Privacy and Copyright Protection in Generative AI: A Lifecycle Perspective

The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE/ACM 3rd International Conference on AI Engineering – Software Engineering for AI (CAIN) pp. 92 - 97
Main Authors Zhang, Dawen, Xia, Boming, Liu, Yue, Xu, Xiwei, Hoang, Thong, Xing, Zhenchang, Staples, Mark, Lu, Qinghua, Zhu, Liming
Format Conference Proceeding
LanguageEnglish
Published ACM 14.04.2024
Subjects
Online AccessGet full text
DOI10.1145/3644815.3644952

Cover

Abstract The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily due to the reliance on vast datasets for model training. Traditional approaches like differential privacy, machine unlearning, and data poisoning only offer fragmented solutions to these complex issues. Our paper delves into the multifaceted challenges of privacy and copyright protection within the data lifecycle. We advocate for integrated approaches that combines technical innovation with ethical foresight, holistically addressing these concerns by investigating and devising solutions that are informed by the lifecycle perspective. This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.CCS CONCEPTS* Software and its engineering Software architectures; * Information systems World Wide Web; * Security and privacy Privacy protections; * Social and professional topics Copyrights; * Computing methodologies Machine learning.
AbstractList The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily due to the reliance on vast datasets for model training. Traditional approaches like differential privacy, machine unlearning, and data poisoning only offer fragmented solutions to these complex issues. Our paper delves into the multifaceted challenges of privacy and copyright protection within the data lifecycle. We advocate for integrated approaches that combines technical innovation with ethical foresight, holistically addressing these concerns by investigating and devising solutions that are informed by the lifecycle perspective. This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.CCS CONCEPTS* Software and its engineering Software architectures; * Information systems World Wide Web; * Security and privacy Privacy protections; * Social and professional topics Copyrights; * Computing methodologies Machine learning.
Author Xia, Boming
Lu, Qinghua
Zhu, Liming
Liu, Yue
Zhang, Dawen
Staples, Mark
Xing, Zhenchang
Xu, Xiwei
Hoang, Thong
Author_xml – sequence: 1
  givenname: Dawen
  surname: Zhang
  fullname: Zhang, Dawen
  email: Dawen.Zhang@data61.csiro.au
  organization: CSIRO's Data61,Australia
– sequence: 2
  givenname: Boming
  surname: Xia
  fullname: Xia, Boming
  email: Boming.Xia@data61.csiro.au
  organization: CSIRO's Data61,Australia
– sequence: 3
  givenname: Yue
  surname: Liu
  fullname: Liu, Yue
  email: Yue.Liu@data61.csiro.au
  organization: CSIRO's Data61,Australia
– sequence: 4
  givenname: Xiwei
  surname: Xu
  fullname: Xu, Xiwei
  email: Xiwei.Xu@data61.csiro.au
  organization: CSIRO's Data61,Australia
– sequence: 5
  givenname: Thong
  surname: Hoang
  fullname: Hoang, Thong
  email: James.Hoang@data61.csiro.au
  organization: CSIRO's Data61,Australia
– sequence: 6
  givenname: Zhenchang
  surname: Xing
  fullname: Xing, Zhenchang
  email: Zhenchang.Xing@data61.csiro.au
  organization: CSIRO's Data61,Australia
– sequence: 7
  givenname: Mark
  surname: Staples
  fullname: Staples, Mark
  email: Mark.Staples@data61.csiro.au
  organization: CSIRO's Data61,Australia
