LLM-based and Retrieval-Augmented Control Code Generation

Control code is designed and implemented for industrial automation applications that manage power plants, petrochemical processes, or steel production. Popular large language models (LLM) can synthesize low-level control code in the Structured Text programming notation according to the standard IEC...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE/ACM International Workshop on Large Language Models for Code (LLM4Code) pp. 22 - 29
Main Authors Koziolek, Heiko, Gruner, Sten, Hark, Rhaban, Ashiwal, Virendra, Linsbauer, Sofia, Eskandani, Nafise
Format Conference Proceeding
LanguageEnglish
Published ACM 20.04.2024
Subjects
Online AccessGet full text
DOI10.1145/3643795.3648384

Cover

Abstract Control code is designed and implemented for industrial automation applications that manage power plants, petrochemical processes, or steel production. Popular large language models (LLM) can synthesize low-level control code in the Structured Text programming notation according to the standard IEC 61131-3, but are not aware of proprietary control code function block libraries, which are often used in practice. To automate control logic implementation tasks, we proposed a retrieval-augmented control code generation method that can integrate such function blocks into the generated code. With this method control engineers can benefit from the code generation capabilities of LLMs, re-use proprietary and well-tested function blocks, and speed up typical programming tasks significantly. We have evaluated the method using a prototypical implementation based on GPT-4, LangChain, Open-PLC, and the open-source OSCAT function block library. In several spot sample tests, we successfully generated IEC 61131-3 ST code that integrated the desired function blocks, could be compiled, and validated through simulations.CCS CONCEPTS* Software and its engineering Automatic programming; Command and control languages; * Applied computing → Computer-aided design; * Computing methodologies → Natural language processing.
AbstractList Control code is designed and implemented for industrial automation applications that manage power plants, petrochemical processes, or steel production. Popular large language models (LLM) can synthesize low-level control code in the Structured Text programming notation according to the standard IEC 61131-3, but are not aware of proprietary control code function block libraries, which are often used in practice. To automate control logic implementation tasks, we proposed a retrieval-augmented control code generation method that can integrate such function blocks into the generated code. With this method control engineers can benefit from the code generation capabilities of LLMs, re-use proprietary and well-tested function blocks, and speed up typical programming tasks significantly. We have evaluated the method using a prototypical implementation based on GPT-4, LangChain, Open-PLC, and the open-source OSCAT function block library. In several spot sample tests, we successfully generated IEC 61131-3 ST code that integrated the desired function blocks, could be compiled, and validated through simulations.CCS CONCEPTS* Software and its engineering Automatic programming; Command and control languages; * Applied computing → Computer-aided design; * Computing methodologies → Natural language processing.
Author Koziolek, Heiko
Linsbauer, Sofia
Eskandani, Nafise
Hark, Rhaban
Gruner, Sten
Ashiwal, Virendra
Author_xml – sequence: 1
  givenname: Heiko
  surname: Koziolek
  fullname: Koziolek, Heiko
  email: heiko.koziolek@de.abb.com
  organization: ABB Corporate Research,Germany
– sequence: 2
  givenname: Sten
  surname: Gruner
  fullname: Gruner, Sten
  email: sten.gruner@de.abb.com
  organization: ABB Corporate Research,Germany
– sequence: 3
