Imperceptible Content Poisoning in LLM-Powered Applications
Large Language Models (LLMs) have shown their superior capability in natural language processing, promoting extensive LLM-powered applications to be the new portals for people to access various content on the Internet. However, LLM-powered applications do not have sufficient security considerations...
Saved in:
Published in | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] pp. 242 - 254 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
ACM
27.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2643-1572 |
DOI | 10.1145/3691620.3695001 |
Cover
Abstract | Large Language Models (LLMs) have shown their superior capability in natural language processing, promoting extensive LLM-powered applications to be the new portals for people to access various content on the Internet. However, LLM-powered applications do not have sufficient security considerations on untrusted content, leading to potential threats. In this paper, we reveal content poisoning, where attackers can tailor attack content that appears benign to humans but causes LLM-powered applications to generate malicious responses. To highlight the impact of content poisoning and inspire the development of effective defenses, we systematically analyze the attack, focusing on the attack modes in various content, exploitable design features of LLM application frameworks, and the generation of attack content. We carry out a comprehensive evaluation on five LLMs, where content poisoning achieves an average attack success rate of 89.60%. Additionally, we assess content poisoning on four popular LLM-powered applications, achieving the attack on 72.00% of the content. Our experimental results also show that existing defenses are ineffective against content poisoning. Finally, we discuss potential mitigations for LLM application frameworks to counter content poisoning.CCS CONCEPTS* Computing methodologies → Machine learning; * Security and privacy; |
---|---|
AbstractList | Large Language Models (LLMs) have shown their superior capability in natural language processing, promoting extensive LLM-powered applications to be the new portals for people to access various content on the Internet. However, LLM-powered applications do not have sufficient security considerations on untrusted content, leading to potential threats. In this paper, we reveal content poisoning, where attackers can tailor attack content that appears benign to humans but causes LLM-powered applications to generate malicious responses. To highlight the impact of content poisoning and inspire the development of effective defenses, we systematically analyze the attack, focusing on the attack modes in various content, exploitable design features of LLM application frameworks, and the generation of attack content. We carry out a comprehensive evaluation on five LLMs, where content poisoning achieves an average attack success rate of 89.60%. Additionally, we assess content poisoning on four popular LLM-powered applications, achieving the attack on 72.00% of the content. Our experimental results also show that existing defenses are ineffective against content poisoning. Finally, we discuss potential mitigations for LLM application frameworks to counter content poisoning.CCS CONCEPTS* Computing methodologies → Machine learning; * Security and privacy; |
Author | Shi, Heyuan Zhou, Chijin Xu, Zichen Zeng, Binqi Go, Gwihwan Zhang, Quan Jiang, Yu |
Author_xml | – sequence: 1 givenname: Quan surname: Zhang fullname: Zhang, Quan organization: Tsinghua University,Beijing,China – sequence: 2 givenname: Chijin surname: Zhou fullname: Zhou, Chijin organization: Tsinghua University,Beijing,China – sequence: 3 givenname: Gwihwan surname: Go fullname: Go, Gwihwan organization: Tsinghua University,Beijing,China – sequence: 4 givenname: Binqi surname: Zeng fullname: Zeng, Binqi organization: Central South University,Changsha,China – sequence: 5 givenname: Heyuan surname: Shi fullname: Shi, Heyuan organization: Central South University,Changsha,China – sequence: 6 givenname: Zichen surname: Xu fullname: Xu, Zichen organization: Nanchang University,Nanchang,China – sequence: 7 givenname: Yu surname: Jiang fullname: Jiang, Yu organization: Tsinghua University,Beijing,China |
