Privacy and Copyright Protection in Generative AI: A Lifecycle Perspective
The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily...
Saved in:
Published in | 2024 IEEE/ACM 3rd International Conference on AI Engineering – Software Engineering for AI (CAIN) pp. 92 - 97 |
---|---|
Main Authors | , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
ACM
14.04.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1145/3644815.3644952 |
Cover
Abstract | The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily due to the reliance on vast datasets for model training. Traditional approaches like differential privacy, machine unlearning, and data poisoning only offer fragmented solutions to these complex issues. Our paper delves into the multifaceted challenges of privacy and copyright protection within the data lifecycle. We advocate for integrated approaches that combines technical innovation with ethical foresight, holistically addressing these concerns by investigating and devising solutions that are informed by the lifecycle perspective. This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.CCS CONCEPTS* Software and its engineering Software architectures; * Information systems World Wide Web; * Security and privacy Privacy protections; * Social and professional topics Copyrights; * Computing methodologies Machine learning. |
---|---|
AbstractList | The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily due to the reliance on vast datasets for model training. Traditional approaches like differential privacy, machine unlearning, and data poisoning only offer fragmented solutions to these complex issues. Our paper delves into the multifaceted challenges of privacy and copyright protection within the data lifecycle. We advocate for integrated approaches that combines technical innovation with ethical foresight, holistically addressing these concerns by investigating and devising solutions that are informed by the lifecycle perspective. This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.CCS CONCEPTS* Software and its engineering Software architectures; * Information systems World Wide Web; * Security and privacy Privacy protections; * Social and professional topics Copyrights; * Computing methodologies Machine learning. |
Author | Xia, Boming Lu, Qinghua Zhu, Liming Liu, Yue Zhang, Dawen Staples, Mark Xing, Zhenchang Xu, Xiwei Hoang, Thong |
Author_xml | – sequence: 1 givenname: Dawen surname: Zhang fullname: Zhang, Dawen email: Dawen.Zhang@data61.csiro.au organization: CSIRO's Data61,Australia – sequence: 2 givenname: Boming surname: Xia fullname: Xia, Boming email: Boming.Xia@data61.csiro.au organization: CSIRO's Data61,Australia – sequence: 3 givenname: Yue surname: Liu fullname: Liu, Yue email: Yue.Liu@data61.csiro.au organization: CSIRO's Data61,Australia – sequence: 4 givenname: Xiwei surname: Xu fullname: Xu, Xiwei email: Xiwei.Xu@data61.csiro.au organization: CSIRO's Data61,Australia – sequence: 5 givenname: Thong surname: Hoang fullname: Hoang, Thong email: James.Hoang@data61.csiro.au organization: CSIRO's Data61,Australia – sequence: 6 givenname: Zhenchang surname: Xing fullname: Xing, Zhenchang email: Zhenchang.Xing@data61.csiro.au organization: CSIRO's Data61,Australia – sequence: 7 givenname: Mark surname: Staples fullname: Staples, Mark email: Mark.Staples@data61.csiro.au organization: CSIRO's Data61,Australia – sequence: 8 givenname: Qinghua surname: Lu fullname: Lu, Qinghua email: Qinghua.Lu@data61.csiro.au organization: CSIRO's Data61,Australia – sequence: 9 givenname: Liming surname: Zhu fullname: Zhu, Liming email: Liming.Zhu@data61.csiro.au organization: CSIRO's Data61,Australia |