  givenname: Rhaban
  surname: Hark
  fullname: Hark, Rhaban
  email: rhaban.hark@de.abb.com
  organization: ABB Corporate Research,Germany
– sequence: 4
  givenname: Virendra
  surname: Ashiwal
  fullname: Ashiwal, Virendra
  email: virendra.ashiwal@de.abb.com
  organization: ABB Corporate Research,Germany
– sequence: 5
  givenname: Sofia
  surname: Linsbauer
  fullname: Linsbauer, Sofia
  email: sofia.linsbauer@de.abb.com
  organization: ABB Corporate Research,Germany
– sequence: 6
  givenname: Nafise
  surname: Eskandani
  fullname: Eskandani, Nafise
  email: nafise.eskandani@de.abb.com
  organization: ABB Corporate Research,Germany
BookMark eNotzEFLxDAQBeAICurasxcP_QNdk06ymTkuRXeFirCs52VCJlLoptJWwX9vQU_fe-_wbtVlHrIodW_02hjrHmFjwZNbLyKgvVAFeUKrtdfOE1yrYpq6sOTabTTUN4ra9rUKPEksOcfyIPPYyTf31fbr4yx5XvZmyPM49ItRyp1kGXnuhnynrhL3kxT_rtT789Ox2Vft2-6l2bYV1xbnKhGyA0EfUgjJkRdjEkPwmqCOUqOnZCBqZsfISIhoIpCh5OxSIqzUw99vJyKnz7E78_hzMtqDtYDwC1HSRmg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3643795.3648384
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798400705793
EndPage 29
ExternalDocumentID 10734438
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a248t-f98a53e87bfbbf597e11fa3b70932de2879f13d0aa5a8a898881d3919f54988d3
IEDL.DBID RIE
IngestDate Wed Aug 27 03:01:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-f98a53e87bfbbf597e11fa3b70932de2879f13d0aa5a8a898881d3919f54988d3
PageCount 8
ParticipantIDs ieee_primary_10734438
PublicationCentury 2000
PublicationDate 2024-April-20
PublicationDateYYYYMMDD 2024-04-20
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-20
  day: 20
PublicationDecade 2020
PublicationTitle 2024 IEEE/ACM International Workshop on Large Language Models for Code (LLM4Code)
PublicationTitleAbbrev LLM4CODE
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib057256032
Score 2.0251205
Snippet Control code is designed and implemented for industrial automation applications that manage power plants, petrochemical processes, or steel production. Popular...
SourceID ieee
SourceType Publisher
StartPage 22
SubjectTerms Automation
ChatGPT
code generation
Codes
DCS
GPT-4
IEC 61131-3
IEC Standards
industrial automation
Large language models
Libraries
Logic
PLC
Process control
Programming environments
Testing
Vectors
Title LLM-based and Retrieval-Augmented Control Code Generation
URI https://ieeexplore.ieee.org/document/10734438
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qrvhmD16zbnayTXKUYinSFhELvZU8Jh6ErcjuxV9vkm0tCIKnhFzymAlfJjPzDSF3UoNywkmKZSTVltxT442gmnvrA0ALm0hc54vRdMmfVvVqm6yecmEQMQWfYRG7yZfvNraLX2XhhgvgHOSADIKe9claO-WpRQRvqLb0PYzX9xCdUqouQish0Zfu66ck-JgckcVu4j5q5L3oWlPYr1-cjP9e2THJ9pl6-fMPBp2QA2xOiZrN5jTCk8t14_KXVDQraBR96N4SB6fLx32Eemgd5j31dJRQRpaTx9fxlG5LJFBdcdlSr6SuAaUIB2x8MA6QMa_BiDK8yxwGc0h5Bq7UutZSSxXsXeZAMeWDXSilgzMybDYNnpMcUEgwzCIwy32sQjwSRnHnmBeVsfqCZHHf64-eBWO92_LlH-NX5LAKD4DoeanKazJsPzu8CQDemtskuG9GAZph
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbPXjNutkkTXKUYqm6LSIt9Fby9CCsIrsXf72TbGtBEDwl5JJMHnwzmZlvELqRmionnMS-iKTakgVsghFYs2ADALSwicR1Mh2M5-xxwRerZPWUC-O9T8FnPo_d5Mt377aNX2XwwgVljMpttAPAz3iXrrW-PlxE-KblisCHMH5Lo1tK8RxaSROB6aaCSgKQ0T6arqfu4kbe8rYxuf36xcr477UdoP4mVy97_kGhQ7Tl6yOkqmqCI0C5TNcue0lls-BO4bv2NbFwumzYxahD63zWkU_HM-qj-eh-NhzjVZEErEsmGxyU1Jx6KWCLTQDzwBMSNDWiAM3MeTCIVCDUFVpzLbVUYPESRxVRASxDKR09Rr36vfYnKKNeSGqI9ZRYFmId4oEwijlHgiiN1aeoH-VefnQ8GMu1yGd_jF-j3fFsUi2rh-nTOdorQR2IfpiyuEC95rP1lwDnjblKh_gNkBudrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE%2FACM+International+Workshop+on+Large+Language+Models+for+Code+%28LLM4Code%29&rft.atitle=LLM-based+and+Retrieval-Augmented+Control+Code+Generation&rft.au=Koziolek%2C+Heiko&rft.au=Gruner%2C+Sten&rft.au=Hark%2C+Rhaban&rft.au=Ashiwal%2C+Virendra&rft.date=2024-04-20&rft.pub=ACM&rft.spage=22&rft.epage=29&rft_id=info:doi/10.1145%2F3643795.3648384&rft.externalDocID=10734438