BookMark | eNotjU9LwzAcQKMoOGfPXjz0C3Tml__B0yhOBxV30PNI0l8k0CWlLYjf3oGe3ju9d0uucslIyD3QDYCQj1xZUIxuzpSUwgWprLZGUKqBCaMvyYopwRuQmt2Qap6Tp2eVCkCtyNP-NOIUcFySH7BuS14wL_WhpLnklL_qlOuue2sO5Rsn7OvtOA4puCWVPN-R6-iGGat_rsnn7vmjfW2695d9u-0ad_4vjUVmBZMuSFA-xN4IERCt5iZEtN5HJ00PKIOTUdPYW2lYL7zkkXrhwfM1efjrJkQ8jlM6uennCFQrYS3nv5QmSr4 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1145/3691620.3695001 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798400712487 |
EISSN | 2643-1572 |
EndPage | 254 |
ExternalDocumentID | 10764993 |
Genre | orig-research |
GrantInformation_xml | – fundername: Research and Development funderid: 10.13039/100006190 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN 6J9 AAJGR AAWTH ABLEC ACREN ADYOE ADZIZ AFYQB ALMA_UNASSIGNED_HOLDINGS AMTXH BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-a248t-9e29425ac516bcfd844cee9738cfe9bbfa58d1e5ca5f70fd9582d4b53f0b4b1b3 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 15 06:20:43 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a248t-9e29425ac516bcfd844cee9738cfe9bbfa58d1e5ca5f70fd9582d4b53f0b4b1b3 |
PageCount | 13 |
ParticipantIDs | ieee_primary_10764993 |
PublicationCentury | 2000 |
PublicationDate | 2024-Oct.-27 |
PublicationDateYYYYMMDD | 2024-10-27 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] |
PublicationTitleAbbrev | ASE |
PublicationYear | 2024 |
Publisher | ACM |
Publisher_xml | – name: ACM |
SSID | ssib057256116 ssj0051577 |
Score | 2.2864428 |
Snippet | Large Language Models (LLMs) have shown their superior capability in natural language processing, promoting extensive LLM-powered applications to be the new... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 242 |
SubjectTerms | Content Poisoning Focusing Internet Large language models LLM Applications Machine learning Natural language processing Portals Prevention and mitigation Privacy Security Software engineering |
Title | Imperceptible Content Poisoning in LLM-Powered Applications |
URI | https://ieeexplore.ieee.org/document/10764993 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA22K1f1UfFNFm5TZ_IOrkQsVdrShYXuSjK5AVGmItONX28yDxVBcFbDwAyXTO6ck8k99yB0peOSQpjMEkpBEy4YJZZZIJypEJwFk_ukHZ7N5WTJH1di1YrVay0MANTFZzBKp_Vevt8U2_SrLGa4kpGhsx7qxXnWiLW6ySNUBO88cZ3mMxxxWqm2l0_OxTWTkQjRuEaVRmTJAuaHmUqNJeMBmndRNCUkL6Nt5UbFx68Gjf8Ocw8Nv2V7ePEFSPtoB8oDNOh8G3Cbxofo5iFy5aaexb0CrhtUlRVebFJlUbwTP5d4Op2RRXJQA49vf2xyD9FyfP90NyGtiQKxlOuKGKAm5qUtRC5dEbzmPIZhFNNFAONcsEL7HERhRVBZ8EZo6rkTLGSOu9yxI9QvNyUcI5yoBsu85fHJ3CnrQLICtLTxMDK4EzRMg7F-a_pkrLtxOP3j-hnapZEiJCSg6hz1q_ctXESIr9xl_Wo_Aai1phQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H_RpXibe7YOvmW0uTYJPIo5Nu7GHDfY2kuYEROlEuhd_vUkvOgTBPpVCyyHp6felOd_5ELqRfknBVawxISAx45RgTTVgRoVzRoNKbNAOjyfpcM6eFnzRiNUrLQwAVMVn0A-n1V6-XeXr8KvMZ7hIPUOn22jHAz_jtVyrfX248PCdBLZTf4g9UgvRdPNJGL-lqadCxK9SU8XjYAKzYadSocmgiyZtHHURyWt_XZp-_vmrReO_A91HvR_hXjT9hqQDtAXFIeq2zg1Rk8hH6G7k2XJd0WLeIKpaVBVlNF2F2iJ_Z_RSRFk2xtPgoQY2ut_Y5u6h-eBx9jDEjY0C1oTJEisgymemznmSmtxZyZgPQwkqcwfKGKe5tAnwXHMnYmcVl8Qyw6mLDTOJoceoU6wKOEFRIBs0tpr5JzMjtIGU5iBT7Q-VOnOKemEwlu91p4xlOw5nf1y_RrvD2ThbZqPJ8znaI54wBFwg4gJ1yo81XHrAL81VNc1fi7KpYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Imperceptible+Content+Poisoning+in+LLM-Powered+Applications&rft.au=Zhang%2C+Quan&rft.au=Zhou%2C+Chijin&rft.au=Go%2C+Gwihwan&rft.au=Zeng%2C+Binqi&rft.date=2024-10-27&rft.pub=ACM&rft.eissn=2643-1572&rft.spage=242&rft.epage=254&rft_id=info:doi/10.1145%2F3691620.3695001&rft.externalDocID=10764993 |