LLM-based and Retrieval-Augmented Control Code Generation
Control code is designed and implemented for industrial automation applications that manage power plants, petrochemical processes, or steel production. Popular large language models (LLM) can synthesize low-level control code in the Structured Text programming notation according to the standard IEC...
Saved in:
Published in | 2024 IEEE/ACM International Workshop on Large Language Models for Code (LLM4Code) pp. 22 - 29 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
ACM
20.04.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1145/3643795.3648384 |
Cover
Abstract | Control code is designed and implemented for industrial automation applications that manage power plants, petrochemical processes, or steel production. Popular large language models (LLM) can synthesize low-level control code in the Structured Text programming notation according to the standard IEC 61131-3, but are not aware of proprietary control code function block libraries, which are often used in practice. To automate control logic implementation tasks, we proposed a retrieval-augmented control code generation method that can integrate such function blocks into the generated code. With this method control engineers can benefit from the code generation capabilities of LLMs, re-use proprietary and well-tested function blocks, and speed up typical programming tasks significantly. We have evaluated the method using a prototypical implementation based on GPT-4, LangChain, Open-PLC, and the open-source OSCAT function block library. In several spot sample tests, we successfully generated IEC 61131-3 ST code that integrated the desired function blocks, could be compiled, and validated through simulations.CCS CONCEPTS* Software and its engineering Automatic programming; Command and control languages; * Applied computing → Computer-aided design; * Computing methodologies → Natural language processing. |
---|---|
AbstractList | Control code is designed and implemented for industrial automation applications that manage power plants, petrochemical processes, or steel production. Popular large language models (LLM) can synthesize low-level control code in the Structured Text programming notation according to the standard IEC 61131-3, but are not aware of proprietary control code function block libraries, which are often used in practice. To automate control logic implementation tasks, we proposed a retrieval-augmented control code generation method that can integrate such function blocks into the generated code. With this method control engineers can benefit from the code generation capabilities of LLMs, re-use proprietary and well-tested function blocks, and speed up typical programming tasks significantly. We have evaluated the method using a prototypical implementation based on GPT-4, LangChain, Open-PLC, and the open-source OSCAT function block library. In several spot sample tests, we successfully generated IEC 61131-3 ST code that integrated the desired function blocks, could be compiled, and validated through simulations.CCS CONCEPTS* Software and its engineering Automatic programming; Command and control languages; * Applied computing → Computer-aided design; * Computing methodologies → Natural language processing. |
Author | Koziolek, Heiko Linsbauer, Sofia Eskandani, Nafise Hark, Rhaban Gruner, Sten Ashiwal, Virendra |
