PwzAQxT0UibawM3pjSrHzYadjKYUWVYDUwho5yblxldpgOxLd-NNx1DIw3b3Tu6en3wgNtNGA0A0lE8by_O55tVlMYhJkzCbJJBmgISWURXHC0ks0cm5PSMyyNB2inxl-UM5bVXYearxtLLjGtDWetTtjlW8OWBqLP6BRVQt43grnlFSV8MpofC9ceOoXpYU94jdrvtVB-SPegHbGOix0jVfaQ9uqHWiPX6Czwf-XA_YKXUjROrg-zzF6f1xs58to_fq0ms_WkYiz2EdQgqi5rCjIlPGSVEzKhGfTDGRNyzwcIM0kpzKrpADKRQWiFHmdlnlVxlOWjNHtKffTmq8OnC8OylWhl9BgOlfwLOEs5NHgXJ6cQgUAqtibzupQregZ9giLHi3JzoOmhKT0v-BsWvA8SX4B0vN6lg |
ContentType | Journal Article |
DBID | 188 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.6688/JISE.2010.26.3.3 |
DatabaseName | Chinese Electronic Periodical Services (CEPS) Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 783 |
ExternalDocumentID | 10162364_201005_201005140041_201005140041_769_783 |
GroupedDBID | .4S .DC 188 2UF 2WC 5GY AAKPC ACGFO ADMLS AENEX AIAGR AINHJ ALMA_UNASSIGNED_HOLDINGS ARCSS ATFKH C1A CNMHZ CVCKV EBS EDO EJD I-F MK~ ML~ OK1 P2P TN5 TR2 TUS UZ4 77I 7SC 8FD A8Z JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-a252t-ebead7fc1ef467b0c6ff37595efd1b8b0ce45f71f5cfae17aceaba8d4b8cb2963 |
ISSN | 1016-2364 |
IngestDate | Fri Sep 05 08:44:17 EDT 2025 Tue May 20 00:40:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Keywords | vehicle detection adaptive wireless sensor networks real-time traffic surveillance intelligent neurons distributed threshold clustering vehicle classification binary proximity sensor networks |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a252t-ebead7fc1ef467b0c6ff37595efd1b8b0ce45f71f5cfae17aceaba8d4b8cb2963 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 753765951 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_753765951 airiti_journals_10162364_201005_201005140041_201005140041_769_783 |
PublicationCentury | 2000 |
PublicationDate | 20100501 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 20100501 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of Information Science and Engineering |
PublicationYear | 2010 |
Publisher | 社團法人中華民國計算語言學學會 |
Publisher_xml | – name: 社團法人中華民國計算語言學學會 |
SSID | ssj0026544 |
Score | 1.5849012 |
Snippet | To improve the accuracy of real time vehicle surveillance, utilize the advances in wireless sensor networks to develop a magnetic signature and length... |
SourceID | proquest airiti |
SourceType | Aggregation Database Publisher |
StartPage | 769 |
SubjectTerms | Adaptive algorithms Algorithms Classification Classifiers Computer simulation Distortion Low cost Magnetic fields Magnetic signatures Methodology Networks Neural networks Neurons Proximity Real time Recognition Robustness Sensors Surveillance Thresholds Vehicles |
Title | A Distributed Threshold Algorithm for Vehicle Classification Based on Binary Proximity Sensors and Intelligent Neuron Classifier |
URI | https://www.airitilibrary.com/Article/Detail/10162364-201005-201005140041-201005140041-769-783 https://www.proquest.com/docview/753765951 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9sKFN6JQ0B64VQ7xc-2jCymlSgpSHBpxsdbr3SYS2FJjS6gnrvxrZrzrRxskHpfEWTlry9_nmdmdFyGvxcQRPufc8pQnLC9zIivMIhCGmStCX3k2V7g1MD8PTpfe2cpfjUY_B1FLdZWNxfVv80r-B1UYA1wxS_YfkO0mhQE4BnzhExCGz7_COMbimbplFdiNCcCyRW_SUfz1soRF__pbE0T4Wa7xj7r_JUYGacyPQX_l6Cs41im5n67K75jtBMIElrbYg0eHCrclO6ujppBH0c1j4np3LVtTjLW5Sps2hHPJvvbhzn71hdz0mwiNJHxfl9aXdZ-ptljrBtv1xppvip0JYOzSujCnm20M7YE32xha8oLtaWE1-6Fo1sn0hoLuQM4y3d_FqGyme-Hc1gZBEGKGw9mHxVTH8DnB2B27veZrvf3nH9OT5WyWJtNVcofsO4yhx38_fjefLbrVe-A3nYG7-9Q-b7zGm9tXAGuGb7Am1Y6Cb6yW5AG5Z0ChsebOQzKSxSNyv23lQY1kf0x-xHRAJdpRiXZUooApNVSiN6lEGypRPGioRDsqUUMlCvDTAZWophLtqfSELE-mydtTyzTnsLjjO5UFLz_PmRK2VKBrs4kIlHKZH_lS5XYWwoD0fMVs5QvFpc24kDzjYe5loQCJELhPyV5RFvIZocJzwNCNYCGQ5R5Y5FEY5AIsT8kYGPfMPiCxfpypefe2TWAigpDiU5_45stGhWTf_AFMSYEfB4S2SKQgQNErxgtZ1tuUYUEjuG_7-Z9PeUHu9tw9JHvVVS1fglFaZa8MXX4B4_uQ5w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributed+Threshold+Algorithm+for+Vehicle+Classification+Based+on+Binary+Proximity+Sensors+and+Intelligent+Neuron+Classifier&rft.jtitle=Journal+of+information+science+and+engineering&rft.au=Zhang%2C+Wei&rft.au=Tan%2C+Guo-Zhen&rft.au=Shi%2C+Hui-Min&rft.au=Zhang%2C+Ming-Wen&rft.date=2010-05-01&rft.issn=1016-2364&rft.volume=26&rft.issue=3&rft.spage=769&rft.epage=783&rft_id=info:doi/10.6688%2FJISE.2010.26.3.3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F10162364-c.jpg |