– sequence: 8
  givenname: Qinghua
  surname: Lu
  fullname: Lu, Qinghua
  email: Qinghua.Lu@data61.csiro.au
  organization: CSIRO's Data61,Australia
– sequence: 9
  givenname: Liming
  surname: Zhu
  fullname: Zhu, Liming
  email: Liming.Zhu@data61.csiro.au
  organization: CSIRO's Data61,Australia
BookMark eNotj8FKxDAUACMoqGvPXjzkB7rmNUmbeCtF15WCPeh5SZMXDaxpSUuhf6-Le5rLMDC35DIOEQm5B7YFEPKRl0IokNsTtSwuSKYrrQRjFZMa5DXJpin0TEolFOf6hrx1KSzGrtRER5thXFP4-p5pl4YZ7RyGSEOkO4yYzBwWpPX-ida0DR7tao9IO0zTeDIXvCNX3hwnzM7ckM-X54_mNW_fd_umbnNTCDXn6KwoCmHQgzS8csZZDc57x0ujHC-sB6UADQeOJe8r5ZmQgmnTKwGls3xDHv67AREPYwo_Jq0H-JsqgUv-C3JCTXw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3644815.3644952
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798400705915
EndPage 97
ExternalDocumentID 10556135
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a248t-edc4224aef15a37dadc91dffd36a8d32cf1881ea313e63b78f045409ab8416dc3
IEDL.DBID RIE
IngestDate Thu May 08 06:04:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-edc4224aef15a37dadc91dffd36a8d32cf1881ea313e63b78f045409ab8416dc3
PageCount 6
ParticipantIDs ieee_primary_10556135
PublicationCentury 2000
PublicationDate 2024-April-14
PublicationDateYYYYMMDD 2024-04-14
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-14
  day: 14
PublicationDecade 2020
PublicationTitle 2024 IEEE/ACM 3rd International Conference on AI Engineering – Software Engineering for AI (CAIN)
PublicationTitleAbbrev CAIN
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib055848339
Score 1.963917
Snippet The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic...
SourceID ieee
SourceType Publisher
StartPage 92
SubjectTerms Copyright protection
Copyrights
Data Lifecycle
Data privacy
Generative AI
Privacy
Software
Software architecture
Software Engineering for AI
Technological innovation
Training
Title Privacy and Copyright Protection in Generative AI: A Lifecycle Perspective
URI https://ieeexplore.ieee.org/document/10556135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7bkSZZE29jOObQsYOD3UaavMAQujE6of715qWbE0EQAg2l0JA88r3kve97hDzY4GMYhtlTXphEKCES7USWGOM9FDoAmEOi8OukN5qJ8VzOd2T1yIUBgJh8Bil2YyzfrewWr8q6TTFHLlukFeysIWvtjUcGJFWc6518DxOyy_HswWSKT43Moh_1UyJ8DE_IZP_jJmvkPd1WRWo_f2ky_ntkp6RzYOrR6TcGnZEjKM_JeLpZfhhbU1M6Olit63gCx--qmHhV0mVJG71p3Oxo__mR9unL0oOtgxXR6YGA2SGz4dPbYJTsaiYkJhOqSsBZEVDZgGfS8NwZZzVz3jveM8rxzHqmFAPDGYceL3LlowafNgXGH53lF6Rdrkq4JDQ4R17kkFvUb7FOh51Qh1aAREz39op0cCIW60YWY7Gfg-s_3t-Q4yx4BBiKYeKWtKvNFu4ColfFfVzJL8aEoZs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NawIxEA39OLSnttTS7-bQ665kk7ib3kQqalU8KHiTbDIBKawia8H--mayWkuhUAgkhECWJORNdua9IeTZeBtDM4yeckJHIhMiUlYkkdbOQa48gFkkCg-Gjc5E9KZyuiWrBy4MAITgM4ixGXz5dmHW-KusXiVz5PKQHHvgF7Kia-2Oj_RYmnGutgI-TMg6x9cHkzHWCrlFPzKoBABpn5HhbuoqbuQ9Xpd5bD5_qTL--9vOSW3P1aOjbxS6IAdQXJLeaDX_0GZDdWFpa7HchDc4jitD6FVB5wWtFKfxuqPN7gtt0v7cgdn4c0RHewpmjUzar-NWJ9pmTYh0IrIyAmuEx2UNjknNU6utUcw6Z3lDZ5YnxrEsY6A549DgeZq5oMKndI4eSGv4FTkqFgVcE-rNIydSSA0quBir_F2ofMlBIqo7c0NquBCzZSWMMdutwe0f_U_kpDMe9Gf97vDtjpwm3j5AxwwT9-SoXK3hweN7mT-GXf0Cbayk6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE%2FACM+3rd+International+Conference+on+AI+Engineering+%E2%80%93+Software+Engineering+for+AI+%28CAIN%29&rft.atitle=Privacy+and+Copyright+Protection+in+Generative+AI%3A+A+Lifecycle+Perspective&rft.au=Zhang%2C+Dawen&rft.au=Xia%2C+Boming&rft.au=Liu%2C+Yue&rft.au=Xu%2C+Xiwei&rft.date=2024-04-14&rft.pub=ACM&rft.spage=92&rft.epage=97&rft_id=info:doi/10.1145%2F3644815.3644952&rft.externalDocID=10556135