Author_xml | – sequence: 1 givenname: Heiko surname: Koziolek fullname: Koziolek, Heiko email: heiko.koziolek@de.abb.com organization: ABB Corporate Research,Germany – sequence: 2 givenname: Sten surname: Gruner fullname: Gruner, Sten email: sten.gruner@de.abb.com organization: ABB Corporate Research,Germany – sequence: 3 givenname: Rhaban surname: Hark fullname: Hark, Rhaban email: rhaban.hark@de.abb.com organization: ABB Corporate Research,Germany – sequence: 4 givenname: Virendra surname: Ashiwal fullname: Ashiwal, Virendra email: virendra.ashiwal@de.abb.com organization: ABB Corporate Research,Germany – sequence: 5 givenname: Sofia surname: Linsbauer fullname: Linsbauer, Sofia email: sofia.linsbauer@de.abb.com organization: ABB Corporate Research,Germany – sequence: 6 givenname: Nafise surname: Eskandani fullname: Eskandani, Nafise email: nafise.eskandani@de.abb.com organization: ABB Corporate Research,Germany |
BookMark | eNotzEFLxDAQBeAICurasxcP_QNdk06ymTkuRXeFirCs52VCJlLoptJWwX9vQU_fe-_wbtVlHrIodW_02hjrHmFjwZNbLyKgvVAFeUKrtdfOE1yrYpq6sOTabTTUN4ra9rUKPEksOcfyIPPYyTf31fbr4yx5XvZmyPM49ItRyp1kGXnuhnynrhL3kxT_rtT789Ox2Vft2-6l2bYV1xbnKhGyA0EfUgjJkRdjEkPwmqCOUqOnZCBqZsfISIhoIpCh5OxSIqzUw99vJyKnz7E78_hzMtqDtYDwC1HSRmg |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1145/3643795.3648384 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798400705793 |
EndPage | 29 |
ExternalDocumentID | 10734438 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK LHSKQ RIE RIL |
ID | FETCH-LOGICAL-a248t-f98a53e87bfbbf597e11fa3b70932de2879f13d0aa5a8a898881d3919f54988d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 03:01:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a248t-f98a53e87bfbbf597e11fa3b70932de2879f13d0aa5a8a898881d3919f54988d3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10734438 |
PublicationCentury | 2000 |
PublicationDate | 2024-April-20 |
PublicationDateYYYYMMDD | 2024-04-20 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE/ACM International Workshop on Large Language Models for Code (LLM4Code) |
PublicationTitleAbbrev | LLM4CODE |
PublicationYear | 2024 |
Publisher | ACM |
Publisher_xml | – name: ACM |
SSID | ssib057256032 |
Score | 2.0251205 |
Snippet | Control code is designed and implemented for industrial automation applications that manage power plants, petrochemical processes, or steel production. Popular... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 22 |
SubjectTerms | Automation ChatGPT code generation Codes DCS GPT-4 IEC 61131-3 IEC Standards industrial automation Large language models Libraries Logic PLC Process control Programming environments Testing Vectors |
Title | LLM-based and Retrieval-Augmented Control Code Generation |
URI | https://ieeexplore.ieee.org/document/10734438 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qrvhmD16zbnayTXKUYinSFhELvZU8Jh6ErcjuxV9vkm0tCIKnhFzymAlfJjPzDSF3UoNywkmKZSTVltxT442gmnvrA0ALm0hc54vRdMmfVvVqm6yecmEQMQWfYRG7yZfvNraLX2XhhgvgHOSADIKe9claO-WpRQRvqLb0PYzX9xCdUqouQish0Zfu66ck-JgckcVu4j5q5L3oWlPYr1-cjP9e2THJ9pl6-fMPBp2QA2xOiZrN5jTCk8t14_KXVDQraBR96N4SB6fLx32Eemgd5j31dJRQRpaTx9fxlG5LJFBdcdlSr6SuAaUIB2x8MA6QMa_BiDK8yxwGc0h5Bq7UutZSSxXsXeZAMeWDXSilgzMybDYNnpMcUEgwzCIwy32sQjwSRnHnmBeVsfqCZHHf64-eBWO92_LlH-NX5LAKD4DoeanKazJsPzu8CQDemtskuG9GAZph |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbPXjNutkkTXKUYqm6LSIt9Fby9CCsIrsXf72TbGtBEDwl5JJMHnwzmZlvELqRmionnMS-iKTakgVsghFYs2ADALSwicR1Mh2M5-xxwRerZPWUC-O9T8FnPo_d5Mt377aNX2XwwgVljMpttAPAz3iXrrW-PlxE-KblisCHMH5Lo1tK8RxaSROB6aaCSgKQ0T6arqfu4kbe8rYxuf36xcr477UdoP4mVy97_kGhQ7Tl6yOkqmqCI0C5TNcue0lls-BO4bv2NbFwumzYxahD63zWkU_HM-qj-eh-NhzjVZEErEsmGxyU1Jx6KWCLTQDzwBMSNDWiAM3MeTCIVCDUFVpzLbVUYPESRxVRASxDKR09Rr36vfYnKKNeSGqI9ZRYFmId4oEwijlHgiiN1aeoH-VefnQ8GMu1yGd_jF-j3fFsUi2rh-nTOdorQR2IfpiyuEC95rP1lwDnjblKh_gNkBudrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE%2FACM+International+Workshop+on+Large+Language+Models+for+Code+%28LLM4Code%29&rft.atitle=LLM-based+and+Retrieval-Augmented+Control+Code+Generation&rft.au=Koziolek%2C+Heiko&rft.au=Gruner%2C+Sten&rft.au=Hark%2C+Rhaban&rft.au=Ashiwal%2C+Virendra&rft.date=2024-04-20&rft.pub=ACM&rft.spage=22&rft.epage=29&rft_id=info:doi/10.1145%2F3643795.3648384&rft.externalDocID=10734438 |