BookMark | eNotj8FKxDAUACMoqGvPXjzkB7rmNUmbeCtF15WCPeh5SZMXDaxpSUuhf6-Le5rLMDC35DIOEQm5B7YFEPKRl0IokNsTtSwuSKYrrQRjFZMa5DXJpin0TEolFOf6hrx1KSzGrtRER5thXFP4-p5pl4YZ7RyGSEOkO4yYzBwWpPX-ida0DR7tao9IO0zTeDIXvCNX3hwnzM7ckM-X54_mNW_fd_umbnNTCDXn6KwoCmHQgzS8csZZDc57x0ujHC-sB6UADQeOJe8r5ZmQgmnTKwGls3xDHv67AREPYwo_Jq0H-JsqgUv-C3JCTXw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1145/3644815.3644952 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798400705915 |
EndPage | 97 |
ExternalDocumentID | 10556135 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK LHSKQ RIE RIL |
ID | FETCH-LOGICAL-a248t-edc4224aef15a37dadc91dffd36a8d32cf1881ea313e63b78f045409ab8416dc3 |
IEDL.DBID | RIE |
IngestDate | Thu May 08 06:04:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a248t-edc4224aef15a37dadc91dffd36a8d32cf1881ea313e63b78f045409ab8416dc3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10556135 |
PublicationCentury | 2000 |
PublicationDate | 2024-April-14 |
PublicationDateYYYYMMDD | 2024-04-14 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE/ACM 3rd International Conference on AI Engineering – Software Engineering for AI (CAIN) |
PublicationTitleAbbrev | CAIN |
PublicationYear | 2024 |
Publisher | ACM |
Publisher_xml | – name: ACM |
SSID | ssib055848339 |
Score | 1.963917 |
Snippet | The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 92 |
SubjectTerms | Copyright protection Copyrights Data Lifecycle Data privacy Generative AI Privacy Software Software architecture Software Engineering for AI Technological innovation Training |
Title | Privacy and Copyright Protection in Generative AI: A Lifecycle Perspective |
URI | https://ieeexplore.ieee.org/document/10556135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7bkSZZE29jOObQsYOD3UaavMAQujE6of715qWbE0EQAg2l0JA88r3kve97hDzY4GMYhtlTXphEKCES7USWGOM9FDoAmEOi8OukN5qJ8VzOd2T1yIUBgJh8Bil2YyzfrewWr8q6TTFHLlukFeysIWvtjUcGJFWc6518DxOyy_HswWSKT43Moh_1UyJ8DE_IZP_jJmvkPd1WRWo_f2ky_ntkp6RzYOrR6TcGnZEjKM_JeLpZfhhbU1M6Olit63gCx--qmHhV0mVJG71p3Oxo__mR9unL0oOtgxXR6YGA2SGz4dPbYJTsaiYkJhOqSsBZEVDZgGfS8NwZZzVz3jveM8rxzHqmFAPDGYceL3LlowafNgXGH53lF6Rdrkq4JDQ4R17kkFvUb7FOh51Qh1aAREz39op0cCIW60YWY7Gfg-s_3t-Q4yx4BBiKYeKWtKvNFu4ColfFfVzJL8aEoZs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NawIxEA39OLSnttTS7-bQ665kk7ib3kQqalU8KHiTbDIBKawia8H--mayWkuhUAgkhECWJORNdua9IeTZeBtDM4yeckJHIhMiUlYkkdbOQa48gFkkCg-Gjc5E9KZyuiWrBy4MAITgM4ixGXz5dmHW-KusXiVz5PKQHHvgF7Kia-2Oj_RYmnGutgI-TMg6x9cHkzHWCrlFPzKoBABpn5HhbuoqbuQ9Xpd5bD5_qTL--9vOSW3P1aOjbxS6IAdQXJLeaDX_0GZDdWFpa7HchDc4jitD6FVB5wWtFKfxuqPN7gtt0v7cgdn4c0RHewpmjUzar-NWJ9pmTYh0IrIyAmuEx2UNjknNU6utUcw6Z3lDZ5YnxrEsY6A549DgeZq5oMKndI4eSGv4FTkqFgVcE-rNIydSSA0quBir_F2ofMlBIqo7c0NquBCzZSWMMdutwe0f_U_kpDMe9Gf97vDtjpwm3j5AxwwT9-SoXK3hweN7mT-GXf0Cbayk6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE%2FACM+3rd+International+Conference+on+AI+Engineering+%E2%80%93+Software+Engineering+for+AI+%28CAIN%29&rft.atitle=Privacy+and+Copyright+Protection+in+Generative+AI%3A+A+Lifecycle+Perspective&rft.au=Zhang%2C+Dawen&rft.au=Xia%2C+Boming&rft.au=Liu%2C+Yue&rft.au=Xu%2C+Xiwei&rft.date=2024-04-14&rft.pub=ACM&rft.spage=92&rft.epage=97&rft_id=info:doi/10.1145%2F3644815.3644952&rft.externalDocID=10556135 |