The Tripartite Cascade Strategy Amplifies Cellular Oxidative Stress to Disrupt Oxidation–Reduction Homeostasis for Tumor Immunogenic Cell Death

Immunogenic cell death (ICD) induced by intracellular oxidation–reduction homeostasis imbalance is a classic mechanism in cancer immunotherapy. Herein, we propose a tripartite strategy to amplify cellular oxidative stress based on a combination of peptidic nanoparticles (TPFNO/CCA NPs) of host–guest...

Full description

Saved in:
Bibliographic Details
Published inACS materials letters Vol. 7; no. 3; pp. 730 - 740
Main Authors Jiang, Lingdong, Chen, Xiaojia, Gu, Yuqing, Deng, Fuan, Song, Yue, Mao, Chunping, Tong, Yuqi, Wang, Fengyi, Zhang, Wenyuan, Liu, Yujing, Chen, Yichi, Shi, Haonan, Zhang, Lu
Format Journal Article
LanguageEnglish
Published American Chemical Society 03.03.2025
Online AccessGet full text

Cover

Loading…
Abstract Immunogenic cell death (ICD) induced by intracellular oxidation–reduction homeostasis imbalance is a classic mechanism in cancer immunotherapy. Herein, we propose a tripartite strategy to amplify cellular oxidative stress based on a combination of peptidic nanoparticles (TPFNO/CCA NPs) of host–guest drug-loading, fibrillar transformation, and NO generation. Cinnamaldehyde (CA) was released from TPFNO/CCA NPs due to Schiff base bond breakage within the lysosome, promoting excessive ROS generation. The residual TPFNO/C NPs bind the mitochondria, where excessive ROS induces the host–guest disintegration of ferrocene/β-cyclodextrin. The β-sheet TPFNO peptide could further transform into a fibrillar network on the mitochondria surface, leading to a further surge of ROS. Concurrently, the TPFNO peptide would locally release NO gas by consuming intracellular glutathione. NO further reacts with ROS and yields ONOO–, exacerbating mitochondrial dysfunction. Through a synergistic cascade of ROS generation and glutathione consumption, TPFNO/CCA NPs efficiently amplify oxidative stress, inducing potent immunogenic death in tumor cells.
AbstractList Immunogenic cell death (ICD) induced by intracellular oxidation–reduction homeostasis imbalance is a classic mechanism in cancer immunotherapy. Herein, we propose a tripartite strategy to amplify cellular oxidative stress based on a combination of peptidic nanoparticles (TPFNO/CCA NPs) of host–guest drug-loading, fibrillar transformation, and NO generation. Cinnamaldehyde (CA) was released from TPFNO/CCA NPs due to Schiff base bond breakage within the lysosome, promoting excessive ROS generation. The residual TPFNO/C NPs bind the mitochondria, where excessive ROS induces the host–guest disintegration of ferrocene/β-cyclodextrin. The β-sheet TPFNO peptide could further transform into a fibrillar network on the mitochondria surface, leading to a further surge of ROS. Concurrently, the TPFNO peptide would locally release NO gas by consuming intracellular glutathione. NO further reacts with ROS and yields ONOO–, exacerbating mitochondrial dysfunction. Through a synergistic cascade of ROS generation and glutathione consumption, TPFNO/CCA NPs efficiently amplify oxidative stress, inducing potent immunogenic death in tumor cells.
