Imperceptible Content Poisoning in LLM-Powered Applications

Large Language Models (LLMs) have shown their superior capability in natural language processing, promoting extensive LLM-powered applications to be the new portals for people to access various content on the Internet. However, LLM-powered applications do not have sufficient security considerations...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM International Conference on Automated Software Engineering : [proceedings] pp. 242 - 254
Main Authors Zhang, Quan, Zhou, Chijin, Go, Gwihwan, Zeng, Binqi, Shi, Heyuan, Xu, Zichen, Jiang, Yu
Format Conference Proceeding
LanguageEnglish
Published ACM 27.10.2024
Subjects
Online AccessGet full text
ISSN2643-1572
DOI10.1145/3691620.3695001

Cover

Abstract Large Language Models (LLMs) have shown their superior capability in natural language processing, promoting extensive LLM-powered applications to be the new portals for people to access various content on the Internet. However, LLM-powered applications do not have sufficient security considerations on untrusted content, leading to potential threats. In this paper, we reveal content poisoning, where attackers can tailor attack content that appears benign to humans but causes LLM-powered applications to generate malicious responses. To highlight the impact of content poisoning and inspire the development of effective defenses, we systematically analyze the attack, focusing on the attack modes in various content, exploitable design features of LLM application frameworks, and the generation of attack content. We carry out a comprehensive evaluation on five LLMs, where content poisoning achieves an average attack success rate of 89.60%. Additionally, we assess content poisoning on four popular LLM-powered applications, achieving the attack on 72.00% of the content. Our experimental results also show that existing defenses are ineffective against content poisoning. Finally, we discuss potential mitigations for LLM application frameworks to counter content poisoning.CCS CONCEPTS* Computing methodologies → Machine learning; * Security and privacy;
AbstractList Large Language Models (LLMs) have shown their superior capability in natural language processing, promoting extensive LLM-powered applications to be the new portals for people to access various content on the Internet. However, LLM-powered applications do not have sufficient security considerations on untrusted content, leading to potential threats. In this paper, we reveal content poisoning, where attackers can tailor attack content that appears benign to humans but causes LLM-powered applications to generate malicious responses. To highlight the impact of content poisoning and inspire the development of effective defenses, we systematically analyze the attack, focusing on the attack modes in various content, exploitable design features of LLM application frameworks, and the generation of attack content. We carry out a comprehensive evaluation on five LLMs, where content poisoning achieves an average attack success rate of 89.60%. Additionally, we assess content poisoning on four popular LLM-powered applications, achieving the attack on 72.00% of the content. Our experimental results also show that existing defenses are ineffective against content poisoning. Finally, we discuss potential mitigations for LLM application frameworks to counter content poisoning.CCS CONCEPTS* Computing methodologies → Machine learning; * Security and privacy;
Author Shi, Heyuan
Zhou, Chijin
Xu, Zichen
Zeng, Binqi
Go, Gwihwan
Zhang, Quan
Jiang, Yu
Author_xml – sequence: 1
  givenname: Quan
  surname: Zhang
  fullname: Zhang, Quan
  organization: Tsinghua University,Beijing,China
– sequence: 2
  givenname: Chijin
  surname: Zhou
  fullname: Zhou, Chijin
  organization: Tsinghua University,Beijing,China
– sequence: 3
  givenname: Gwihwan
  surname: Go
  fullname: Go, Gwihwan