Author Chen, Xiaojia
Chen, Yichi
Liu, Yujing
Gu, Yuqing
Jiang, Lingdong
Mao, Chunping
Wang, Fengyi
Zhang, Wenyuan
Zhang, Lu
Deng, Fuan
Tong, Yuqi
Shi, Haonan
Song, Yue
AuthorAffiliation College of Pharmacy
Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
AuthorAffiliation_xml – name: College of Pharmacy
– name: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
Author_xml – sequence: 1
  givenname: Lingdong
  surname: Jiang
  fullname: Jiang, Lingdong
  organization: College of Pharmacy
– sequence: 2
  givenname: Xiaojia
  surname: Chen
  fullname: Chen, Xiaojia
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 3
  givenname: Yuqing
  surname: Gu
  fullname: Gu, Yuqing
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 4
  givenname: Fuan
  surname: Deng
  fullname: Deng, Fuan
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 5
  givenname: Yue
  surname: Song
  fullname: Song, Yue
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 6
  givenname: Chunping
  surname: Mao
  fullname: Mao, Chunping
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 7
  givenname: Yuqi
  surname: Tong
  fullname: Tong, Yuqi
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 8
  givenname: Fengyi
  surname: Wang
  fullname: Wang, Fengyi
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 9
  givenname: Wenyuan
  surname: Zhang
  fullname: Zhang, Wenyuan
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 10
  givenname: Yujing
  surname: Liu
  fullname: Liu, Yujing
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 11
  givenname: Yichi
  surname: Chen
  fullname: Chen, Yichi
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 12
  givenname: Haonan
  surname: Shi
  fullname: Shi, Haonan
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
– sequence: 13
  givenname: Lu
  orcidid: 0000-0002-7492-6047
  surname: Zhang
  fullname: Zhang, Lu
  email: zhanglu@sustech.edu.cn
  organization: Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering
BookMark eNqFkN9KwzAUxoMoOOfeIS_QmbbZ2lyOTt1gMNB6XdLkZMtom5Kk4u58BfENfRK7P4J448X5A-f7fXC-G3TZmAYQwiEZhyQK77hwNfdgNa9cBd6PqSARjeILNIimMQsoS9jlr_0ajZzbEdKz05BROkAf-RZwbnXLrdcecMad4BLws7e98WaPZ3VbaaXB4Qyqqqu4xes3LbnXr0cVOIe9wXPtbNf6n5tpvt4_n0B24rDjhanBOM-ddlgZi_Ou7vuyrrvGbKDR4miO58D99hZdqf4dGJ3nEL083OfZIlitH5fZbBXwiDIfJFJKRongsaAyhBLiUoJSZZROKCRRX6wso1hNBLCQEKriJFSQsiQRMUmJjIcoPfkKa5yzoIrW6prbfRGS4pBu8Tfd4pxuj9IT2iuKnels0yv-x74B4n-M8w
Cites_doi 10.1021/acs.nanolett.9b05265
10.1038/s41467-024-53010-0
10.1021/acsmaterialslett.4c01891
10.1021/jacs.8b07727
10.1002/advs.202001308
10.1021/acsmaterialslett.2c01043
10.1016/j.biomaterials.2022.121795
10.1007/s12032-020-01417-2
10.1021/acs.chemrev.7b00568
10.1002/smll.202406802
10.1002/adfm.202104645
10.1186/s12951-024-02839-0
10.1016/j.mattod.2023.04.002
10.1038/s41565-019-0626-4
10.1002/anie.202411725
10.1038/ni.3704
10.1021/acsmaterialslett.3c01459
10.1021/acs.chemrev.7b00042
10.1016/j.apsb.2022.11.016
10.1002/anie.202103721
10.1002/adma.201700141
10.1038/s41580-021-00415-0
10.1021/acsmaterialslett.4c00661
10.1016/j.biomaterials.2024.122743
10.1038/nprot.2007.454
10.1126/science.abd5491
10.1016/j.carbpol.2020.116654
10.2174/0929867323666160727105101
10.1016/j.biomaterials.2018.12.027
10.1038/s41392-024-01839-8
10.1016/j.biomaterials.2021.120970
10.1016/j.nantod.2023.101886
10.1021/acsmaterialslett.3c00676
10.1016/j.bioactmat.2021.09.035
10.1016/j.ccr.2006.08.015
10.1016/j.ccr.2022.214818
10.1021/acsmaterialslett.2c01024
10.1016/j.biomaterials.2021.121078
10.1002/adma.201904914
10.1021/acsmaterialslett.3c00177
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsmaterialslett.4c02423
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2639-4979
EndPage 740
ExternalDocumentID 10_1021_acsmaterialslett_4c02423
a420879071
GroupedDBID ABJNI
ABQRX
ACS
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
M~E
VF5
VG9
AAYXX
ABBLG
ABLBI
CITATION
ID FETCH-LOGICAL-a249t-7ddd940ca3c4d1ebe3bdeffb2854e724e79bb23f5ce91004f371fe8977c3080d3
IEDL.DBID ACS
ISSN 2639-4979
IngestDate Wed Aug 20 07:42:58 EDT 2025
Tue Mar 04 03:12:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a249t-7ddd940ca3c4d1ebe3bdeffb2854e724e79bb23f5ce91004f371fe8977c3080d3
ORCID 0000-0002-7492-6047
PageCount 11
ParticipantIDs crossref_primary_10_1021_acsmaterialslett_4c02423
acs_journals_10_1021_acsmaterialslett_4c02423
PublicationCentury 2000
PublicationDate 2025-03-03
PublicationDateYYYYMMDD 2025-03-03
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-03
  day: 03
PublicationDecade 2020
PublicationTitle ACS materials letters
PublicationTitleAlternate ACS Materials Lett
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1021/acs.nanolett.9b05265
– ident: ref12/cit12
  doi: 10.1038/s41467-024-53010-0
– ident: ref23/cit23
  doi: 10.1021/acsmaterialslett.4c01891
– ident: ref20/cit20
  doi: 10.1021/jacs.8b07727
– ident: ref13/cit13
  doi: 10.1002/advs.202001308
– ident: ref14/cit14
  doi: 10.1021/acsmaterialslett.2c01043
– ident: ref17/cit17
  doi: 10.1016/j.biomaterials.2022.121795
– ident: ref19/cit19
  doi: 10.1007/s12032-020-01417-2
– ident: ref28/cit28
  doi: 10.1021/acs.chemrev.7b00568
– ident: ref39/cit39
  doi: 10.1002/smll.202406802
– ident: ref33/cit33
  doi: 10.1002/adfm.202104645
– ident: ref34/cit34
  doi: 10.1186/s12951-024-02839-0
– ident: ref4/cit4
  doi: 10.1016/j.mattod.2023.04.002
– ident: ref37/cit37
  doi: 10.1038/s41565-019-0626-4
– ident: ref21/cit21
  doi: 10.1002/anie.202411725
– ident: ref1/cit1
  doi: 10.1038/ni.3704
– ident: ref8/cit8
  doi: 10.1021/acsmaterialslett.3c01459
– ident: ref36/cit36
  doi: 10.1021/acs.chemrev.7b00042
– ident: ref22/cit22
  doi: 10.1016/j.apsb.2022.11.016
– ident: ref32/cit32
  doi: 10.1002/anie.202103721
– ident: ref6/cit6
  doi: 10.1002/adma.201700141
– ident: ref2/cit2
  doi: 10.1038/s41580-021-00415-0
– ident: ref11/cit11
  doi: 10.1021/acsmaterialslett.4c00661
– ident: ref30/cit30
  doi: 10.1016/j.biomaterials.2024.122743
– ident: ref40/cit40
  doi: 10.1038/nprot.2007.454
– ident: ref3/cit3
  doi: 10.1126/science.abd5491
– ident: ref31/cit31
  doi: 10.1016/j.carbpol.2020.116654
– ident: ref26/cit26
  doi: 10.2174/0929867323666160727105101
– ident: ref35/cit35
  doi: 10.1016/j.biomaterials.2018.12.027
– ident: ref16/cit16
  doi: 10.1038/s41392-024-01839-8
– ident: ref9/cit9
  doi: 10.1016/j.biomaterials.2021.120970
– ident: ref27/cit27
  doi: 10.1016/j.nantod.2023.101886
– ident: ref29/cit29
  doi: 10.1021/acsmaterialslett.3c00676
– ident: ref25/cit25
  doi: 10.1016/j.bioactmat.2021.09.035
– ident: ref7/cit7
  doi: 10.1016/j.ccr.2006.08.015
– ident: ref5/cit5
  doi: 10.1016/j.ccr.2022.214818
– ident: ref24/cit24
  doi: 10.1021/acsmaterialslett.2c01024
– ident: ref38/cit38
  doi: 10.1016/j.biomaterials.2021.121078
– ident: ref10/cit10
  doi: 10.1002/adma.201904914
– ident: ref15/cit15
  doi: 10.1021/acsmaterialslett.3c00177
SSID ssj0002161944
Score 2.2846923
Snippet Immunogenic cell death (ICD) induced by intracellular oxidation–reduction homeostasis imbalance is a classic mechanism in cancer immunotherapy. Herein, we...