  organization: Tsinghua University,Beijing,China
– sequence: 4
  givenname: Binqi
  surname: Zeng
  fullname: Zeng, Binqi
  organization: Central South University,Changsha,China
– sequence: 5
  givenname: Heyuan
  surname: Shi
  fullname: Shi, Heyuan
  organization: Central South University,Changsha,China
– sequence: 6
  givenname: Zichen
  surname: Xu
  fullname: Xu, Zichen
  organization: Nanchang University,Nanchang,China
– sequence: 7
  givenname: Yu
  surname: Jiang
  fullname: Jiang, Yu
  organization: Tsinghua University,Beijing,China
BookMark eNotjU9LwzAcQKMoOGfPXjz0C3Tml__B0yhOBxV30PNI0l8k0CWlLYjf3oGe3ju9d0uucslIyD3QDYCQj1xZUIxuzpSUwgWprLZGUKqBCaMvyYopwRuQmt2Qap6Tp2eVCkCtyNP-NOIUcFySH7BuS14wL_WhpLnklL_qlOuue2sO5Rsn7OvtOA4puCWVPN-R6-iGGat_rsnn7vmjfW2695d9u-0ad_4vjUVmBZMuSFA-xN4IERCt5iZEtN5HJ00PKIOTUdPYW2lYL7zkkXrhwfM1efjrJkQ8jlM6uennCFQrYS3nv5QmSr4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3691620.3695001
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798400712487
EISSN 2643-1572
EndPage 254
ExternalDocumentID 10764993
Genre orig-research
GrantInformation_xml – fundername: Research and Development
  funderid: 10.13039/100006190
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
AAWTH
ABLEC
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a248t-9e29425ac516bcfd844cee9738cfe9bbfa58d1e5ca5f70fd9582d4b53f0b4b1b3
IEDL.DBID RIE
IngestDate Wed Jan 15 06:20:43 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-9e29425ac516bcfd844cee9738cfe9bbfa58d1e5ca5f70fd9582d4b53f0b4b1b3
PageCount 13
ParticipantIDs ieee_primary_10764993
PublicationCentury 2000
PublicationDate 2024-Oct.-27
PublicationDateYYYYMMDD 2024-10-27
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-27
  day: 27
PublicationDecade 2020
PublicationTitle IEEE/ACM International Conference on Automated Software Engineering : [proceedings]
PublicationTitleAbbrev ASE
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib057256116
ssj0051577
Score 2.2864428
Snippet Large Language Models (LLMs) have shown their superior capability in natural language processing, promoting extensive LLM-powered applications to be the new...
SourceID ieee
SourceType Publisher
StartPage 242
SubjectTerms Content Poisoning
Focusing
Internet
Large language models
LLM Applications
Machine learning
Natural language processing
Portals
Prevention and mitigation
Privacy
Security
Software engineering
Title Imperceptible Content Poisoning in LLM-Powered Applications
URI https://ieeexplore.ieee.org/document/10764993
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA22K1f1UfFNFm5TZ_IOrkQsVdrShYXuSjK5AVGmItONX28yDxVBcFbDwAyXTO6ck8k99yB0peOSQpjMEkpBEy4YJZZZIJypEJwFk_ukHZ7N5WTJH1di1YrVay0MANTFZzBKp_Vevt8U2_SrLGa4kpGhsx7qxXnWiLW6ySNUBO88cZ3mMxxxWqm2l0_OxTWTkQjRuEaVRmTJAuaHmUqNJeMBmndRNCUkL6Nt5UbFx68Gjf8Ocw8Nv2V7ePEFSPtoB8oDNOh8G3Cbxofo5iFy5aaexb0CrhtUlRVebFJlUbwTP5d4Op2RRXJQA49vf2xyD9FyfP90NyGtiQKxlOuKGKAm5qUtRC5dEbzmPIZhFNNFAONcsEL7HERhRVBZ8EZo6rkTLGSOu9yxI9QvNyUcI5yoBsu85fHJ3CnrQLICtLTxMDK4EzRMg7F-a_pkrLtxOP3j-hnapZEiJCSg6hz1q_ctXESIr9xl_Wo_Aai1phQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H_RpXibe7YOvmW0uTYJPIo5Nu7GHDfY2kuYEROlEuhd_vUkvOgTBPpVCyyHp6felOd_5ELqRfknBVawxISAx45RgTTVgRoVzRoNKbNAOjyfpcM6eFnzRiNUrLQwAVMVn0A-n1V6-XeXr8KvMZ7hIPUOn22jHAz_jtVyrfX248PCdBLZTf4g9UgvRdPNJGL-lqadCxK9SU8XjYAKzYadSocmgiyZtHHURyWt_XZp-_vmrReO_A91HvR_hXjT9hqQDtAXFIeq2zg1Rk8hH6G7k2XJd0WLeIKpaVBVlNF2F2iJ_Z_RSRFk2xtPgoQY2ut_Y5u6h-eBx9jDEjY0C1oTJEisgymemznmSmtxZyZgPQwkqcwfKGKe5tAnwXHMnYmcVl8Qyw6mLDTOJoceoU6wKOEFRIBs0tpr5JzMjtIGU5iBT7Q-VOnOKemEwlu91p4xlOw5nf1y_RrvD2ThbZqPJ8znaI54wBFwg4gJ1yo81XHrAL81VNc1fi7KpYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Imperceptible+Content+Poisoning+in+LLM-Powered+Applications&rft.au=Zhang%2C+Quan&rft.au=Zhou%2C+Chijin&rft.au=Go%2C+Gwihwan&rft.au=Zeng%2C+Binqi&rft.date=2024-10-27&rft.pub=ACM&rft.eissn=2643-1572&rft.spage=242&rft.epage=254&rft_id=info:doi/10.1145%2F3691620.3695001&rft.externalDocID=10764993