SourceID crossref
acs
SourceType Index Database
Publisher
StartPage 730
Title The Tripartite Cascade Strategy Amplifies Cellular Oxidative Stress to Disrupt Oxidation–Reduction Homeostasis for Tumor Immunogenic Cell Death
URI http://dx.doi.org/10.1021/acsmaterialslett.4c02423
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58XPTgW3yzB6-p7iOvY6mKClXQFnoL2UegWJNiUlAP4l8Q_6G_xJkklaKo9JAlkGST7E52vsnMfEPIofQk860OHMsMdyTTsQMoRDgqkDLxQmv9MsO7feWdd-Vlz-3NEP6LB5-zo1jngN2q6YBXKRpSo14Rs2See4GPBlezdfv1X4UztMvRmcw9URZQC-sAnr86Q92k8wndNKFkzparxL-85CbE2JK7xqhQDf38k7lxiudfIUs15qTNSkhWyYxN18jiBBPhOnkDcaEdWEBQkgpLW3GOgfO0Jq99ok2MPE_ArKYtOxhg7Cq9fuybkjYcz4IFkxYZPennD6NhMT6WpR-v7zfIDov7FGuyZwBH835OASzTzuge2gtMUclAkPu67JyeICzdIN2z007r3KmrNTgxmHCF4xtjQnmsY6GlYSAbQhmbJApTNK3PYQuV4iJxtQ2Rpi4RPktsAPhTC4CtRmySuTRL7RahwoKdZI0XetaVfhwrlgCuVIBdXePG0mwTB0Y1qr-2PCod6ZxF34c6qod6m7DxvEbDisTj32t2przHLlngWBoYw9PEHpkrHkZ2H_BKoQ5KAYW2_XL6CcQ48Fk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN5oPagH38a3e_BKddkFyrFpbVqfibaJ8ULYB0mjFiOQqCf_gvEf-kucobSSHjR6gBAewz6GnW_Y2W8IORCuYJ5RNcswbVuCqdACFMItWRMicn1jvHyF9_mF2-6JkxvnppTqCwqRgKQkn8T_Zhdgh3AOINywV6BGaVUoNC98mswAJrHR76o3rse_V2yG7jnOKdsuz_Oo-UUcz0_C0ESppGSiSramtUhux6XMQ0zuqlkqq-p1gsDxX9VYIgsFAqX1ocoskykzWCHzJV7CVfIOykO7MJygXqWGNsIEw-hpQWX7QusYhx6Bk00b5v4eI1np5XNf5yTieBcMnzSNabOfPGWP6ehaPPh8-7hCrlg8ppihPQZwmvQTCtCZdrMH2HdwwUoMat1XuXDaRJC6Rnqt426jbRW5G6wQHLrU8rTWvjhSIVdCM9AULrWJIokLNo1nw-ZLafPIUcZH0rqIeywyNUCjigOI1XydVAbxwGwQyg14TUa7vmsc4YWhZBGgTAlI1tFOKPQmsaBVg-LbS4J8Wt1mwWRTB0VTbxI26t7gcUjp8eszW398xz6ZbXfPz4KzzsXpNpmzMWkwBq7xHVJJnzKzC0gmlXu5zn4BrlL3iQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60gujBt_h2D15T3ewmaY6ltVjfaAVvIfuCYm2KSUE9-RfEf-gvcWYbpXhQ9JAQ8tjsY7LzTXbmG0L2RChYZFTNM0z7nmAq9QCFcE_WhLBhbEzkIrzPzsOjG3F8G9yWvjkYCwOVyKGk3C3i41c90LZkGGD7cB5g3GhkoFVFVShUMXySTOHqHdpe9cb11y8Wn6GJjuvKfshdLrW49OX5qTBUUyofU1Nj-qY1P0qq6mrq3EzuqsNCVtXzNxLHfzdlgcyVSJTWR6KzSCZMf4nMjvETLpNXECLagWkF5aswtJHm6E5PS0rbJ1pHf3QLxjZtmF4PPVrpxWNXOzJxvAumUVpktNnNH4aD4vNa1n9_ebtCzlg8ppipPQOQmndzChCadob3sG9j4EoG4t1VrnDaRLC6Qm5ah53GkVfmcPBSMOwKL9Jax-JApVwJzUBiuNTGWomBmybyYYul9LkNlImRvM7yiFlTA1SqOIBZzVdJpZ_1zRqh3ID1ZHQYhyYQUZpKZgFtSkC0gQ5SodeJB72alN9gnrjldZ8l37s6Kbt6nbDPIU4GI2qPX5_Z-OM7dsn0ZbOVnLbPTzbJjI-5g9F_jW-RSvEwNNsAaAq548T2A204-gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Tripartite+Cascade+Strategy+Amplifies+Cellular+Oxidative+Stress+to+Disrupt+Oxidation%E2%80%93Reduction+Homeostasis+for+Tumor+Immunogenic+Cell+Death&rft.jtitle=ACS+materials+letters&rft.au=Jiang%2C+Lingdong&rft.au=Chen%2C+Xiaojia&rft.au=Gu%2C+Yuqing&rft.au=Deng%2C+Fuan&rft.date=2025-03-03&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=7&rft.issue=3&rft.spage=730&rft.epage=740&rft_id=info:doi/10.1021%2Facsmaterialslett.4c02423&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmaterialslett_4c02423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon